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Abstract
In water quality monitoring programs, optimization between information craved and information collected involves scru-
pulous judgment making processes and management approaches. The present study explores the few essential aspects of 
water quality monitoring program considering Shannon’s entropy with case studies on a few lakes and wetlands in North 
Guwahati, Assam (India). Firstly, the loss of information by traditional water quality indices (WQIs) has been addressed by 
the use of entropy weighted WQIs (EWQIs) which takes into account the randomness of data sets removing error through 
subjective judgments of experts in assigning parameter weights. This concept was extended to the quantification of heavy 
metals. The concept of multi-criteria decision-making methods (MCDMs) such as TOPSIS was introduced which utilize 
entropy weights and rough set theory to give a reliable and unbiased description of overall pollution levels of each sampling 
location. This study will be of great help to various agencies which take care of the water supply and water pollution control 
since this forms a significant tool for easy understanding and thereby making their applicability uncomplicated.

Keywords Water quality · Entropy · Heavy metals · TOPSIS

Introduction

Clean and safe water is of vital importance to any nation 
in the world. Freshwater of adequate quality and quantity 
is the necessity of sustainable development. Major portion 
of the available water in Earth is present in the form of sur-
face water sources. Surface water sources play a vital role 
for social progress and economic development as ancient 
civilizations have prospered along them (Priscoli 2000; 

Bu et al. 2010). Lakes and wetlands play a supreme role 
in the environment—providing goods and services to the 
local community: staple food plants, flood control, inland 
fisheries (Maltby 2013), principally acting as carbon sinks, 
water purifiers and a host to biologically diverse ecosystems. 
They also contribute highly to the recharge of groundwater 
aquifers (Winter 1999). In fact, growth of a nation depend-
ent on the conservation and prolific utilization of its water 
resources.

Presently, rapid population growth, urbanization, with 
swift industrialization has deteriorated the quality of sur-
face water sources (Simeonov et al. 2003; Singh et al. 2004; 
Gradilla-Hernández et al. 2020; Teodorof et al., 2021). Sur-
face water sources constitute the pathway through which 
a wide variety of living organisms are exposed to harmful 
elements which may be of either anthropogenic or geologi-
cal origin. The expulsion of point sources such as untreated 
domestic and industrial wastewater, agricultural run-offs 
and leachate from solid waste dumpsite have not only been 
inimical to aquatic bodies but also have led to numerous 
toxic trace elements (Sin et al. 2001; Armitage et al. 2007; 
Gradilla-Hernández et al. 2020). Therefore, comprehensive 
and accurate assessments of water quality have become 
indispensable for government and local administrations 
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(Zhang et al. 2022). Consistent monitoring is essential for 
such assessments and in execution of water resource man-
agement policies.

Consequently, the evaluation of water quality from the 
monitored data has become a serious concern in recent years 
(Ongley 1998). Monitoring programs often lead to the gen-
eration of a large amount of data sets (Dixon and Chiswell, 
1996; Iscen et al. 2008). This requires their transformation 
into simpler numerical scores which can be easily under-
stood by policymakers as well as the local community. Most 
of these water quality parameters are integrated by water 
quality indices (WQIs) into a single numerical score capable 
of describing the water quality at a particular site and at a 
particular time (Kaurish and Younos 2007). WQIs reveal the 
water quality parameters exceeding their standards and thus 
demonstrate the fruitfulness of stream restoration efforts 
(Gazzaz et al. 2012; Dash and Kalamdhad 2021). Another 
essential aspect of monitoring programs is prioritizing deci-
sions to implement policies. In such situations, multi-criteria 
decision-making methods (MCDMs) are usually considered. 
Most professionals engaged in the design and operation of 
the monitoring programs are familiar with the symptoms 
of “data rich but information poor” monitoring systems 
which generate large amount of data in a discrete form but 
are often incapable of describing water quality trends in an 
area (Ward et al. 1986). It is essential to remove the gap 
between the information prerequisites on water quality and 
the information gained by the monitoring systems. In recent 
years, several researchers have focused on the application of 
“Shannon entropy” in water quality assessment (Dash and 
Kalamdhad 2021). Shannon entropy represents the average 
level of information or uncertainty associated with the vari-
able’s possible outcome. For a random variable X, Shan-
non’s entropy is defined as

where “n” is the number of different outcomes and p is 
the probability of outcome. Minimum value, i.e., 0, of this 
entropy will occur for a constant random variable. For a 
constant random variable, its probability value will be 1 and 
there will be no uncertainty associated with that event. Shan-
non entropy will attain its maximum value when the prob-
ability all the possible outcomes have equal value, i.e., 1/n.

With the advent of information theory, the term 
entropy also found its essence in quantification, storage 
and communication of information. Shannon entropy is 
a measure of the unpredictability of a random event, or 
equivalently the average information derived from its 
occurrence. In recent years, Shannon entropy has had 
diverse applications in the field of hydraulic engineer-
ing and environmental engineering as a large number of 

(1)E(X) =

n∑
i=1

pi logb pi ≥ 0

random processes predominate our environment (Singh 
2013, 2014). In the light of Shannon entropy, several 
techniques such as development of entropy-based quality 
indices to address shortcomings of conventional WQIs, 
modification of conflicts between different WQIs by 
entropy-based MCDMs and optimization of online moni-
toring systems to refine the information gained from mon-
itoring programs have emerged (Singh et al. 2018a, b).

