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Abstract
The presence of lead compounds in the environment is an issue. In particular, supply water consumption has been reported 
to be a significant source of human exposure to lead compounds, which can pose an elevated risk to humans. Due to its 
toxicity, the International Agency for Research on Cancer and the US Environmental Protection Agency (USEPA) have 
classified lead (Pb) and its compounds as probable human carcinogens. The European Community Directive and World 
Health Organization have set the maximum acceptable lead limits in tap water as 10 µg/L. The USEPA has a guideline value 
of 15 µg/L in drinking water. Removal of lead ions from water and wastewater is of great importance from regulatory and 
health perspectives. To date, several hundred publications have been reported on the removal of lead ions from an aqueous 
solution. This study reviewed the research findings on the low-cost removal of lead ions using different types of adsorbents. 
The research achievements to date and the limitations were investigated. Different types of adsorbents were compared 
with respect to adsorption capacity, removal performances, sorbent dose, optimum pH, temperature, initial concentration, 
and contact time. The best adsorbents and the scopes of improvements were identified. The adsorption capacity of natural 
materials, industrial byproducts, agricultural waste, forest waste, and biotechnology-based adsorbents were in the ranges of 
0.8–333.3 mg/g, 2.5–524.0 mg/g, 0.7–2079 mg/g, 0.4–769.2 mg/g, and 7.6–526.0 mg/g, respectively. The removal efficiency 
for these adsorbents was in the range of 13.6–100%. Future research to improve these adsorbents might assist in developing 
low-cost adsorbents for mass-scale applications.

Keywords  Water and wastewater treatment · Lead contamination · Health risks · Removal of lead ions · Low-cost 
adsorbents · Reuse and regeneration

Introduction

Heavy metals in water can pose risks to human and eco-
logical health. Lead is one of the toxic heavy metals that 
can pose risks due to exposure from the aquatic and air 
media (Wani et al. 2015). It is one of the major pollut-
ants responsible for soil, water, and atmospheric pollu-
tion, which is harmful to aquatic and human life even at 
a low concentration (Blanco et al. 2021). Lead can affect 
almost every organ and system in the human body. In par-
ticular, children aged below 6 years are most sensitive to 
the effects of lead exposure. Low concentrations of lead 
in children's blood can cause hearing and learning prob-
lems, anemia, behavior anomalies, slowed growth, lower 
intelligence quotient, and hyperactivity (Wani et al. 2015). 
During pregnancy, lead is released from bones as maternal 
calcium and helps develop the fetus's bones (Wani et al. 
2015). It can also cross the placental barrier exposing the 
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fetus to lead poisoning, resulting in severe effects on the 
mother and the developing fetus, including reduced fetus 
growth and premature birth (Charkiewicz and Backstrand 
2020; Wani et al. 2015). Adults exposed to lead can suffer 
from cardiovascular effects, increased blood pressure and 
incidence of hypertension, decreased kidney function, and 
reproductive problems (Charkiewicz and Backstrand 2020; 
Wani et al. 2015). Due to its toxicity, the International 
Agency for Research on Cancer (IARC) and US Environ-
mental Protection Agency (USEPA) have classified it as a 
probable human carcinogen (USEPA 2004; WHO 2006). 
Health Canada has set the maximum acceptable concen-
tration (MAC) of lead in drinking water as 5 µg/L based 
on as low as reasonably achievable (ALARA) (Health 
Canada 2020). The European Community Directive and 
World Health Organization (WHO) have set the maximum 
acceptable lead limits in tap water as 10 µg/L (Hayes and 
Hoekstra 2010; WHO 2011). The USEPA has an action 
level of 15 µg/L in drinking water (USEPA 2009).

Lead occurs as lead sulfide or complex ore of lead and 
zinc sulfide in nature (Acharya 2013; Meena et al. 2020). 
Lead and its byproducts are released into the soil, air, and 
aquatic environments due to different industrial activities 
such as manufacturing industries of matches, explosives, 
pigments, photographic materials, printing, storage batteries, 
television tube, and paint industries (Kumar et al. 2020). It 
is also released into the environment with automobile emis-
sions, sewage discharge, combustion of fossil fuel, urban 
and agricultural runoff, forest fires, volcanic eruptions, etc. 
(Cabral-Pinto et al. 2020; Cabral-Pinto and Ferreira da Silva 
2019; Kumar et al. 2020). It can reach groundwater or sur-
face water through industrial and domestic wastewater dis-
charged into the water bodies or from acidic rain leached to 
the soils. In drinking water, the lead piping system is one of 
the primary sources of lead contamination.

Removal of lead ions from drinking water and wastewater 
is important for source protection and safe water supplies. A 
few hundred publications were reported on the removal of 
lead ions. The lead removal methodologies can be broadly 
categorized into adsorption, chemical precipitation, electro-
chemical reduction, ion exchange, liquid membrane sepa-
ration, cementation, and solvent extraction (Abdullah et al. 
2019; Azimi et al. 2017). Among these methods, adsorp-
tion has been reported to be the most popular process for its 
application feasibility and higher efficiency. The commonly 
used commercial adsorbents are zeolites, activated alumina, 
silica gel, and synthetic polymers (Baimenov et al. 2020; 
Delgado et al. 2018; Dlamini et al. 2020; Renu et al. 2017). 
In recent years, nanoparticles and carbon nanotubes (CNTs) 
have been used as adsorbents for removing heavy metals 
from water and wastewater (Fiyadh et al. 2019; Xu et al. 
2018). The greater pore diameter and pore volume increase 
the adsorption capacity of the CNTs (Koh and Cheng 2014). 

Most commercial and CNT-based adsorbents are expensive, 
and the regeneration of these adsorbents is often not feasible.

There is a need to develop inexpensive adsorbents to 
remove lead ions from water and wastewater. In recent years, 
many studies have focused on activated carbon (AC)-based 
functionalized adsorbents produced from different materials, 
including domestic and industrial byproducts, polymers, and 
agricultural waste materials. Many of these adsorbents are 
likely to be inexpensive and efficient. This study reviewed 
the low-cost adsorbents following the methodology pre-
sented in Fig. 1. Low-cost adsorbents can be defined as the 
adsorbents that are inexpensive, require easy processing, 
available and abundant in nature. Based on the sources, 
the low-cost adsorbents were broadly categorized into five 
groups: natural materials, industrial byproducts, agricultural 
waste, forest waste, and biotechnology-based materials. The 
adsorption capacity and lead removal efficiency of these 
adsorbents was investigated. The advantages and limitations 
of these adsorbents were noted and compared. The scopes of 
improvements of the promising adsorbents were identified, 
and future research needs were highlighted.

