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Abstract
Soil wearing away or erosion is a chief agent of land loss in agricultural land and is regarded worldwide as a serious envi-
ronmental hazard. This study performed watershed prioritization using morphometric parameters based on fuzzy best worse 
method (F-BWM) and GIS integration for Gusru Watershed, India. This study prioritizes sub-watersheds of the study area 
from viewpoint of soil erosion using five major parameters i.e., stream frequency (Fs), relative relief (Rr), length of overland 
flow (Lo), relief ratio (Rh) and drainage density (Dd). Fuzzy based Best Worse Multi-Criteria Decision-Making (F-BWM) 
Method was used to assigning weights to used criteria and combining them to achieve erosion susceptibility for each sub-
watershed. Results showed that sub-watersheds 9, 14, and 5 were most susceptible to soil erosion and sub-watershed 3 was 
the least from the viewpoint of soil erosion ranking.
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Introduction

Soil erosion is an environmental, economic and social 
problem. Watersheds are taken as a unit to estimate the 
erosion problem. It is therefore important to monitor losses 
due to erosion in a watershed which is a planning unit for 
the sustainable development of natural resources (Mesh-
ram et al. 2017). Among many factors, water is the most 
important causative factor in soil erosion.

Soil attrition or erosion, excess water flow or runoff, 
changes in river geometry, degradation of streams, sedi-
ment accumulation in river and stream characters are 
related with morphometry (Meshram et al. 2018). This sug-
gests that the morphometry of a basin is fundamental to the 
basin hydrology. In present time geo-morphometric analy-
sis using a new technique i.e., Remote Sensing (RS) and 
Geographic Information Systems (GIS) being is utilized as 
this tool gives flexibility to analyze spatial data in a new 
manner (Gajbhiye et al. 2014; Meshram and Sharma 2017).

In this context, various approaches are available to ana-
lyze and prioritize sub-watersheds. These include Multi-
Criteria Decision Analysis (MCDA) (Akay and Koçyiğit 
2020; Chitsaz and Banihabib 2015; Dahmardeh Ghaleno 
et al. 2020; Sepehri et al. 2019), Soil and Water Assess-
ment Tool (SWAT) (Mishra et al. 2007), Artificial Neural 
Network (ANN) (Dehghanian et al. 2020), Storm Water 
Management Model (SWMM) (Babaei et al. 2018), Sup-
port Vector Machine (SVM) (Tehrany et al. 2014; Fan 
et al. 2018) and The Hydrologic Modeling System (HEC-
HMS) (Malekinezhad et al. 2017). Among the aforemen-
tioned methods, MCDA account takes priority due to its 
capability to handle nonlinear and complex problems and 
its usability to prioritize un-gaged watershed.

MCDA are the most usable methods which can be used 
to manage large amounts of data and solving decision-
making under scale, quantitative, qualitative and conflict 
factors (Fernández and Lutz 2010; Mahmoud and Gan 
2018). The Analytic Hierarchy Process (AHP) which was 
developed by Saaty (1980), due to some reasons such as 
cost-effectiveness, ease to use and understand has become 
one of the most popular methods among MCDA (Zou et al. 
2013), which has been successful in various natural hazard 
studies such as landslides (Kayastha et al. 2013; Myronidis 
et al. 2016; Bahrami et al. 2020), flood magnitude (Sepehri 
et al. 2017; Swain et al. 2020; Lin et al. 2020), groundwa-
ter vulnerability (Sener and Davraz 2013; Abdullah et al. 
2018; Das and Pal 2020).

In this regard, several methods were developed to 
reduce the number of pair-wise comparisons. In recent 
years, a new method was introduced by Rezaei (2015). 
This method is a more optimal version of AHP with the 

need of less compared data, resulting in more consistent 
results. However, the weak point of the BWM is related to 
the type of import data. This method just as the AHP, uses 
a limited 9-point table. In here, experts face a dilemma 
of choosing a point of initial weighting to factors caus-
ing inconsistency in the results. Therefore, it is better to 
use the fuzzy number instead of the limited 9-point table 
because it is more in line with actual situations and can 
obtain more convincing ranking results (Guo and Zhao 
2017; Ali and Rashid 2019).