The overall aim of the present study is to identify the best 
possible approach for water quality assessment in order to 
provide effective and efficient information at optimum cost. 
The following objectives are defined to focus on the primary 
aim of this study:

(a) Assessment of surface water quality of lakes and wet-
lands located in the North Guwahati, Assam (India)

(b) To explore the application of Shannon entropy in water 
quality index and TOPSIS for the evaluation of surface 
water quality.

Materials and methods

Study area

The study is based on a few important lakes and wetlands 
in the North Guwahati, Assam (India) (Fig. 1). The north 
Guwahati is a host to numerous lakes and wetlands situated 
at the north bank of the mighty Brahmaputra River. Tem-
peratures in the region range approximately from 8 to 40 °C. 
The annual average rainfall in the region ranges from 1500 to 
2600 mm with a relative humidity of 76%. North Guwahati 
experiences a subtropical climate. The locality has, however, 
undergone rapid and uncontrolled development activities 
including establishment of industries, construction activi-
ties and utilization of agricultural and forest land for other 
development purposes. Consequently, there is a need for 
proper monitoring of these lakes and wetlands to undertake 
strategies for their preservation and restoration as they are of 
immense biological and environmental importance.

Sampling strategies and analysis

A total of 20 sampling locations were identified for the col-
lection of surface water samples for the analysis of water 
quality parameters as shown in Fig. 1. Surface water samples 
were collected in the pre-monsoon and post-monsoon period 
during 2017–2018. Standard methods (APHA 2012) have 
been followed throughout the analysis (Table 1). A qual-
ity control procedure was maintained throughout, includ-
ing recalibration of instruments. Reagents were prepared as 
recommended by APHA (2012). All chemicals and reagents 
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used in the analyses were of analytical grade unless oth-
erwise stated. Deionized water was used for all dilutions. 
Standard solutions were prepared by diluting the stock 
solutions.

Entropy weighted water quality index (EWQI)

EWQI is an enhancement over the existing traditional 
WQIs. Steps involved in calculation of EWQI are as 

India Assam

Guwahati

Fig. 1  Location of sampling sites in north Guwahati (Assam, India) (delineated using ArcGIS-ArcMap (v. 10.2)
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follows: (Li et al. 2010).

• A matrix was developed with all “m” water samples 
(m = 1, 2,…,m) and “n” measured parameters (n = 1, 
2,…,n)

• To remove the error caused by different dimensions and 
units, initial matrix was converted the standard grade 
matrix Y

X =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 ⋯ ⋯ x1n
x21 x22 ⋯ ⋯ x2n
⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮

xm1 xm2 ⋯ ⋯ xmn

⎤⎥⎥⎥⎥⎥⎦

where Y is standard grade matrix and yij was calculated 
as:

• Shannon entropy was calculated by the formula:

Y =

⎡
⎢⎢⎢⎢⎢⎣

y11 y12 ⋯ ⋯ y1n
y21 y22 ⋯ ⋯ y2n
⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮

ym1 ym2 ⋯ ⋯ ymn

⎤⎥⎥⎥⎥⎥⎦

(2)yij =
xmn −

(
xmn

)
min(

xmn
)
max−

(
xmn

)
min

Table 1  Water quality 
parameters associated with their 
abbreviations and analytical 
methods used in this study



Applied Water Science (2022) 12:247 

1 3

Page 5 of 13 247

where

• Entropy weight of the parameter (j) was calculated by:

• Quality rating scale for each parameter was determined 
by:

• EWQI was calculated by using the following formula:

The EWQI ranges have been classified as (Table 2):
Water supplies with good or excellent category would 

able to sustenance a high diversity of aquatic life. Addi-
tionally, the water would also be fit for all forms of rec-
reation, including those involving direct contact with the 
water. Based on entropy weights, the EHCI has been pro-
posed with concentrations pertaining exclusively to heavy 
metals (Singh et al. 2019).

TOPSIS

TOPSIS is a multi-criteria decision-making method 
(MCDM) for ordering the alternatives. It is an appropri-
ate tool for picking a number of possible alternatives by 
determining their Euclidean distances from a desired ideal 
best and an undesired ideal worst. There are two types 
of conditions (positive and negative) in this approach. 
Positive conditions are those that should be increased and 
negative ones are those which need to be decreased in 
order to mitigate risk. The TOPSIS model given by Hwang 
et al. (1993) can be implemented in the following manner:

• The sampling locations (alternatives) and the param-
eters (criteria) were specified for wetlands to which the 
ranking was to be assigned according to their pollution 
status.