Technologies for lead removal

The most common methods for removing lead ions from 
water and wastewater include precipitation, coagulation-
flocculation, ion exchange, adsorption, and membrane sepa-
ration. Precipitation and coagulation-flocculation techniques 
produce large amounts of sludge (Crini and Lichtfouse 
2019). In addition, these techniques are unlikely to reduce 
the lead ions to below the guideline value. Ion-exchange 
is expensive and requires pretreatment for wastewater as 
the exchanger matrices get clogged by the organics in the 
wastewater (Chowdhury et al. 2016; Yuan and Wood 2018). 
Membrane distillation (MD), a thermally driven membrane 
separation process, offered high removal of heavy metals 
from highly concentrated solutions (Lou et al. 2020; Alkhu-
dhiri et al. 2020). The maximum removal of lead ions was 
98% using the air gap MD process (Alkhudhiri et al. 2020). 
In addition, MD effectively removed coexisting metal ions 

Fig. 1   A schematic of the study process
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from an aqueous solution (Lou et al. 2020; Alkhudhiri et al. 
2020). The limitations of membrane separation include 
membrane fouling, low membrane durability, high operat-
ing cost, high equipment cost, and low permeation flux (Anis 
et al. 2019). The techniques mentioned above have their own 
set of benefits as well. However, the present study aims to 
review the adsorption technology using low-cost adsorbents. 
Hence, the discussion in the following sections will be lim-
ited to the low-cost adsorbents.

Adsorption

Adsorption has been reported to be the most commonly 
applied technique for the removal of lead and other heavy 
metal ions from water and wastewater. The adsorption tech-
niques often follow different types of equilibrium models. 
Some of the equilibrium equations for metal adsorption from 
an aqueous solution are shown in Table 1. Among the equi-
librium models, the Langmuir and Freundlich isotherms are 
widely used for metal ion adsorption. The Langmuir adsorp-
tion isotherm model depicts the formation of monolayer 
metal ions on the outer surfaces of adsorbents with limited 
adsorption sites. The Freundlich isotherm model is empirical 

that represents the relationships between solute concentra-
tion on the adsorbent surface and solute concentration in 
the liquid, assuming a heterogeneous adsorbent surface. The 
adsorption equilibrium is attained when the rate of adsorp-
tion of the metal ions on a surface is equal to the desorption 
rate of the same metal ions. Adsorption techniques are very 
efficient, whereas the others have intrinsic limitations such 
as the production of a large amount of sludge, low efficiency, 
critical operating conditions, and expensive disposal (Renu 
et al. 2017). In addition, low-cost materials can be directly 
used as adsorbents or to prepare adsorbents to reduce the 
cost. To better assess the progress in developing the adsor-
bents, the low-cost adsorbents were classified into five cat-
egories: natural materials, industrial byproducts, agricultural 
waste, forest waste, and biotechnology-based materials. The 
source materials are widely available in nature and/or dis-
posed of as waste, indicating that these materials have a 
great potential to develop low-cost adsorbents and are pre-
sented below:

Natural materials

The natural materials used for the removal of lead ions from 
aqueous solution include natural clay (Khalfa et al. 2021), 
sand particles (Lai et al. 2000), peat moss (Lubbad and Al-
Batta 2020), natural goethite (Abdus Salam and Adekola 
2005), natural bentonite clay (Pfeifer et al. 2020), chitin 
(Kim et al. 2006) and talc surface (Chandra et al. 2005). 
The natural bentonite clay and acid-activated bentonite clay 
were reported to have the maximum adsorption capacity of 
83.0 and 92.9 mg/g of lead ions, respectively (Budsaereechai 
et al. 2012). Ghahremani et al. (2021) impregnated acti-
vated carbon nanoparticles on the surface of the expanded 
lightweight clay aggregates and used them as adsorbents 
for Pb2+ removal. The maximum adsorption capacity was 
22.8 mg/g, which removed 99% of Pb2+ from a concentration 
of 100 mg/L with an adsorbent dose of 10 g/L. The Aloji 
clay activated with HCl had a BET surface area of 214.8 
m2/g and an adsorption capacity of 333.3 mg/g. It removed 
up to 97.3% of Pb2+ for the concentration of 30–150 mg/L 
(Obayomi and Outa 2019). The maximum zeolite and ben-
tonite adsorption capacities were 137.0 and 119.7 mg/g, 
respectively (Pfeifer et al. 2020). Zeolite was effective for 
pH in the range of 3–7, while the optimal pH for bentonite 
was in the range of 7–8.5. The initial concentrations of Pb2+ 
were in the range of 362.6–2693.6 mg/L (Pfeifer et al. 2020).

Using the Saudi Arabian clay, Al-Jlil and Alsewailem 
reported the maximum adsorption of Pb2+ of 30 mg/g. 
The natural goethite removed almost 100% of Pb2+ for a 
concentration up to 750 mg/L (Abdus Salam and Adekola 
2005). The point of zero charges of natural goethite was 
7.8, which was greater than the experimental value of pH. 
Although the adsorption of positive ions like Pb2+ was not 