Rezaei (2015) introduced BWM as one of the most 
recent MCDM approaches. The premise of this strategy is 
to weight criteria using paired comparisons, such as AHP, 
with two obvious benefits: fewer pair wise comparisons and 
a greater consistency ratio. Traditional BWM compares 
clean values but fails to identify weights in an ambiguous 
context. As a result, fuzzy BWM was created (Guo and 
Zhao 2017; Hafezalkotob and Hafezalkotob 2017). Zhang 
et al. (2015) reported an enhanced fuzzy MCDM methodol-
ogy for evaluating renewable electricity sources In Jiangsu 
Province, China. Photovoltaic energy was the top option in 
their study, followed by wind, biomass, and nuclear power 
facilities. Because fuzzy BWM inherits some distinguishing 
characteristics from BWM, it can produce weights of criteria 
using fuzzy numbers rather than crisp values. As a result, the 
uniqueness of weight data can be carefully preserved (Guo 
and Zhao 2017). Shojaei et al. (2017) evaluated Iranian air-
ports using an integrated Taguchi loss function, VIKOR, and 
BWM method. Ahmed et al. (2017) used BWM to identify 
the most critical elements affecting gas supply sustainability.

The Gusru watershed in view of soil erosion and its 
related financial and ecological losses can be regarded as 
one of the most critical areas in central of India. However, 
no comprehensive and efficient works have been done to 
reduce the soil erosion. Thus the main objective of this study 
is to assess soil erosion based on the fuzzy best worse multi-
criteria decision-making method of efficient prioritization of 
sub-watersheds. The outcomes of this study will be impor-
tant for water resources management.

Materials and methods

Case study

Gusru River watershed is situated in the Madhya Pradesh 
state lying Satna Panna districts, in India, and it lies between 
80° 32′ 50.23' E and 80° 37′ 31.14′ E longitude, 24° 6′ 32.75′ 
and 24° 16′ 24.07′ N latitude (Fig. 1). It occupies an area of 
155  km2 having an elevation range between 339 and 628 m 
above mean sea level. The Gusru River runs from east to 
west and confluences with Tons river at Sagwania village. 
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In the eastern part of the watershed, there is a small check 
dam, which primarily serves as an irrigation outlet. There 
is no other source of water for irrigation; as a result, rainfed 
agriculture is primarily practiced. The soil structure in the 
watershed is primarily sandy loam. The soils under rainfed 
and irrigated conditions respond to a variety of crops and 
watershed management. Shale, sandstone and calcarious 
rocks are the dominant lithological units in the watershed. 
The study area descends from the plateau of Bhander and 
passes through the area between the escarpment of Bhander 
and the highlands of Kaimore.

Methodology

The used procedure in this study can be summarized in the 
following stages:

1. Establishing morphometric parameters
2. Applying the Principal Component Analysis (PCA) for 

redundancy of parameter
3. Applying ensembles of the Fuzzy method and BWM to 

assigning weights to used indices based on importance 
of them on soil erosion.

Morphometric parameters

Stream network is a basic requirement of any morphometric 
study and the prioritization of watersheds (Meshram et al. 
2022a). Digital Elevation Model (DEM) generated by Shut-
ter Radar Topography Mission (SRTM) data is a common 
tool to define a stream network and sub-watershed map 
(Meshram et al. 2022b). Different drainage network param-
eters i.e., numbers and lengths and watershed area, perim-
eter, width and length were determined in GIS environment 

Fig. 1  Location map of the study area
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(Benzougagh et al. 2022; Meshram et al. 2022c). Then using 
standard formulae stream frequency, drainage density, circu-
latory ratio, form factor and elongation ratio were estimated. 
In order to do fuzzy-BWM analysis, we have adopted the 
morphometric parameters for the 14 sub-watershed of Gusru 
watershed from the previous studies of Sharma et al. (2011).

Principal component analysis

Most of the time there is relationship between the morpho-
metric parameters such that some of the parameters share 
the same information. In performing component analysis, 
the co-ordinates axis is transformed to a new reference frame 
within the total variable space. This involves assigning 
new principal components to each variable either through 
an uncorrelated or an orthogonal transformation. These 
components are unique in that they consider the maximum 
variance between the variables (Gajbhiye et al. 2015a, b). 
The correlation matrix and principal components are thus 
obtained from the principal component analysis performed 
on the geomorphic variables. The analysis employs the first 
factor and rotated the factor loading matrices. The product 
of the square of a parameter’s loading and the percent of 
the rotated factor covariance give the order of importance 
of a parameter. Thus computation is derived from the most 
commonly used transformation technique involving rotated 
factor loading matrices based on the varimax criteria (Singh 
2006; Ghoderao et al. 2022).