• The ratings to the locations and parameters were assigned 
using matrix X

(3)Ej = (1∕ lnm)

m∑
i=1

Pij lnPij

Pij =
yij∑
yij

(4)Wj = (1 − Ej)∕

n∑
j=1

(1 − Ej)

(5)Qj =

(
Cj

Sj

)
∗ 100

(6)WQI =

n∑
j=1

WjQj

where xij showed the value of ith alternative for jth 
criterion

• The weight of the water quality parameter was evalu-
ated on the basis of Shannon entropy techniques as per 
Eq. (8):

  And,

where 0 ≤ Ej ≤ 1 where index with higher entropy has 
greater variation. Therefore, weight of the water quality 
parameter was calculated as:

and dj = 1 − Ej.
• A normalized decision matrix [N]m×c was developed 

using vector normalization method as follows:

• A weighted normalized decision matrix was developed 
( V  ) as:

• The ideal best (IB) and the ideal worst (IW) of the alter-
natives were calculated as:

• The Euclidean distance of each alternative from the IB 
( d+

i
) and IW ( d−

i
 ) was calculated as:

Xm×c =

⎡⎢⎢⎣

x11 x12 … . x1c
⋮ … .xij ⋮

xm1 ⋯ xmc

⎤⎥⎥⎦

(7)qij =
xij

x1j +⋯ + xmj
; ∀j ∈ {1,… , c}

(8)Ej = −
1

lnm

m∑
i=1

qij ln qij; ∀j ∈ {1,… , c}

(9)wj =
dj

d1 +⋯ + dc

(10)
rij =

xij√
x2
ij
+… x2

mj

V = [N]m×c × wc×c

IB = {max vij|vij ∈ V} =
(
v+
1
,… , v+

c

)

IW = {min vij|vij ∈ V} =
(
v−
1
,… , v−

c

)

(11)d+
i
=

√√√√ c∑
j=1

(
vij − v+

j

)2

(12)d−
i
=

√√√√ c∑
j=1

(
vij − v−

j

)2
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• The performance score (PS) of each alternative was cal-
culated as:

• The alternatives were finally graded according to their 
PS.

(13)PS =
d−
i

d−
i
+ d+

i

Results and discussion

The statistical summary of observed parameters in pre-mon-
soon period is shown in Tables 3 and 4. Concentration of 
water quality parameters has been expressed in mg/L with 
exceptions in pH, EC (in µS/cm) and turbidity (NTU).

The physicochemical parameters during pre-monsoon 
period depicted that in the sampling location LKBM15, the 
 BOD5 concentration exceeded the discharge standards for 
inland surface waters. This was primarily attributed to the 
discharge of untreated domestic sewage, leaves and woody 
debris; dead plants and animal manure (Bhateria and Jain 
2016). The contribution of  BOD5 values was in the range 
of 7.80–33.30 mg/L. The pH values were in the range of 
6.51–7.86 and the DO levels were healthy in the entire area 
varying between 5.77 and 10.07 mg/L. The EC and turbidity 
values were, however, higher than the permissible drink-
ing water standards prescribed by BIS in majority of the 
locations varying between 214–741 µS/cm and 2.30–74.70, 
respectively (BIS IS 10500: 2012). High EC indicates the 

Table 3  Descriptive statistics of physicochemical parameters in pre-monsoon season at North Guwahati