Table 1   Types of adsorption equations

Here q = the metal concentration retained in the sorbent phase (mg/g); 
C0 = the initial concentrations of the metal ion in solution (mol/l); 
Cf = the initial and final concentrations of the metal ion in solution 
(mol/l); V = the solution volume (liters); m = the mass of sorbent (g); 
qe = the quantity of metal adsorbed on the surface of the adsorbent 
(mg/g); Ce = the amount of metal present in the solution at equilib-
rium condition (mg/L); qm = the maximum adsorption capacity of the 
adsorbent (mg/g); KL = the Langmuir constant related to energy of 
adsorption (L/mg); KF = the Freundlich constant; W = weight of gas 
adsorbed; P/P0 = relative pressure; Wm = weight of adsorbate as mon-
olayer; C = BET constant; γ = interfacial tension; (ni/A) = the num-
ber of moles of component adsorbed per unit area; μi = the chemical 
potential of the surfactant solution; AT = Temkin isotherm equilibrium 
binding constant (L/g); BT = Temkin isotherm constant; R = universal 
gas constant (8.314  J/mol/K); T = Temperature (K); qs = theoretical 
isotherm saturation capacity (mg/g); Kad = Dubinin–Radushkevich 
isotherm constant (mol2/kJ2) and ε = Dubinin–Radushkevich isotherm 
constant
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favorable under this condition, the adsorption might take 
place on the negatively charged surface sites. The amount 
of Pb2+ adsorbed on the goethite surface was a function of 
the metal ion affinity for the goethite surface and the type of 
surface complex formed during adsorption. The adsorption 
sites of the natural goethite were composed of three differ-
ent OH− coordination groups (Abdus Salam and Adekola 
2005). The adsorption process showed a steady increase with 
time to achieve equilibrium. When it reached equilibrium, 
no significant uptake of metal ions occurred, representing 
the general characteristics of metal ion adsorption on iron 
oxide (Arora 2019; Sherlala et al. 2018). Katoh et al. (2016) 
used apatite and performed Pb2+ removal experiments in 
the presence and absence of organic acid. The maximum 
removal capacity was 1330, 1010, 896, and 782 mg/g in 
the presence of formic acid, no acid, malic acid, and citric 
acid, respectively (Katoh et al. 2016). The primary mecha-
nism of Pb2+ removal by apatite/hydroxyapatite was dis-
solution and subsequent precipitation of lead phosphate/
hydroxyphosphate such as pyromorphite (Kaludjerovic-
Radoicic and Raicevic 2010; Oliva et  al. 2012, 2010). 
There might be other mechanisms such as ion exchange and 
surface complexation. In the absence of organic acid, the 
Pb2+ were removed by the precipitation of lead phosphate 
minerals in apatite. Besides, the removal mainly occurred 
on the surface of apatite particles (Katoh et al. 2016). In 
the presence of formic acid, there was an increase in apa-
tite dissolution due to the complexation between formic 
acid and Pb2+ in the solution. As a result, hydrogen ions 
from the formic acid disassociated, and the pH of the solu-
tion decreased, which caused an increase in Pb2+ removal 
capacity (Katoh et al. 2016). Rashed (2001) reported the 
maximum adsorption capacity of Pb2+ of 99 mg/g using 
chalcopyrite as an adsorbent. It removed up to 100% Pb2+ 
for the initial concentration of 50 mg/L with a contact time 
of 96 h (Rashed 2001). The maximum removal capacity of 
peat moss (Akinbiyi 2000) and sphagnum peat moss (Ratoi 
et al. 2008) was reported to be 96% and 98%, respectively. 
Table 2 summarizes the natural material-derived adsorbents 
used for Pb2+ removal. The maximum adsorption capacity 
was in the range of 0.8–333.3 mg/g (Table 2). The natural 
and phosphorylated chitin adsorbents showed the highest 
adsorption capacity (264 and 258 mg/g, respectively) for 
the initial concentrations of 100–300 mg/L and 50 mg/L, 
respectively (Table 2). The agbani clay showed the lowest 
adsorption capacity (0.8 mg/g) for the initial concentrations 
in the range of 20–100 mg/L (Dawodu et al. 2012). The lead 
removal performances were reported to be higher than 90% 
for several natural material-derived adsorbents (Table 2).

Among the natural material-based adsorbents, acti-
vated Aloji clay showed the highest adsorption capac-
ity (333.3 mg/g) (Obayomi and Auta 2019). The maxi-
mum removal of activated Aloji clay was 97.3% for a 

30–150 mg/L concentration range. The natural chitin also 
had a high adsorption capacity (264 mg/g) (Kim et al. 2006).

Industrial byproducts

Table 3 summarizes the findings of the industrial byprod-
uct-based adsorbents in removing Pb2+ from the aqueous 
solution. The major industrial byproducts used for remov-
ing heavy metals include iron slag (Zhang et al. 2020a, b), 
steel slag (Pfeifer et al. 2020), fly ash (Gupta and Ali 2004; 
Sridevi et al. 2013; Woolard et al. 2000), sawdust (Krishnan 
et al. 2003; Taty-Costodes et al. 2003; Yu et al. 2001), red 
mud (Cabral-Pinto et al. 2020; Ghorbani et al. 2013), and 
blast furnace slag (Nguyen et al. 2018). The red mud, an 
industrial waste produced during bauxite ore processing, was 
reported to remove Pb2+ completely within 60 min of con-
tact time for the initial concentration of 50 mg/L (Ghorbani 
et al. 2013). The adsorbent was effective over a wide range 
of pH (2–8). The acid treatment of red mud increased the 
adsorption capacity from 16.4 to 19.2 mg/g (Narayanan et al. 
2018), which increased the removal efficiency from 79.6 to 
85.2%. Further coating with iron oxide increased the adsorp-
tion capacity and removal efficiency to 27.0 mg/g and 93.6%, 
respectively (Narayanan et al. 2018). Following acid treat-
ment and iron oxide coating, the adsorbent’s surface became 
rougher, and the structure became more porous, leading to 
increased adsorption capacity (Narayanan et al. 2018). The 
steel dust, an industrial byproduct generated from the steel 
industry, was used to remove Pb2+ from the aqueous solu-
tion. The maximum adsorption capacity of Ladle Furnace 
and Cyclone steel dust were 208.9 and 39.8 mg/g, respec-
tively (Bouabidi et al. 2018).

A column of fly ash bagasse was used as an adsorbent to 
remove Pb2+ with an initial concentration of 5.0–70.0 mg/L. 
The 0.5 mL/min flow rate achieved a removal efficiency 
of 95–96% (Gupta and Ali 2004). Using the coal fly ash, 
Sridevi et al. reported 90.4% removal of Pb2+ for an initial 
concentration of 100 mg/L (Sridevi et al. 2013). The blast 
furnace slag and fly ash's maximum adsorption capacity was 
4.9 and 3.4 mg/g, respectively (Nguyen et al. 2018). Woolard 
et al. (2000) reported that the modified fly ash could remove 
up to 352.2 mg/g of Pb2+. The simultaneous adsorption 
experiments were performed using the modified coal fly ash 
(MCFA) to remove Pb2+ and Zn2+ (Astuti et al. 2020). The 
maximum adsorption capacity of Pb2+ and Zn2+ ions were 
31.4 and 27.0 mg/g, respectively, and the effective pH was 
3.0. The point of zero charges of the adsorbent was 12.15, 
implying that adsorption of Pb2+ might be done in a solu-
tion with a pH lower than 12. However, Pb2+ are removed 
by precipitation rather than adsorption at a pH higher than 9 
(Kavand et al. 2020). The Pb2+ ions had a stronger electron-
egativity and a lower hydrated ionic radius than Zn2+, lead-
ing to greater adsorption affinity to attach with a functional 
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Table 2   Natural materials as adsorbents

Sl. No Adsorbent Maximum 
sorption apac-
ity (mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentration 
(mg/L)

Temperature 
(°C)

Remarks References

1 Natural goe-
thite

5.0 100.0 3.0–5.0 40.0 5.0–750.0 27.0 Low-cost Abdus Salam 
and Adekola 
(2005)

2 Natural clays 
honeycomb 
monoliths

2.5  > 90.0 4.5 0.6–200.0 10.0–200.0 25.0 Low-cost Ahrouch et al. 
(2019)