The proposed F‑BWM model

Fuzzy sets and  triangular fuzzy numbers The subjective 
MCDA is sensitive to experts’ judgments, causing diffi-
cultly evaluating the weights when the experts uses natu-
ral language such as “very better,” “somewhat worse,” or 
“so much better” to express a kind of general preferences 
(Hafezalkotob and Hafezalkotob 2017). In mathematics, 
these natural languages are categorized as crisp sets. The 

concept of crisp sets only implied on full membership and 
non-membership, whereas in fuzzy set each elements can 
be partially membership (Sepehri et  al. 2019; Chen et  al. 
2020). For the first time, the concept of fuzzy system was 
introduced and characterized using membership functions 
by Zadeh (1965) which grading membership between 0 and 
1. In decision-making problems, the triangular fuzzy num-
ber (TFN) is one of the most used membership functions, 
which can be donated to triplet ( l , m , u ), where l < m < u

(Dong et al. 2021; Guo and Zhao 2017; Omrani et al. 2018). 
The triangular fuzzy number is as follow:

where l , m , u are the lower, median and upper numbers of Ã 
(for the basic mathematical calculations of two TFNs, can 
be referred to (Carlsson and Fullér 2001).

Fuzzy best–worst method (F‑BWM) Best–worst method 
(BWM) proposed by Rezaei (2015) is a new subjectively 
MCDA which can be used to derive optimal weights of cri-
teria set 

{
c1, c1,… , cj,… , cn

}
 . In this content, it is necessity 

to determine the best (e.g., the most favorable) and the worst 
(e.g., the least favorable) of criteria by experts. Afterward, 
these criteria are compared relative to each other based on nat-
ural language (Mohtashami 2021). In F-BWM, it is necessity 
to transfer the natural language to fuzzy rating based on rules 
of transformation in Table 1 (Dong et al. 2021; Guo and Zhao 
2017; Khanmohammadi et al. 2018). The fuzzy comparison 
can be showed as follows:

(1)𝜇
Ã
=

⎧
⎪⎪⎨⎪⎪⎩

0, x < l
x−l

m−l
, l ≤ x ≤ m

u−x

u−m
,m ≤ x ≤ u

0, x ≥ u

(2)Ã =

⎡⎢⎢⎣

ã11 ⋯ ã1n
⋮ ⋱ ⋮

ãn1 ⋯ ãnn

⎤⎥⎥⎦

Table 1  Saaty’s 9-level linguistic scale

Preference factor Degree of preference Explanation

1 Equally Two factors contribute equally to the objective
3 Moderately Experience and judgment slightly to moderately favor one factor over another
5 Strongly Experience and judgment strongly or essentially favor one factor over another
7 Very strongly A factor is strongly favored over another and its dominance is showed in practice
9 Extremely The evidence of favoring one factor over another is of the highest degree pos-

sible of an affirmation
2,4,6,8 Intermediate Used to represent compromises between the preferences in weights1, 3, 5,7and 9
Reciprocals Opposites Used for inverse comparison



Applied Water Science (2022) 12: 219 

1 3

Page 5 of 11 219

where each element of the matrix Ã represents the relative 
importance of criterion i to criterion j, aij = (1, 1, 1) when 
i = j . It must be noted that in BWM method, there is no need 
to n fuzzy performance comparison to obtain a completed 
matrix Ã.

In the current study, the details of F-BWM algorithm 
to calculate the fuzzy weights can be briefly described as 
follows (Dong et al. 2021; Guo and Zhao 2017; Ecer and 
Pamucar 2020):

1. Provide a set of desired criteria 
{
c1, c1,… , cj,… , cn

}
 , 

( c1, c1,… , cj,… , cn = morphometricparameter)

2. Determine the best 
(
cB
)
 and worst 

(
cW

)
 criterion

3. Provide ÃB which shows fuzzy reference comparisons 
of cB over all the criteria.

where ãBj is the fuzzy preference of cB over cj
,ãBj =

(
al
Bj
, am

Bj
, au

Bj

)
 , j = 1,2,…,n and ãBB = (1, 1, 1)

4. Provide ÃW which shows fuzzy reference comparisons 
of all the criteria over cW.

where ãjW  is the fuzzy preference of cj over cB
,ãjW =

(
al
jW
, am

jW
, au

jW

)
 , j = 1,2,…,n and ãWW = (1, 1, 1).