Locations pH DO EC Tur TH TA BOD TDS Cations Anions

Na+ K+ Ca2+ Mg2+ F− Cl− SO4
2− NO3

−

LKBM1 7.15 7.66 214.00 4.90 78.00 78.00 12.00 125.00 11.00 11.00 16.46 7.23 0.29 3.66 1.55 0.64
LKBM2 7.17 8.52 223.00 2.30 80.00 80.00 14.40 125.00 42.00 34.00 10.56 0.12 0.32 6.87 1.48 0.89
LKBM3 7.50 9.57 215.00 2.70 74.00 78.00 10.20 22.50 9.00 6.00 10.83 0.13 0.71 6.42 1.96 1.98
LKBM4 6.87 6.84 353.00 11.10 110.00 102.00 11.70 70.00 19.00 17.00 14.42 10.33 0.50 6.12 7.19 1.60
LKBM5 6.75 7.02 353.00 4.80 108.00 92.00 12.90 80.00 11.00 26.00 17.81 0.09 0.46 6.95 8.27 0.79
LKBM6 7.30 7.06 384.00 8.30 108.00 102.00 12.90 215.00 22.00 7.00 13.11 8.24 0.49 2.15 8.33 0.42
LKBM7 6.99 7.51 220.00 25.60 72.00 66.00 27.30 85.00 23.00 17.00 17.04 7.59 0.61 7.64 6.72 1.71
LKBM8 6.96 7.01 220.00 30.10 74.00 70.00 15.90 175.00 22.00 19.00 19.05 0.11 0.72 6.96 5.21 1.24
LKBM9 7.20 7.70 215.00 36.80 74.00 72.00 18.60 140.00 16.00 21.00 12.41 4.83 0.62 6.82 8.48 1.81
LKBM10 7.68 10.07 657.00 26.40 186.00 190.00 11.70 152.50 16.00 29.00 18.14 12.11 0.97 49.62 12.53 0.17
LKBM11 7.11 5.77 727.00 68.10 208.00 216.00 15.30 210.00 62.00 30.00 19.42 0.12 0.95 52.80 38.52 5.45
LKBM12 7.06 6.56 741.00 54.90 200.00 216.00 14.70 257.50 16.00 22.00 12.65 2.49 0.60 1.85 34.64 3.61
LKBM13 7.03 7.01 303.00 8.40 82.00 70.00 14.40 45.00 20.00 20.00 14.32 6.14 0.53 5.54 15.14 3.40
LKBM14 6.80 7.59 342.00 44.20 82.00 68.00 9.00 277.50 39.00 21.00 15.32 6.75 0.40 3.55 16.19 1.03
LKBM15 6.51 7.64 430.00 16.60 80.00 70.00 33.30 142.50 5.00 14.00 6.68 15.23 0.48 5.84 15.52 0.73
LKBM16 6.85 7.09 265.00 16.60 84.00 70.00 9.30 45.00 34.00 20.00 8.00 0.16 0.41 3.55 16.19 1.03
LKBM17 7.75 7.70 300.00 74.70 80.00 92.00 10.20 230.00 22.00 12.00 29.67 3.82 0.10 11.45 31.27 2.83
LKBM18 7.86 7.40 320.00 74.00 88.00 88.60 8.60 220.00 27.00 16.00 32.00 5.63 0.26 13.45 28.44 1.95
LKBM19 6.97 7.22 230.00 9.30 76.00 90.00 7.80 160.00 23.70 9.10 32.80 4.88 0.10 6.82 14.78 1.23
LKBM20 6.87 7.56 240.00 7.70 78.00 92.00 8.40 158.00 21.60 10.00 34.80 6.43 0.23 7.36 18.60 1.64
MAX 7.86 10.07 741.00 74.70 208.00 216.00 33.30 277.50 62.00 34.00 34.80 15.23 0.97 52.80 38.52 5.45
MIN 6.51 5.77 214.00 2.30 72.00 66.00 7.80 22.50 5.00 6.00 6.68 0.09 0.10 1.85 1.48 0.17
MEAN 7.12 7.53 347.60 26.38 101.10 100.13 13.93 146.78 23.07 18.06 17.77 5.12 0.49 10.77 14.55 1.71
SD 0.35 0.96 168.74 24.47 43.45 47.78 6.36 73.54 13.10 7.76 8.24 4.37 0.24 14.11 10.99 1.27
KURTOSIS 0.12 2.51 1.45 − 0.32 2.19 2.46 4.32 − 0.87 3.09 − 0.45 0.02 − 0.07 − 0.06 6.35 − 0.02 2.79
SKEWNESS 0.72 1.24 1.57 0.99 1.87 1.93 2.02 0.02 1.51 0.34 0.98 0.57 0.35 2.70 0.90 1.57

Table 2  Water quality scale for EWQI (Wu et al. 2011)

Rank EWQI Water quality

1 < 50 Excellent
2 50–100 Good
3 100–150 Average
4 150–200 Poor
5 > 200 Extremely poor
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abundance of cations and anions in the surface water. High 
turbidity is mainly because of floating algae, plant pieces, 
and soil washing from the banks in the water.

The TDS concentrations in the surface water samples 
varied between 22.50 and 277.50 mg/L. The abundance of 
the major cations, namely  Na+,  K+,  Ca2+ and  Mg2+, was in 
the order of  Na+  >  K+  >  Ca2+  >  Mg2+. The fluoride  (F−) 
concentrations were low, suggesting that the surface water 
sources can be used as an alternative to groundwater sources 
which have high concentrations of  F− in North–East region 
of India.  Cl− and  SO4

2− were the most enriched anions. Fer-
tilizer and wastewater are mainly responsible for elevated 
chloride concentration in lakes. High chloride concentra-
tions influence the lake ecology and ecosystem services such 
as fisheries (Dugan et al. 2017).

Elevated concentrations of Fe were observed at all 
the sampling locations of North Guwahati accompanied 
with slightly higher concentrations of Mn and Cu in a 
few locations. The concentration of Fe was in the range 
of 0.43–6.25 mg/L, and Mn and Cu were in the range of 
0.03–0.64 and 0.03–0.19 mg/L, respectively. These con-
centrations were in excess of their permissible drinking 
water standards prescribed by BIS (BIS IS 10500: 2012). 

Concentrations of Pb were BDL with low concentrations of 
Cr and Zn in the region.

The physicochemical parameters for the post-monsoon 
period are depicted in Table 5. In the post-monsoon period, 
the  BOD5 was ranged from 5.70 to 14.70 mg/L. These values 
reveal a sharp contrast with the  BOD5 values of the pre-mon-
soon period and bring into evidence the effects of dilution 
and water depth on the surface water quality of the North 
Guwahati, Assam. In comparison with the pre-monsoon 
period, the lakes and wetlands in the region had a higher 
water depth, thus leading to the dilution of any incoming 
organic pollution load. The pH values were in the range of 
6.67–8.52 and the DO levels in the sampling locations were 
healthy varying from 6.23 to 9.24 mg/L. The highest EC 
value recorded in this period was 650 µS/cm, and the EC 
values exceeded their permissible drinking water standards 
in majority of the sampling locations. The turbidity and 
TDS values in the post-monsoon period were in the range 
of 2.7–46 and 90–320 mg/L, respectively. The cations in the 
order of abundance were, namely  Na+ >  Ca2+ >  K+ >  Mg2+. 
There were no significant changes observed in the fluoride 
and nitrate concentrations in both the periods. The anions 
 Cl− and  SO4

2− were the most enriched anions.