3 Peat moss 48.2 96.0 5.5–6.0 0.04–0.2 10.0 RT Low-cost Akinbiyi (2000)
4 Saudi Arabian 

Clay
30.0 – 4.3 20.0 50.0–500.0 20.0 Low-cost Al-Jlil and Alse-

wailem (2009)
5 Dijah-Monkin 

bentonite 
clay

8.7 – 5.1 1.0 10.0–50.0 25.0–65.0 Low-cost Alexander et al. 
(2018)

6 Acid activated 
bentonite 
clay

92.9 – – 20.0 100.0–5000.0 RT Low-cost Budsaereechai 
et al. (2012)

7 Natural ben-
tonite clay

83.0 – – 20.0 100.0–5000.0 RT Low-cost

8 Talc surface 8.0  > 98.0 6.0 1.0–50.0 5.0–500.0 20.0–70.0 Low-cost Chandra et al. 
(2005)

9 Agbani clay 0.8 – 6.0 100.0 20.0–100.0 45.0 Low-cost Dawodu et al. 
(2012)

10 Carbon 
nanoparticle 
impregnated 
on clay 
aggregate

22.8 99.0 6.0 6.0–10.0 10.0–500.0 25.0–55.0 Low-cost Ghahremani 
et al. (2021)

11 Natural clay 
material

35.2 68.0 6.0 50.0–150.0 RT Low-cost Khalfa et al. 
(2021)

12 Chitin natural 264.0 – 4.0 10.0 100.0–300.0 15.0–35.0 Low-cost Kim et al. 
(2006)

13 Chitin, phos-
phorylated

258.0 – 4.0 10.0 100.0–300.0 15.0–35.0 –

14 Iron-coated 
sand

– 100.0 2.5–6.5 50.0 10.4–20.7 10.0–60.0 – Lai et al. (2000)

15 Sphagnum 
peat moss

9.5 97.6 7.0 10.0–30.0 1.0–100.0 25.0 Low-cost Lubbad and Al-
Batta (2020)

16 Lignite 61.4 91.7 5.0 0.4–4.0 15.0–175.0 20.0 Low-cost Mlayah et al. 
(2021)

17 Activated 
Aloji clay

333.3 97.3 7.0 1.0–5.0 30.0–150.0 30.0–50.0 Low-cost Obayomi and 
Auta (2019)

18 Bentonite 119.7 98.1 3.0–7.0 8.0 362.6–2693.6 25.0 Low-cost Pfeifer et al. 
(2020)

19 Zeolite 137.0 99.5 7.0–8.5 8.0 362.6–2693.6 25.0 Low-cost
20 Barite 32.0 90.0 7.0–9.0 5.0–40.0 50.0–1000.0 RT Low-cost Rashed (2001)
21 Chalcopyrite 99.0 100.0 7.0–9.0 5.0–40.0 50.0–1000.0 RT Low-cost
22 Talc 44.0 78.0 7.0–9.0 5.0–40.0 50.0–1000.0 RT Low-cost
23 Sphagnum 

peat moss
67.1 98.0 6.0 1.25–10 34.0–507.0 RT Low-cost Ratoi et al. 

(2008)
24 Natural sand 

particles
24.9 91.5 6.0 25.0 0.05–5.0 RT Low-cost Shawket et al. 

(2011)
25 Seaweed, 

brown
1.4 4.0 0.5–2.0 6.2–677.5 30.0 Low-cost Vieira et al. 

(2007)
26 Shanghai silty 

clay
26.5 100.0 6.0 4.0–40.0 10.0–300.0 25.0 Low-cost Wang and 

Zhang (2021)
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group in the MCFA through electrostatic attraction (Xiong 
et al. 2019). The maximum adsorption capacity of fly ash 
mixed with geopolymer was nearly 2.5 times (118.6 mg/g) 
the adsorption capacity of fly ash (49.8 mg/g) (Liu et al. 
2016). The geopolymers had similar adsorption mechanisms 
as faujasite or zeolite. As geopolymers are zeolite analogs, 
geopolymer technology can be an energy-saving, low-cost, 
and environmentally friendly process in adsorbent manufac-
turing. Novais et al. (2016) used fly ash containing geopoly-
meric monoliths in packed beds that could be conveniently 
collected when exhausted, which has a significant benefit 
over powdered adsorbents. Furthermore, the manufacturing 
process reuses the biomass fly-ash, which reduces the envi-
ronmental effects of waste disposal and the costs of adsor-
bent production.

The sawdust-derived activated carbon removed 90–99% 
of Pb2+ from a solution of 51.8–414.4 mg/L (Krishnan et al. 
2003; Sreejalekshmi et al. 2009). The maximum adsorp-
tion capacity of the industrial byproduct-based adsorbents in 
removing Pb2+ was in the range of 2.5–524.0 mg/g (Table 3). 
The sawdust activated carbon showed the highest adsorp-
tion capacity of 109.8 mg/g for the initial concentration of 
51.8–414.4 mg/L (Krishnan et al. 2003). The surface prop-
erties, such as particle size, ash content, apparent density, 
cation-exchange capacity, total acidic sites, and carboxylic 
acid content of sawdust activated carbon was 0.096 mm, 
5.31%, 1.02 g/mL, 3.16 meq/g, 4.02 meq/g, and 1.95 meq/g, 
respectively (Sreejalekshmi et al. 2009). The value of the 
point of zero charges was reported to be 5.3. At pH of less 
than 5.3, the predominant lead species were Pb2+ ions while 
the other species [e.g., Pb(OH)+, Pb2(OH)3+, Pb3(OH)4

2+ 
and Pb4(OH)4

4+] were present in small quantities (Sreejalek-
shmi et al. 2009). The maximum adsorption capacity of zinc 
oxide nanoparticles (ZnOnp), carbonized sawdust (CSD), 
and ZnOnp-CSD matrix were 70.4, 87.7, and 92.6 mg/g, 
respectively (Aigbe and Kavaz 2021). Zinc oxide nanopar-
ticles have been reported as an efficient and low-cost adsor-
bent having a high surface area and high metal removal 

capacity (Kumar et al. 2013). The ZnOnp-CSD matrix is 
likely to be a low-cost adsorbent. However, the adsorption 
capacity was nearly similar to the CSD (Aigbe and Kavaz 
2021). The findings indicated that several studies on the 
industrial byproducts had more than 90% removal of Pb2+ 
from aqueous solution (Table 3).

Comparing the maximum adsorption capacity, the sago 
waste-activated carbon performed the best among the indus-
trial byproducts. The adsorption capacity was 524 mg/g 
(Nordin et al. 2020). The adsorption capacity of modified 
fly ash was reported to be 352.2 mg/g (Woolard et al. 2000).