5. D e t e r m i n e  t h e  o p t i m a l  f u z z y  w e i g h t 
w̃∗ =

[
w̃∗
1
, w̃∗

2
,… , w̃∗

n

]
 ,  where w̃∗

j
=
(
w∗l
j
,w∗m

j
,w∗u

j

)
 

shows the optimal fuzzy weight of cj which is calculated 
using below model:

(3)ÃB =
[
ãB1, ãB2,… , ãBn

]

(4)ÃW =
[
ã1W , ã2W ,… , ãnW

]

where w̃
B
=

(
l
w

B
,mw

B
, uw

B

)
,w̃j =

(
lw
j
,mw

j
, uw

j

)
 , w̃

W
=

(
l
w

W
,mw

W
, uw

W

) , 

ãBj =
(
lw
Bj
,mw

Bj
, uw

Bj

)
, ãjW =

(
lw
jW
,mw

jW
, uw

jW

)
 a n d 

R
(
w̃j

)
= 1∕6

(
wl
j
+ 4wm

j
+ wu

j

)
.

The above model can be transferred as below optimiza-
tion model which are based on consistency ratio (ξ) (next 
step).

where 𝜉 =
(
l𝜉 ,m𝜉 , u𝜉

)
 and it can be assumed that 

𝜉∗ = (k∗, k∗, k∗) ≤ l𝜉 , then Eq. 6 can be transferred as:

(5)minmax
j

{|||||
w̃B

w̃j

− ãBj

|||||
,

|||||
w̃j

w̃w

− ãjw

|||||

}

s.t.

⎧
⎪⎪⎨⎪⎪⎩

n∑
j=1

R
�
w̃i

�
= 1

lw
j
≤ mw

j
≤ uw

j

lw
j
≥ 0

j = 1, 2,… , n

(6)

min 𝜉

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

����
w̃B

w̃j

− ãBj
���� ≤ 𝜉

���
w̃j

w̃W

− ãjW
��� ≤ 𝜉

n∑
j=1

R
�
w̃j

�
= 1

lw
j
≤ mw

j
≤ uw

j

lw
j
≥ 0

j = 1, 2,… , n

Table 2  Sub-watershed wise morphometric parameters (Sharma et al. 2011)

Sub-watershed Rh Rr RN Rb Dd Fs Rc Rf Re T Lo Cc Sa HI

1 0.019 0.006 0.304 3.889 3.372 6.264 0.651 0.530 0.822 4.902 0.148 1.239 7.089 0.410
2 0.023 0.008 0.425 4.115 3.293 6.165 0.564 0.340 0.658 4.275 0.152 1.331 9.275 0.700
3 0.025 0.008 0.409 3.521 3.199 5.299 0.573 0.433 0.743 3.776 0.156 1.321 8.121 0.560
4 0.032 0.011 0.499 3.833 3.328 6.663 0.654 0.490 0.790 4.928 0.15 1.236 13.524 0.670
5 0.032 0.010 0.670 3.646 3.488 8.016 0.531 0.414 0.726 6.270 0.143 1.372 12.89 0.520
6 0.022 0.008 0.312 3.643 2.454 3.817 0.56 0.370 0.686 2.859 0.204 1.335 7.467 0.540
7 0.032 0.010 0.420 3.417 3.180 5.700 0.561 0.472 0.775 3.385 0.157 1.335 8.680 0.510
8 0.042 0.012 0.763 3.681 3.670 7.335 0.582 0.591 0.868 6.058 0.136 1.311 20.115 0.560
9 0.046 0.017 0.827 3.705 3.334 6.284 0.631 0.356 0.673 4.495 0.15 1.259 17.845 0.610
10 0.024 0.008 0.462 4.005 3.421 7.426 0.494 0.363 0.680 5.013 0.146 1.422 9.998 0.420
11 0.047 0.015 0.742 3.208 3.285 5.598 0.606 0.473 0.776 4.092 0.152 1.284 14.566 0.750
12 0.044 0.015 0.684 3.113 3.319 6.268 0.758 0.513 0.809 5.217 0.151 1.149 22.295 0.450
13 0.038 0.014 0.737 3.495 3.899 7.322 0.513 0.315 0.634 4.130 0.128 1.395 20.416 0.360
14 0.046 0.015 1.134 3.759 4.994 7.785 0.489 0.381 0.696 4.671 0.1 1.430 11.553 0.230
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(7)

min 𝜉∗

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�����
(lwB ,m

w
B
,uw

B)�
lw
j
,mw

j
,uw

j

� −
�
lBj,mBj, uBj

������
≤ (k∗, k∗, k∗)