Table 4  Descriptive statistics of 
heavy metals in pre-monsoon 
season at North Guwahati

Locations Cr Pb Fe Mn Cu Zn

LKBM1 0.02 BDL 1.43 0.15 0.08 0.20
LKBM2 0.03 BDL 0.54 0.12 0.03 0.04
LKBM3 0.04 BDL 1.11 0.17 0.11 0.08
LKBM4 0.00 BDL 1.58 0.21 0.08 0.09
LKBM5 0.03 BDL 1.05 0.19 0.09 0.32
LKBM6 0.05 BDL 1.33 0.25 0.09 0.19
LKBM7 0.03 BDL 1.20 0.08 0.13 0.19
LKBM8 0.03 BDL 0.76 0.45 0.07 0.32
LKBM9 0.03 BDL 0.96 0.13 0.08 0.24
LKBM10 0.03 BDL 4.62 0.26 0.19 0.48
LKBM11 0.03 BDL 6.25 0.06 0.05 0.15
LKBM12 0.03 BDL 5.26 0.12 0.10 0.35
LKBM13 0.02 BDL 0.73 0.24 0.10 0.31
LKBM14 0.03 BDL 1.66 0.51 0.11 0.20
LKBM15 0.02 BDL 1.22 0.53 0.04 0.04
LKBM16 0.03 BDL 0.99 0.64 0.08 0.24
LKBM17 0.01 BDL 0.82 0.25 0.10 0.32
LKBM18 0.01 BDL 0.97 0.32 0.09 0.45
LKBM19 0.01 BDL 0.43 0.05 0.09 0.47
LKBM20 0.01 BDL 0.64 0.03 0.04 0.36
MAX 0.05 0.00 6.25 0.64 0.19 0.48
MIN 0.00 0.00 0.43 0.03 0.03 0.04
MEAN 0.02 0.00 1.68 0.24 0.09 0.25
SD 0.01 0.00 1.65 0.17 0.04 0.14
KURTOSIS − 0.30 0.00 3.17 0.31 2.31 − 0.82
SKEWNESS − 0.42 0.00 2.07 1.04 0.77 0.02
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The observed values of heavy metals in the post-mon-
soon period are summarized in Table 6. In the post-mon-
soon period, Pb and Cu concentrations in excess to their 
prescribed BIS drinking water standards were observed in 
most of the sampling locations. The Pb and Cu concentra-
tions were in the range of 0.08–0.89 and 0.08–2.35 mg/L, 
respectively. In a few sampling locations, Cr concentra-
tions also exceeded its permissible drinking water limits. 
Furthermore, concentrations of Fe and Mn were relatively 
lower in the post-monsoon period in comparison with the 
pre-monsoon period. Fe and Mn concentrations in the 
post-monsoon period varied in the range of 0.01–1.50 and 
0–0.48 mg/L, respectively. These observations shed sig-
nificant light into the possible effects of leaching and run-
off from nearby roadside dumps and agricultural lands. In 
such circumstances, possibly the leaching of heavy metals 
was far more pronounced than the effect of dilution con-
tributing to excessive heavy metal concentrations.

Results demonstrate that these shallow lakes and wet-
lands are highly vulnerable to the human-induced activity. 

Influences of human activity on water quality were greater 
than those of natural factors (Han et al. 2020).

EWQI has been applied to evaluate the appropriateness of 
water quality for drinking purpose. EWQI is a step forward 
from traditional WQIs, which rely on personal judgments 
and expert opinion to assign weights to parameters (Singh 
et al. 2019). The EWQI of all the sampling locations in north 
Guwahati for the pre-monsoon and post-monsoon period is 
shown in Table 7. The spatial variability of the water qual-
ity as computed by EWQI with respect to physicochemi-
cal parameters is illustrated in Fig. 2. In the pre-monsoon 
period and post-monsoon period, the EWQI varied in the 
range of 60.98–205.45 and 55.12–135.67, respectively. The 
EWQI values signified that the water quality was worse in 
the pre-monsoon period varying in the range of “good” to 
“extremely poor,” whereas the water quality in the post-mon-
soon period varied in the range of “good” to “average.” The 
highest EWQI was evaluated at LKBM11 which had high 
concentrations of EC, turbidity and the lowest DO level in 
the pre-monsoon period. The sampling location LKBM11 

Table 5  Descriptive statistics of physicochemical parameters in post-monsoon season at North Guwahati