Agricultural waste

Table 4 summarizes the findings of the agricultural waste-
based adsorbents in removing lead ions from water and 
wastewater. The agricultural waste-based products were 
likely to be the low-cost adsorbents as these are the dis-
carded items mainly, abundant, and easy to use. Several 
functional groups in the agricultural waste include hydro-
carbons, carbohydrates, cellulose and hemicelluloses, starch, 
lignin, lipids, and proteins (Dai et al. 2018). These functional 
groups often maximize lead removal by bonding with the 
carboxylic (–COOH) groups following acid treatment (Aziz 
et al. 2019). Different types of agricultural waste were used 
to remove heavy metal ions (Table 4). The carboxylated 
jute stick-derived activated carbon's maximum adsorption 
capacity for Pb2+ was reported to be 2079 mg/g (Aziz et al. 
2019). Several studies used the rice husk-based adsorbents 
in removing Pb2+ ions (Abdel-Ghani et al. 2007; Amen et al. 
2020; Arabahmadi and Ghorbani 2017; Feng et al. 2004; 
Fooladgar et al. 2019; Gupta et al. 2009; Janyasuthiwong 
et  al. 2015; Kamari et  al. 2019; Mahmoud et  al. 2020; 
Masoumi et al. 2016; Masoumi et al. 2016; Naiya et al. 2009; 
Nnaji et al. 2017; Shi et al. 2019; Sun et al. 2019; Wang 
et al. 2018; Zulkali et al. 2006), which showed the maxi-
mum adsorption capacity in the range of 5.7–1665.0 mg/g 
(Table 4). The rice husk ash showed an adsorption capacity 

Table 2   (continued)

Sl. No Adsorbent Maximum 
sorption apac-
ity (mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentration 
(mg/L)

Temperature 
(°C)

Remarks References

27 Calcined ben-
tonite clay

94.0 90.9 5.0 0.5 5.0–200.0 20.0–60.0 Low-cost Zbair et al. 
(2019)

28 Seaweed 
Ascophyllum 
nodosum

117.3 – 4.0 44.0 10.0 RT – Zhang and 
Banks (2006)

29 Sphagnum 
moss immo-
bilized

32.5 – 4.0 44.0 10.0 RT –

RT Room temperature



Applied Water Science (2022) 12:185	

1 3

Page 7 of 33  185

Table 3   Industrial by-products as adsorbents

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentration 
(mg/L)

Temperature 
(°C)

Remarks References

1 Sawdust – 99.0 6.5 5.0–40.0 25.0 25.0 Low-cost Abdel-Ghani 
et al. (2007)

2 Meranti tree 
sawdust

37.2 90.0 7.0 10.0–80.0 25.0–250.0 25.0 Low-cost Ahmad et al. 
(2009)

3 Carbonized 
sawdust

87.7 – 8.0 0.5–5.0 100.0–600.0 25.0–50.0 Low-cost Aigbe and 
Kavaz (2021)

4 Zinc oxide 
nanoparticle-
carbonized 
sawdust 
matrix

92.6 – 8.0 0.5–5.0 100.0–600.0 25.0–50.0 Low-cost

5 Olive stone 
waste

22.4 99.3 5.0 3.0 20.0 30.0 Low-cost Alslaibi et al. 
(2014)

6 Modified coal 
fly ash

31.4 – 3.0 20.0 10.0–1000.0 27.0 – Astuti et al. 
(2020)

7 Ladle Furnace 
steel dust

208.9 – 4.0–5.0 2.0 20.0–200.0 25.0 Low-cost Bouabidi et al. 
(2018)

8 Cyclone steel 
dust

39.8 – 4.0–5.0 2.0 20.0–200.0 25.0 Low-cost

9 Red mud 
(bauxite ore 
processing 
waste)

– 100.0 2.0–8.0 10.0 50.0 25.0 Low-cost Ghorbani et al. 
(2013)

10 Fly ash 
bagasse

2.5 95.0–96.0 6.0 2.0–16.0 5.0–70.0 30.0–50.0 Economic Gupta and Ali 
(2004)

11 Teak sawdust 40.7 – 5.0 0.1–10.0 15.0–200.0 25.0 ± 2.0 Low-cost Gupta et al. 
(2009)

12 Sand powder 9.9 – 7.0 20.0 200.0–2000.0 20.0–40.0 Low-cost Jung et al. 
(2019)

13 Chitosan-
coated sand 
powder

10.8 – 4.5 20.0 200.0–2000.0 20.0–40.0 Low-cost

14 Sunflower 
wood waste 
fly ash

138.4 99.8 7.6 1.0–5.0 20.0–100.0 23.0 Low-cost Kalak et al. 
(2021)

15 Sawdust 
activated 
carbon

109.8 98.9 6.5 2.0 51.8–414.4 30.0 Low-cost Krishnan et al. 
(2003)

16 Fly ash 49.8 – 4.0–6.0 4.0 100.0.-1000.0 25.0 Low-cost Liu et al. (2016)
17 Fly ash mixed 

with geo-
polymer

118.6 – 4.0–6.0 4.0 100.0.-1000.0 25.0 Low-cost

18 Olive oil waste 22.8 – 5.0 10.0 10.0–1000.0 25.0 – Martin-Lara 
et al. (2009)

19 Red Mud 16.4 79.6 5.0 1.0–8.0 10.0–100.0 RT Low-cost Narayanan et al. 
(2018)

20 Acid-treated 
red mud

19.2 85.2 7.0 1.0–8.0 10.0–100.0 RT Low-cost

21 Iron oxide-
coated 
acid-treated 
red mud

27.0 93.6 6.0 1.0–8.0 10.0–100.0 RT Low-cost

22 Blast furnace 
slag

4.9 80.0 6.0–7.0 0.1–20.0 5.0 25.0 Low-cost Nguyen et al. 
(2018)
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of 91.7 mg/g, and the maximum removal efficiency was 
99.3% (Naiya et al. 2009). Abdel-Ghani et al. (2007) used 
rice husk-activated carbon and attained 99% removal of Pb2+ 
with an initial concentration of 25 mg/L. Fooladgar et al. 
(2019) applied chitosan/rice husk ash/nano-γ alumina and 
reported a maximum adsorption capacity of 181.8 mg/g. The 
maximum removal was 91% with an initial concentration of 
30 mg/L, which was achieved within 105 min. After the 6th 
cycle of regeneration, the adsorption capacity was more than 
70% (Fooladgar et al. 2019).