�����

�
lw
j
,mw

j
,uw

j

�

(lwW ,mw
W
,uw

W)
−
�
ljW ,mjW , ujW

������
≤ (k∗, k∗, k∗)

n∑
j=1

R
�
w̃i

�
= 1

lw
j
≤ mw

j
≤ uw

j

lw
j
≥ 0

j = 1, 2,… , n

By solving above model, the optimal fuzzy weight (
w̃∗
1
, w̃∗

2
,… , w̃∗

n

)
 can be calculated.

Results and discussion

Morphometric parameters of Gusru watershed adapted 
from Sharma et  al. (2011) are presented in Table  2. 
For redundancy of morphometric parameter, PCA has 
been applied. A hierarchical tree from the most effec-
tive morphometric results is used to prioritize the 
sub-watersheds.

Table 3  Inter-correlation Matrix of the Geomorphic Parameters

Rh Rr RN Rb Dd Fs Rc Rf Re T Lo Cc Sa HI

Rh 1 0.96 0.88  − 0.55 0.49 0.32 0.17 0.13 0.13 0.25  − 0.49  − 0.14 0.76  − 0.04
Rr 0.96 1 0.85  − 0.52 0.44 0.26 0.19  − 0.06  − 0.06 0.13  − 0.43  − 0.16 0.77  − 0.05
RN 0.88 0.85 1  − 0.24 0.79 0.58  − 0.15  − 0.09  − 0.09 0.36  − 0.74 0.19 0.61  − 0.32
Rb  − 0.55  − 0.52  − 0.24 1 0.11 0.25  − 0.39  − 0.30  − 0.31 0.16  − 0.09 0.38  − 0.47  − 0.04
Dd 0.49 0.44 0.79 0.11 1 0.75  − 0.37  − 0.09  − 0.10 0.38  − 0.95 0.42 0.26  − 0.62
Fs 0.32 0.26 0.57 0.25 0.75 1  − 0.29  − 0.01  − 0.02 0.79  − 0.84 0.35 0.39  − 0.43
Rc 0.17 0.19  − 0.15  − 0.39  − 0.36  − 0.29 1 0.57 0.58 0.13 0.26  − 0.99 0.36 0.33
Rf 0.13  − 0.06  − 0.09  − 0.30  − 0.09  − 0.01 0.57 1 0.99 0.39 0  − 0.58 0.17 0.16
Re 0.13  − 0.06  − 0.09  − 0.31  − 0.1  − 0.02 0.58 0.99 1 0.38 0.01  − 0.59 0.15 0.16
T 0.25 0.13 0.36 0.16 0.38 0.79 0.13 0.39 0.39 1  − 0.51  − 0.09 0.45  − 0.12
Lo  − 0.49  − 0.43  − 0.74  − 0.09  − 0.96  − 0.85 0.27 0 0.01  − 0.51 1  − 0.32  − 0.35 0.51
Cc  − 0.14  − 0.16 0.19 0.37 0.42 0.35  − 0.99  − 0.59  − 0.59  − 0.09  − 0.32 1  − 0.32  − 0.41
Sa 0.76 0.77 0.60  − 0.47 0.26 0.39 0.36 0.17 0.15 0.45  − 0.35  − 0.32 1  − 0.03
HI  − 0.04  − 0.04  − 0.32  − 0.04  − 0.62  − 0.43 0.33 0.16 0.16  − 0.12 0.51  − 0.41  − 0.03 1

Table 4  Total Variance Explained

Extraction Method: Principal Component Analysis

Total variance explained

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 5.236 37.402 37.402 5.236 37.402 37.402 4.195 29.964 29.964
2 4.054 4.054 28.954 66.356 3.81 27.212 57.176
3 2.158 15.413 81.769 2.158 15.413 81.769 3.443 24.592 81.769
4 0.985 7.037 88.806
5 0.649
6 0.509 3.639 97.081
7 0.195 1.393 98.474
8 0.153 1.093 99.567
9 0.049 0.351 99.919
10 0.008 0.055 99.974
11 0.003 0.021 99.994
12 0.001 0.005 99.999
13 0 0.001 100
14 1.001E-16 7.15E-16 100
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Fuzzy best worse method (F-BWM) was applied to estab-
lish the relative weights of parameters or criteria and for 
watershed prioritization.