Locations pH DO EC Tur TH TA BOD TDS Cations Anions

Na+ K+ Ca2+ Mg2+ F− Cl− SO4
2− NO3

−

LKBM1 7.87 9.24 196.20 3.00 68.00 84.00 9.60 92.00 24.90 14.10 18.50 5.23 0.28 7.95 2.58 0.09
LKBM2 8.52 9.22 200.00 5.80 70.00 86.00 6.00 90.00 14.80 9.40 13.00 3.17 0.94 25.66 9.91 0.15
LKBM3 7.20 9.20 200.00 4.70 66.00 76.00 7.50 94.00 11.00 9.20 11.70 7.78 0.30 7.88 5.73 0.05
LKBM4 6.70 6.57 372.00 3.80 108.00 128.00 7.20 174.00 35.90 16.60 23.50 9.46 0.48 24.16 9.12 0.16
LKBM5 6.67 6.32 364.00 3.20 102.00 124.00 7.20 156.00 34.80 15.00 23.10 6.85 0.48 23.05 9.77 0.13
LKBM6 6.93 6.27 392.00 4.80 106.00 128.00 7.80 160.00 34.50 17.80 25.00 12.46 0.44 23.68 9.00 0.13
LKBM7 7.19 8.73 633.00 12.10 146.00 166.00 6.60 304.00 63.70 31.40 29.10 13.37 0.57 59.51 55.09 1.07
LKBM8 7.29 8.89 636.00 28.70 144.00 170.00 10.20 306.00 57.00 31.50 29.40 12.14 0.53 62.63 58.14 0.34
LKBM9 7.33 8.42 650.00 30.20 150.00 178.00 7.80 320.00 68.00 34.20 30.40 10.16 0.69 68.85 60.37 0.97
LKBM10 6.75 6.28 223.00 3.40 66.00 76.00 14.70 114.00 16.20 15.80 8.90 7.56 0.61 12.91 8.46 0.15
LKBM11 6.78 6.83 231.00 16.20 70.00 76.00 5.70 98.00 13.30 15.00 9.90 6.66 0.60 11.41 7.62 1.01
LKBM12 6.82 6.23 228.00 11.00 66.00 74.00 8.80 94.00 12.50 15.70 9.10 10.13 0.59 11.17 9.43 0.08
LKBM13 6.96 6.57 338.00 2.70 80.00 102.00 7.50 150.00 35.70 20.90 19.40 8.20 0.50 39.87 11.34 0.19
LKBM14 6.94 6.51 358.00 3.30 78.00 102.00 7.20 168.00 36.30 22.00 20.40 13.43 0.47 32.71 15.70 0.09
LKBM15 6.86 6.69 444.00 5.20 80.00 104.00 7.40 170.00 34.00 20.40 18.80 11.86 0.40 26.96 9.26 0.14
LKBM16 6.90 6.59 428.00 4.90 84.00 110.00 7.40 170.00 38.00 23.80 17.20 14.32 0.34 38.57 12.35 0.26
LKBM17 6.92 7.86 336.00 42.80 84.00 92.00 8.60 220.00 26.80 14.00 18.40 3.82 0.32 11.45 31.27 2.83
LKBM18 6.87 8.04 320.00 46.00 92.00 96.00 8.40 240.00 29.00 18.00 26.80 5.63 0.36 13.45 28.44 1.95
LKBM19 7.06 7.98 214.00 15.80 74.00 94.00 6.20 160.00 23.70 9.10 32.80 7.63 0.10 13.84 18.74 2.48
LKBM20 7.12 7.64 228.00 13.60 82.00 104.00 7.40 158.00 21.60 10.00 34.80 9.84 0.23 14.69 22.79 2.27
MAX 8.52 9.24 650.00 46.00 150.00 178.00 14.70 320.00 68.00 34.20 34.80 14.32 0.94 68.85 60.37 2.83
MIN 6.67 6.23 196.20 2.70 66.00 74.00 5.70 90.00 11.00 9.10 8.90 3.17 0.10 7.88 2.58 0.05
MEAN 7.08 7.50 349.56 13.06 90.80 108.50 7.96 171.90 31.59 18.20 21.01 8.99 0.46 26.52 19.76 0.73
SD 0.44 1.14 148.28 13.44 27.26 31.75 1.94 72.40 16.23 7.41 7.98 3.27 0.18 18.66 17.98 0.92
KURTOSIS 5.87 − 1.55 0.08 1.30 0.60 0.33 7.44 − 0.03 0.44 0.14 − 1.00 − 0.93 1.42 0.43 1.10 0.37
SKEWNESS 2.27 0.36 0.98 1.51 1.30 1.09 2.35 0.89 0.91 0.87 0.03 − 0.05 0.52 1.18 1.52 1.33
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also had the highest TH and TA values in the pre-monsoon 
period. In the pre-monsoon period, 30% of the sampling 
locations had a water quality of “poor” or “extremely poor” 
and 50% of the sampling locations had a water quality per-
taining to “good” or “excellent” grades. In the post-monsoon 
period, the highest EWQI value was evaluated at LKBM8 
which had high values of EC and turbidity relative to their 
permissible drinking water standards (BIS IS10500 2012). 
Due to the effects of dilution and increased water depth in 
the post-monsoon period, the water quality of the lakes and 
wetlands in the region was better relative to the water quality 
in the pre-monsoon period. In the post-monsoon period, 75% 
of the sampling locations had water quality of “excellent” or 
“good.” None of the sampling locations had water quality 
“poor” or “extremely poor.” Most of the lakes and wetlands 
in the North Guwahati serve as a hub to domestic activities 
of nearby communities.