The surface areas of rice husk biochar (RHBC), wheat 
straw biochar (WSBC), and corncob biochar (CCBC) were 
255.8, 24.5, and 9.0 m2/g, respectively (Amen et al. 2020). 
The total pore volume was 0.245, 0.0251, and 0.0015 cm3/g, 
respectively. The contact periods for adsorption experiments 
were varied from 15 to 120 min. The removal efficiency of 

RHBC, WSBC, and CCBC in the ranges of 78.5–96.4%, 
82.6–95.4%, and 85.6–96.9%, respectively (Amen et al. 
2020). The magnetic rice husk biochar reported the maxi-
mum adsorption capacity of 148 and 129 mg/g, respectively 
(Sun et al. 2019; Wang et al. 2018). A low-cost amine-
functionalized nanocomposite adsorbent was prepared by 
extracting amorphous silica from rice husk (Kamari et al. 
2019). The adsorbent's surface area and pore volumes were 
695 m2/g and 0.65 cm3/g, respectively. The adsorbent had a 
maximum adsorption capacity of 1665 mg/g. The maximum 
removal efficiency was 96.8%. In addition, the adsorption 
capacity decreased only 10% after the 5th cycle of regen-
eration (Kamari et al. 2019). In another work, rice husk 
was used to synthesize graphene quantum dots (GQDOs) 
with 2D morphology and further chemically modified 
with Ba(OH)2 to increase the number of surface hydroxyl 

Table 3   (continued)

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentration 
(mg/L)

Temperature 
(°C)

Remarks References

23 Fly ash 3.4 90.0 6.0–7.0 0.1–20.0 5.0 25.0 –
24 Sago waste 

activated 
carbon

524.0 67.0 5.0 25.0–100.0 75.0–175.0 RT – Nordin et al. 
(2020)

25 Fly ash-
containing 
geopolymer 
monoliths

6.3 68.0 5.0–7.0 – 50.0 RT Low-cost Novais et al. 
(2016)

26 Waste beer 
yeast

55.7 96.4 1.0–5.0 0.5–40.0 25.0–100.0 30.0 Low-cost Parvathi (2007)

27 Steel slag 59.8 85.6 7.0 8.0 362.6–2693.6 25.0 Low-cost Pfeifer et al. 
(2020)

28 Meranti saw-
dust

34.3 97.0 6.0 5.0 1.0–200.0 30.0 Low-cost Rafatullah et al. 
(2009)

29 Low-grade 
mangane-
seore

142.9 – 4.5 1.0–6.0 50.0–500.0 27.0 Low-cost Rout et al. 
(2009)

30 Sawdust 18.0 70.9 4.9 20.0 414.4–621.6 30.0 Low-cost Shukla and 
Roshan (2005)

31 Sawdust 
activated 
carbon

93.4 90.1 5.0 2.0 51.8–414.4 30.0 Low-cost Sreejalekshmi 
et al. (2009)

32 Coal fly ash – 91.7 – 0.5–1.5 100.0 RT – Sridevi et al. 
(2013)

33 Sawdust of 
Pinus sylves-
tris

22.2 98.0 5.5 1.0–10.0 1.0–50.0 25.0 Low-cost Taty-Costodes 
et al. (2003)

34 Modified fly 
ash

352.2 – 5.0 8.0 500–2000 25.0 Low-cost Woolard et al. 
(2000)

35 Sawdust – 98.8 2.0–5.0 20.0–50.0 10.0–200.0 25.0–60.0 Low-cost Yu et al. (2001)
36 Chitosan 8.3 – 6.0 10.0 10.0–200.0 30.0 Low-cost Zulkali et al. 

(2006)

RT Room temperature
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Table 4   Agricultural waste as adsorbents

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentra-
tion (mg/L)

Temperature 
(°C)

Remarks References

1 Maize cobs – 99.0 6.5 5.0–40.0 25.0 25.0 Low-cost Abdel-Ghani 
et al. (2007)

2 Rice husks – 99.0 6.5 5.0–40.0 25.0 25.0 Low-cost
3 Plant powder – 80.0 6.0 2.0 4.0–120.0 RT – Abdel-Halim 

et al. (2003)
4 Banana peels 66.7 100.0 5.5 0.1–1.0 10.0–100.0 RT Low-cost Afolabi et al. 

(2021)
5 Tea waste 73.0 96.0 5.0 0.5–40.0 5.0–100.0 30.0 Low-cost Ahluwalia and 

Goyal (2005)
6 Rice husk 

biochar
– 96.4 5.5 1.0–4.0 1950.0 RT Low-cost Amen et al. 

(2020)
7 Wheat straw 

biochar
– 95.4 5.5 1.0–4.0 1950.0 RT Low-cost

8 Corncob 
biochar

– 96.9 5.5 1.0–4.0 1950.0 RT Low-cost

9 Peels of 
banana

2.2 85.3 5.0 10.0–90.0 30.0–80.0 25.0 Low-cost Anwar et al. 
(2010)

10 Polythio-
phene-
coated rice 
husk ash 
nanocom-
posite

34.5 98.1 4.0 5.0–20.0 50.0–400.0 25.0–65.0 – Arabahmadi 
and Ghorbani 
(2017)

11 Carboxylated 
jute stick-
derived 
activated 
carbon

2079.0 99.8 4.0–7.0 1.0 5.0–500.0 15.0–27.0 Low-cost Aziz et al. 
(2019) and 
Chowdhury 
et al. (2020)

12 Lentil husk 81.4 98.0 5.0 2.0 20.0–250.0 20.0–35.0 Low-cost Basu et al. 
(2015)

13 Coffee 
residue 
activated 
with zinc 
chloride

63.3 75.0 5.8 1.0 10.0–90.0 25.0 – Boudrahem 
et al. (2011)

14 Wheat bran 87.0 – 4.0–7.0 5.0–60.0 50.0–1000.0 20.0–60.0 – Bulut and Bay-
sal (2006)

15 Walnut shell 9.9 92.3 4.0 1.0–50.0 100.0 25.0 Low-cost Çelebi and Gök 
(2017)

16 Peanut Hull-
g-Methyl 
Meth-
acrylate

370.4 99.3 5.7 2.0–12.0 5.0–100.0 20.0–50.0 – Chaduka et al. 
(2020)

17 Modified pea-
nut shells

130.5 – 4.6–5.0 – 4144.0 RT – Chamarthy 
et al. (2001)

18 Chemically 
modified 
moso bam-
boo

181.8 85.0 5.0 0.5–4.0 200.0 25.0–45.0 – Chen et al. 
(2020)

19 Arca shell 18.3 98.6 4.0 0.1–15.0 10.0–500.0 25.0 ± 2.0 – Dahiya et al. 
(2008)

20 Olive cake 19.5 92.3 6.0 20.0 50.0–1000.0 20.0–35.0 – Doyurum and 
Celik (2006)
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Table 4   (continued)

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentra-
tion (mg/L)

Temperature 
(°C)