The SPSS 22.0 software is employed to assess the inter-
co-relationships of morphometric variables through a cor-
relation matrix (Table 3). Very high correlations (R > 0.9) 
exist between the different morphometric parameters that 
is between; relief ratio (Rh) and relative relief (Rr); elon-
gation ratio (Re) and farm factor (Rf), drainage density 
(Dd) and length of overland flow (Lo), and between the 
circulatory ratio (Rc) and compactness coefficient (Cc). 
In addition, moderately high correlations (R > 0.70) are 
observed between; RN and Rh/Rr/Dd/Lo and between Fs and 
Dd/T/Lo, Sa and Rh/Rr. Because there are no significant 
correlations between HI or Rb with any of the parameters 
under consideration, it is practically impossible to put the 
parameters into component groups. Therefore, the subse-
quent step makes use of the principal component analysis 
technique.

The correlation matrix obtained from the previous 
step is used to generate the first unrotated factor load-
ing matrix (Table 4). The results show that about 81.76% 
of the total explained variance is attributed to the com-
bination of the first three components with eigen val-
ues above one. It is observed that a strong correlation 
(R > 0.9) between  RN and the first component (Table 5A). 
Relatively high correlations are also found between the 
first component and each of the variables; Dd, Lo, Rh, Fs, 
and Rr. On the other hand, Rc, Re, Rf and Cc have high 
correlations with second component. No significant cor-
relations exist between the third component and any one 
of the parameters.

Redistribution of the observed variance is performed so 
that better factor loadings can be obtained. This is done by 
carrying out analytical rotations those components whose 
eigen value exceeds one. The outcome of varimax rotation 
is shown in Table 5B.

The first component is very highly correlated with  Fs 
and highly correlated with Dd,  Lo and T. A strong correla-
tion also exists between the second component with Rh and 
Rr, while moderately high correlations are obtained with 
RN and Sa. A very strong correlation is also apparent for 
the third component with Re and with Rf and at the same 
time moderately correlated with Cc and Rc.

Table 6 depicts the ordering of each parameter with 
respect to importance. The order of priority in descending 
order is given as Fs > Rr > Lo > Rh > Dd.

At the watershed scale, the sub-watersheds, based on 
their morphometric and hydrologic properties have dif-
ferent hydrological behavior regarding flood degree, ero-
sion and sedimentation. Therefore, prioritization of sub-
watersheds is a crucial step for watershed management 

strategies. Subjective MCDA is one of the mostly used 
methods for flood prioritization. These methods based 
on Smithson (2012) are categorized as knowledge-based 
methods, so that the results of a desired study are a func-
tion of experts’ decision, leading to high uncertainty of 
results. In this regard, BWM can be used as an efficiency 
method to reduce the number of subjective experts’ deci-
sions (Rezaei 2015). However, the existence of qualita-
tive judgments on BWM (i.e., 9-point table) can be con-
sidered as one of the main sources of uncertainty in this 
method, therefore, in this study we used TFN to nearly 

Table 5  Varimax method of the first factor loading matrix (unrotated) 
and Rotated Factor Loading Matrix of fourteen geomorphic param-
eters

Component

1 2 3

(A) Component 
Matrix

RN 0.936
Lo  − 0.880
Dd 0.867  − 0.317
Rh 0.793 0.414  − 0.388
Fs 0.788 0.459
Rr 0.745 0.355  − 0.538
Sa 0.662 0.512
HI  − 0.443 0.410
Cc  − 0.896
Rc 0.890
Re 0.741 0.559
Rf 0.739 0.564
Rb  − 0.624 0.464
T 0.547 0.657
(B) Rotated compo-

nent matrix
Fs 0.939
Lo  − 0.894
Dd 0.864 0.301
T 0.713 0.510
HI  − 0.568
Rr 0.970
Rh 0.936
Sa 0.788
RN 0.587 0.749
Rb 0.325  − 0.687
Rf 0.928
Re 0.927
Cc 0.431  − 0.772
Rc -0.383 0.765
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resolve the drawback of qualitative judgments (Bellman 
and Zadeh 1970a, b; Guo and Zhao 2017; Zhao and Guo 
2014, 2015).