EHCI allows for a more accurate assessment of water 
quality in terms of heavy metals (Singh et al. 2020). The 
EHCI of all the sampling locations in north Guwahati for 
pre- and post-monsoon period is shown in Table 8. In both 
pre- and post-monsoon periods, the EHCI varied in the 
range of 72.43–469.72 and 269.89–1591.84, respectively. 

In the pre-monsoon period, the highest EHCI was evaluated 
at the sampling location LKBM11 which had the highest 
concentration of Fe (6.25 mg/L) among all the sampling 
locations. The concentration of Fe in LKBM11 was 20 
times higher than its permissible drinking water limit as 
prescribed by BIS (0.3 mg/L). Although the concentrations 
of the other metals in this location were well within their 
permissible limits, the contribution of Fe in the EHCI was 
90.34%. The EHCI values in the pre-monsoon period sug-
gested that the water quality of lakes and wetlands in the 
North Guwahati varied from “good” to “extremely poor” 
with 75% of the sampling locations having water quality 
“poor” or “extremely poor.” Only 15% of the sampling sites 
had water of desirable quality. However, exceptionally high 
EHCI values were observed in the post-monsoon period with 
the highest EHCI evaluated at LKBM1. During post-mon-
soon period, LKBM1 had the highest concentration of Pb 
among all other sampling stations accompanied by elevated 
concentrations of Cu. Furthermore, the EHCI values sug-
gested that all the sampling locations in the post-monsoon 
period had “extremely poor” water quality with respect to 
the excess heavy metal concentrations. Although the EWQI 
values were low in the post-monsoon period, the high EHCI 

Table 6  Descriptive statistics of 
heavy metals in post-monsoon 
season at North Guwahati

Locations Cr Pb Fe Mn Cu Zn

LKBM1 0.00 0.89 0.01 0.00 0.38 0.18
LKBM2 0.00 0.31 0.73 0.00 1.87 0.12
LKBM3 0.00 0.39 0.17 0.05 1.11 0.09
LKBM4 0.11 0.12 0.14 0.06 0.42 0.09
LKBM5 0.05 0.34 0.04 0.00 1.02 0.04
LKBM6 0.00 0.27 0.28 0.10 0.09 0.04
LKBM7 0.00 0.19 1.50 0.25 2.35 0.09
LKBM8 0.03 0.20 0.35 0.11 0.27 0.19
LKBM9 0.03 0.20 0.44 0.18 0.35 0.13
LKBM10 0.12 0.25 0.35 0.10 0.12 0.07
LKBM11 0.04 0.48 0.27 0.32 0.26 0.22
LKBM12 0.02 0.30 0.41 0.07 0.17 0.03
LKBM13 0.10 0.26 1.49 0.40 0.30 0.43
LKBM14 0.00 0.19 1.39 0.29 0.08 0.06
LKBM15 0.00 0.28 1.41 0.28 0.12 0.03
LKBM16 0.09 0.22 1.43 0.31 0.24 0.47
LKBM17 0.00 0.18 1.08 0.13 0.09 0.79
LKBM18 0.01 0.20 1.24 0.28 0.08 0.93
LKBM19 0.00 0.11 0.63 0.19 0.10 0.98
LKBM20 0.01 0.08 0.32 0.48 0.09 0.84
MAX 0.12 0.89 1.50 0.48 2.35 0.98
MIN 0.00 0.08 0.01 0.00 0.08 0.03
MEAN 0.03 0.27 0.68 0.18 0.48 0.29
SD 0.04 0.17 0.54 0.14 0.63 0.33
KURTOSIS 0.10 0.00 − 1.51 − 0.68 3.92 0.00
SKEWNESS 1.23 0.00 0.46 0.46 2.12 1.25
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values provided new insight on the leaching and run-off of 
heavy metals from roadside dumps, roads and agricultural 
lands.

In both the pre- and post-monsoon periods, EWQI sug-
gested the surface water quality with respect to physico-
chemical parameters while EHCI suggested the surface water 
quality with respect to heavy metals. In order to develop 
an insightful knowledge about the overall pollution levels 
in the lakes and wetlands of North Guwahati, the TOPSIS 
methodology was applied on all the water quality parameters 
(physicochemical and heavy metals) to develop overall ranks 
such that the highest TOPSIS rank in each period would 
indicate the most polluted sampling location. It is a useful 
tool in the decision-making process. The performance score 