Remarks References

21 Pomegranate 
peel

13.9 65.0 5.6 0.25 10.0–50.0 26.0 ± 1.0 Low-cost El-Ashtoukhy 
et al. (2008)

22 Pomegran-
ate peel 
activated 
carbon

14.0 80.0 5.6–7.6 2.5 10.0–50.0 26.0 ± 1.0 Low-cost

23 Pomegranate 
peel chemi-
cally treated

18.0 90.0 5.6–7.6 2.5 10.0–50.0 26.0 ± 1.0 –

24 Peanut hull 
hydrochar 
activated by 
H3PO4

162.1 – – – 10.0–700.0 RT Cost-effec-
tive

Fang et al. 
(2017)

25 Peanut hull 
hydrochar 
activated by 
KOH

158.0 – – – 10.0–700.0 RT Cost-effec-
tive

26 Ash of rice 
husk

12.6 – 5.6–5.8 2.0 40.0 15.0–30.0 Low-cost Feng et al. 
(2004)

27 Olivestone 
waste

9.3 80.0 ± 2.0 5.5 13.3 41.4–3108.0 20.0 Low-cost Fiol et al. 
(2006)

28 Chitosan/
rice husk 
ash/nano-γ 
alumina

181.8 91.0 5.0 – 250.0–550.0 10.0–40.0 – Fooladgar et al. 
(2019)

29 Soya bean 0.7 80.0 4.0 10.0–40.0 1240.0 28.0–40.0 Low-cost Gaur et al. 
(2018)

30 Tea waste – 92.8 ± 1.4 7.0 – 100.0 28.0–42.0 Low-cost Ghaffar (2008)
31 Coconut shell 

granular 
activated 
carbon

21.9 – 5.0 2.0 5.0–70.0 37.0 ± 2.0 – Goel et al. 
(2005)

32 Seed hull of 
the palm 
tree

3.8 – 4.0 120.0 100.0–500.0 30–60.0 – Gueu et al. 
(2007)

33 Coconut 4.4 – 4.0 120.0 100.0–500.0 30–60.0 –
34 Peanut hulls 69.8 – 5.0 0.1–10.0 15.0–200.0 25.0 ± 2.0 Low-cost Gupta et al. 

(2009)
35 Discarded tea 

leaves
35.9 – 5.0 0.1–10.0 15.0–200.0 25.0 ± 2.0 Low-cost

36 Peels of 
banana

72.8 – 5.0 0.1–10.0 15.0–200.0 25.0 ± 2.0 Low-cost

37 Rice husk 31.1 – 5.0 0.1–10.0 15.0–200.0 25.0 ± 2.0 Low-cost
38 Rice stem 49.6 – 5.0 0.1–10.0 15.0–200.0 25.0 ± 2.0 Low-cost
39 Coir fibers 52.0 – 5.0 0.1–10.0 15.0–200.0 25.0 ± 2.0 –
40 Okra waste 5.7 99.0 5.0 10.0–40.0 25.0–100.0 25.0 Low-cost Hashem (2007)
41 Palm kernel 

fiber
47.6 99.2 5.0 1.5–5.0 120.0 36.0 ± 4.0 – Ho and Ofo-

maja (2006)
42 Hazelnut 

husks
13.1 97.2 5.7 2.0–20.0 5.0–200.0 18.0 Low-cost Imamoglu and 

Tekir (2008)
43 Palm shell 95.2 – 5.0 5.0 10.0–700.0 27.0 – Issabayeva 

et al. (2008)
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Table 4   (continued)

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentra-
tion (mg/L)

Temperature 
(°C)

Remarks References

45 Palm kernel 
husk

– 88.0 5.0 20.0–100.0 5.0–15.0 RT – Iyagba and 
Opete (2009)

46 Palm kernel 
shell

– 81.0 5.0 20.0–100.0 5.0–15.0 RT –

47 Groundnut 
shell

– 98.0 3.0 2.4–8.8 5.0–105.0 25.0 Low-cost Janyasuthiwong 
et al. (2015)

48 Orange peel – 99.0 5.0 2.4–8.8 5.0–105.0 25.0 Low-cost
49 Rice husk – 85.0 3.0 2.4–8.8 5.0–105.0 25.0 Low-cost
50 Sunflower 

wood waste 
fly ash

138.4 99.8 – 2.0–5.0 20.0–100.0 23.0 Low-cost Kalak et al. 
(2021)

51 Rice husk 
nanocom-
posite

1665.0 96.8 5.2 0.1–2 15.0–150.0 RT Low-cost Kamari et al. 
(2019)

52 Sugarcane 
bagasse 
chemically 
modified

189.0 – 5.0–6.0 1.0 200.0–400.0 RT – Karnitz et al. 
(2007)

53 Walnut shell – 96.2 6.0–10.0 – 30.0 RT Low-cost Kazemipour 
et al. (2008)

54 Almond – 99.8 6.0–10.0 – 30.0 RT –
55 Apricot stone – 89.6 6.0–10.0 – 30.0 RT –
56 Hazelnut 

shell
– 96.9 6.0–10.0 – 30.0 RT Low-cost

57 Pistachio 
shell

– 83.0 6.0–10.0 – 30.0 RT Low-cost

58 Activated 
bamboo 
charcoal

53.8 83.0 5.0 1.0–5.0 50.0–90.0 29.0 Low-cost Lalhruaitluanga 
et al. (2010)

59 Raw bamboo 
charcoals

10.7 13.6 5.0 1.0–5.0 50.0–90.0 29.0 Low-cost

60 Orange peel 
xanthate

204.5 – 5.0 5.0 10.0–100.0 30.0 – Liang et al. 
(2009)

61 Orange peel 
formalde-
hyde-treated

46.6 99.0 5.0 10.0 30.0–250.0 RT – Lugo-Lugo 
et al. (2009)

62 EDTA func-
tionalized 
bamboo 
activated 
carbon

123.5 – 5.0–6.0 0.8 25.0–250.0 20.0–60.0 – Lv et al. (2018)

63 Bamboo 
activated 
carbon

45.5 – 5.0–6.0 0.8 25.0–250.0 20.0–60.0 –

64 Functional-
ized gra-
phene from 
rice husk

748.5 99.8 7.0 10.0–50.0 20.7 18.0–80.0 Low-cost Mahmoud et al. 
(2020)

65 Coffee endo-
carp waste

174.4 57.7 – 1.0 300.0 RT Low-cost Mariana et al. 
(2021)

66 Coffee endo-
carp waste 
treated with 
HCl

193.0 63.9 – 1.0 300.0 RT –
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Table 4   (continued)

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentra-
tion (mg/L)

Temperature 
(°C)