The statistical analysis of F-BWM has been used to 
prioritize sub-watersheds based on the degree of soil 
erosion. In this regard, five morphometric parameters 
i.e., Lo (C1), Fs (C2), Dd (C3),  Rr (C4) and  Rh (C5) were 

used. Based on experts’ knowledge and field survey, the 
Lo (C1) and Rh (C5) are considered as the best and worst 
criteria. Next, the fuzzy preferences to best criterion over 
other criteria (vector ÃB ) and all criteria over worst crite-
ria (vector ÃW  ) were determined. Then, based on step 5, 
the optimal fuzzy weight was done to obtain the weights 
(Table 7, Fig. 2).

Table 6  Order of importance of 
parameters

Parameters Rotated Loadings Square of 
Rotated loadings

% Rotated factor 
covariance

Importance 
percentage

Order of 
impor-
tance

Fs 0.939 0.8817 29.964 26.41989 1
Rr 0.970 0.9409 27.212 25.60377 2
Lo -0.894 0.7992 29.964 23.94831 3
Rh 0.936 0.8761 27.212 23.84032 4
Dd 0.864 0.7465 29.964 22.36801 5
Rf 0.928 0.8612 24.592 21.17824 6
Re 0.927 0.8593 24.592 21.13262 7
Sa 0.788 0.6209 27.212 16.89713 8
RN 0.749 0.5610 27.212 15.26596 9
T 0.713 0.5084 29.964 15.23277 10
Cc  − 0.772 0.5960 24.592 14.65644 11
Rc 0.765 0.5852 24.592 14.39185 12
Rb  − 0.687 0.4720 27.212 12.84322 13
HI  − 0.568 0.3226 29.964 9.66711 14

Table 7  Prioritization of Micro-
watersheds

Sub Fs Rr Lo Rh Dd Final weight Final Priority

1 0.583 0.000 0.462 0.000 0.361 0.391 13
2 0.559 0.182 0.500 0.143 0.330 0.426 12
3 0.353 0.182 0.538 0.214 0.293 0.387 14
4 0.678 0.455 0.481 0.464 0.344 0.503 8
5 1.000 0.364 0.413 0.464 0.407 0.556 3
6 0.000 0.182 1.000 0.107 0.000 0.427 11
7 0.448 0.364 0.548 0.464 0.286 0.451 10
8 0.838 0.545 0.346 0.821 0.479 0.544 5
9 0.588 1.000 0.481 0.964 0.346 0.578 1
10 0.859 0.182 0.442 0.179 0.381 0.489 9
11 0.424 0.818 0.500 1.000 0.327 0.520 7
12 0.584 0.818 0.490 0.893 0.341 0.553 4
13 0.835 0.727 0.269 0.679 0.569 0.542 6
14 0.945 0.818 0.000 0.964 1.000 0.563 2
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Figure 3 shows the results of F-BWM in watershed pri-
oritization. Based on Table 7, the F-BWM weight of the 
sub-watershed 9 has the maximum value, so it is located as 
the first priority. On the contrary, sub-watershed 3 has been 
located in last rank (14) of the prioritization.

Conclusion

In the current study, five morphometric parameter i.e., Fs, 
Rr, Lo, Rh and Dd were used to watershed prioritization in 
the case study. In this regard, F-BWM as knowledge-based 
method was used to assigning initial weights to criteria. 
The conclusion can be drawn that the parameter Fs is the 
most important soil erosion related criterion, so that the 
sub-watersheds 9 and 3 which have first and last rank of 
prioritization, have the maximum and minimum value of 
F-BWM weight. In this state, the critical sub-watersheds 
can be better recognized for doing watershed management 
strategies.

In this study, there are various elements of improvement 
for the proposed method, as well as future research objectives. 
For enhanced input-based consistency ratio and constrained 
optimization equations, one of the defuzzification approaches 
is applied first. However, there are a variety of additional 
defuzzification strategies that can be used with the model, 
which could be a future study topic. Second, the primary goal 
of combining the views of several experts is to provide appro-
priate findings from pair wise comparison matrices. Each 

Fig. 2  F-BWM weight to the most effective morphomeric parameter

Fig. 3  Soil erosion susceptibil-
ity map
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methodology has its own set of advantages and disadvantages, 
and future research might concentrate on the advantages and 
disadvantages of various aggregation methods.
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