and TOPSIS ranks of the sampling locations for the pre- and 
post-monsoon period are shown in Table 9. The spatial vari-
ability of the TOPSIS ranks is shown in Fig. 2a, b. During 
pre-monsoon period, the sampling location LKBM11 was 
the most polluted in comparison with other locations. This 
was evident from the highest EWQI and EHCI values at this 
location in the pre-monsoon period. It also had the lowest 
DO concentrations accompanied with high values of EC and 
turbidity. The TH and TA values were also higher than their 
desirable concentration and highest among all the locations. 
The concentration of Fe was also highest at this location 
with a value as high as 6.25 mg/L. The TOPSIS methodol-
ogy which is a reliable method based on entropy weights and 
utilizing rough set theory results in a reliable analysis from 
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different parameter weights. Similarly, during post-monsoon 
period, the sampling location LKBM9 was the most polluted 
sampling location as shown by the overall TOPSIS ranks and 

performance score in Table 9. This was evident from the fact 
that the location had the second highest EWQI and a high 
EHCI value indicating it as “extremely contaminated” by 
heavy metals. The ranks are important to serve as entities 
on which policy making and restoration of the lakes and 
wetlands may be prioritized (Table 9).

Conclusion

In the present study, a few important aspects of water qual-
ity monitoring programs have been addressed in the light 
of Shannon’s entropy. The evaluation of the water quality 
of a few important lakes and wetlands of North Guwahati 
has been done with an improved water quality index—
EWQI which takes into account uncertainties of occur-
rences of physicochemical parameters. A similar index on 
the principle of entropy weights has been suggested for 
the quantification of heavy metal contamination—EHCI. 
Reliable entropy-based MCDMs such as TOPSIS have 
been employed in prioritizing decision making by rank-
ing sampling sites based on their overall pollution levels. 
Based on the results, the following conclusions can be 
drawn from the study:

Table 7  EWQI in sampling locations at North Guwahati

Sampling locations Pre-monsoon Post-monsoon

LKBM1 72.80 65.72
LKBM2 90.42 61.67
LKBM3 60.98 55.12
LKBM4 89.77 69.28
LKBM5 87.86 66.21
LKBM6 87.22 75.00
LKBM7 151.81 103.47
LKBM8 123.60 135.67
LKBM9 141.59 134.55
LKBM10 136.16 82.77
LKBM11 205.45 70.31
LKBM12 176.66 74.49
LKBM13 93.51 69.70
LKBM14 124.39 71.79
LKBM15 161.25 74.36
LKBM16 83.75 76.81
LKBM17 162.88 117.35
LKBM18 162.18 124.41
LKBM19 65.35 69.12
LKBM20 66.92 73.44

Table 8  EHCI in sampling locations at North Guwahati

Sampling locations Pre-monsoon Post-monsoon

LKBM1 165.13 1591.84
LKBM2 82.18 1183.62
LKBM3 168.93 1035.72
LKBM4 182.06 394.03
LKBM5 160.33 926.02
LKBM6 194.25 506.03
LKBM7 162.47 1231.96
LKBM8 180.00 469.36
LKBM9 138.89 513.83
LKBM10 454.34 530.17
LKBM11 469.72 958.67
LKBM12 434.22 590.76
LKBM13 149.11 712.40
LKBM14 270.34 461.97
LKBM15 212.01 624.42
LKBM16 243.37 605.01
LKBM17 152.57 411.86
LKBM18 172.51 476.23
LKBM19 77.33 282.06
LKBM20 72.43 269.89

Table 9  Performance score and TOPSIS Ranks in North Guwahati

Sampling locations Pre-mon-
soon PS

Pre-
monsoon 
Ranks

Post-mon-
soon PS

Post-
monsoon 
ranks

LKBM1 0.80 5 0.85 3
LKBM2 0.86 1 0.70 10
LKBM3 0.85 3 0.80 6
LKBM4 0.73 12 0.64 15
LKBM5 0.85 2 0.74 9
LKBM6 0.77 9 0.93 1
LKBM7 0.75 11 0.61 18
LKBM8 0.78 6 0.74 8
LKBM9 0.73 13 0.45 20
LKBM10 0.45 19 0.65 13
LKBM11 0.41 20 0.75 7
LKBM12 0.64 16 0.90 2
LKBM13 0.76 10 0.65 12
LKBM14 0.70 14 0.84 5
LKBM15 0.65 15 0.84 4
LKBM16 0.78 8 0.68 11
LKBM17 0.63 17 0.60 19
LKBM18 0.62 18 0.62 17
LKBM19 0.80 4 0.63 16
LKBM20 0.78 7 0.64 14
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o For the evaluation of water quality in the post-monsoon 
period, EWQI values were relatively lower sprouting the 
effects of dilution while the EHCI values were relatively 
higher suggesting the entry of heavy metals through 
leaching and run-off.

p In assessment of the overall pollution levels of each sam-
pling location, TOPSIS worked as an effective method 
in ranking sampling sites for restoration efforts based on 
their pollution in individual periods. TOPSIS denoted 
that LKBM11 was most polluted in the pre-monsoon 
period and LKBM9 was most polluted in the post-mon-
soon period.

This study will help policy makers for making decisions 
in allocating funds for restoring of lakes. It will also help in 
comparing water qualities at different locations, enforcement 
of water quality standards and determining the changes in 
water quality.

Although a few major aspects of water quality monitoring 
programs have been addressed in the present study, yet there 
is ample scope for improvement in future work.
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