Remarks References

67 Coffee endo-
carp waste 
treated with 
NaOH

272.6 89.9 – 1.0 300.0 RT –

68 Grape stalk 49.7 – 5.5 6.7 198.9 20.0 – Martinez et al. 
(2006)

69 Treated rice 
husk

93.5 95.0 7.0 5.0 100.0–800.0 20.0–50.0 Low-cost Masoumi et al. 
(2016)

70 Mustard husk 30.5 100.0 6.0 6.0–12.0 1.0–5.0 20.0–60.0 Low-cost Meena et al. 
(2008)

71 Cocoa shells 33.4 95.0 2.0 15.0 100.0 22.0 – Meunier et al. 
(2003)

72 Corn stover 
biochar

25.0 98.0 6.0 2.5 5.0–250.0 RT Low-cost

73 Orange peel 
biochar

11.1 96.0 6.0 2.5 5.0–250.0 RT Low-cost

74 Pistachio 
biochar

2.5 35.0 5.0 2.5 5.0–250.0 RT Low-cost

75 Ash of rice 
husk

91.7 99.3 5.0 5.0 3.0–100.0 30.0 Low-cost Naiya et al. 
(2009)

76 Chemically 
modified 
rose petals

118.4 90.0 5.0 1.0 10.0–640.0 30.0 – Nasir et al. 
(2007)

77 Rice husk ash 26.1 80.0 3.0 – 10.0–130.0 30.0–40.0 Low-cost Nnaji et al. 
(2017)

78 Capsicum 
annuum 
seeds

38.7 90.0 5.0 0.4–6.0 100.0 20.0–40.0 – Özcan et al. 
(2007)

79 Acid-treated 
wheat bran

79.4 82.8 6.0 2.0 50.0–500.0 25.0–60.0 – Ozer (2007)

80 Ponkan peel 112.1 – 5.0 8.0 0.5–1000.0 25.0 – Pavan et al. 
(2008)

81 Almond 8.1 68.0 6.0–7.0 6.3–25.0 20.7–207.2 25.0 ± 1.0 – Pehlivan et al. 
(2009)

82 Shells of 
hazelnut

28.2 90.0 6.0–7.0 6.3–25.0 20.7–207.2 25.0 ± 1.0 Low-cost

83 Ceiba 
pentandra 
hulls

25.5 99.5 6.0 1.0–4.0 40.0–200.0 30.0 ± 1.0 – Rao et al. 
(2008)

84 Apricot stone 1.3 95.3 7.0 10.0–40.0 5.0–500.0 RT – Rashed (2006)
85 Peach stone 2.3 97.6 7.0 10.0–40.0 5.0–500.0 RT –
86 Nitric acid 

activated 
Caryota 
urens seeds 
carbon

42.9 89.0 7.0 0.5–5.0 50.0–250.0 30.0–60.0 – Ravulapalli and 
Kunta (2018)

87 Onion skins 200.0 93.5 6.0 0.75 25.0–200.0 30.0 Low-cost Saka et al. 
(2011)

88 Citrus peels 
original and 
protonated

658.9 90.0 5.0 1.0 20.0–400.0 21.0–25.0 – Schiewer 
and Balaria 
(2009)
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Table 4   (continued)

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentra-
tion (mg/L)

Temperature 
(°C)

Remarks References

89 Coconut shell 
activated 
carbon

26.5 92.5 4.5 0.2–2.0 10.0–50.0 35.0–45.0 – Sekar et al. 
(2004)

90 Pretreated 
bamboo 
biochar

181.2 – 3.0–4.5 0.8 50.0–400.0 30.0 – Shen et al. 
(2021)

91 Rice husk 
biochar

26.7 84.5 6.0 5.0 20.7–621.6 RT – Shi et al. 
(2019)

92 Coir 26.3 87.0 4.9 20.0 116.0–651.4 30.0 – Shukla and 
Roshan 
(2005)

93 Shells of 
groundnut

22.0 82.8 4.9 20.0 116.0–651.4 30.0 Low-cost

94 Jute 18.6 73.4 4.9 20.0 116.0–651.4 30.0 Low-cost
95 Maize bran 142.9 96.8 6.5 20.0 100.0–150.0 20.0–40.0 – Singh et al. 

(2006)
96 Magnetic 

rice husk 
biochar

148.0 95.0 2.5–5.8 2.5 10.0–500.0 25.0 – Sun et al. 
(2019)

97 Corncobs 
chemically 
modified

43.4 – 5.0 4.0 20.7–414.4 25.0 – Tan et al. 
(2010)

98 Corncobs 
native

16.6 – 5.0 4.0 20.7–414.4 25.0 –

99 Horticultural 
peat

36.5 96.0 4.5–7.0 10.0 100.0–600.0 25 – Ulmanu et al. 
(2008)

100 Pecan nut-
shell

196.1 – 5.5 1.0–15.0 10–1000.0 25.0 – Vaghetti et al. 
(2009)

101 Magnetic 
rice husk 
biochar

129.0 91.7 7.0 0.02–1 1.00–80.0 25.0 Cost-effec-
tive

Wang et al. 
(2018)

102 Antep pista-
chio

27.1 95.1 3.5 2.5–20.0 5.0–100.0 30.0–60.0 – Yetilmezsoy 
and Demirel 
(2008)

103 Palm shell 
polyethyl-
eneimine-
impregnated

53.5 – 5.0 5.0 20.0–750.0 25.0 – Yin et al. 
(2008)

104 Sun flower 
waste

33.2 – 4.0 – 10.0 RT Low-cost Zhang and 
Banks (2006)

105 Plant maize 2.3 – 4.0 – 10.0 RT –
106 Dehydrated 

banana 
peels bio-
char

359.0  > 90.0 7.0 0.25–5.0 5.0–1000.0 RT Low-cost Zhou et al. 
(2017)

107 Fresh banana 
peels bio-
char

193.0  > 90.0 7.0 0.25–5.0 5.0–1000.0 RT Low-cost

108 Rice husk 5.7 – 5.0 2.0–20.0 10.0–200.0 30.0–60.0 Low-cost Zulkali et al. 
(2006)

RT Room temperature
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groups (GQDOs-Ba) (Mahmoud et al. 2020). The GQDOs 
were listed as low-cost and low-toxicity compounds. The 
GQDOs-Ba had high thermal stability (50 and 800 °C). 
The maximum adsorption capacity and removal efficiency 
of GQDOS-Ba was 748.5 mg/g and 99.8%, respectively 
(Mahmoud et al. 2020). The equilibrium was reached within 
15 s while the samples were microwaved under constant 
temperature (Mahmoud et al. 2020).

The maximum uptake capacity of hazelnut husk and mus-
tard husks was 13.1 and 30.5 mg/g, respectively (Imamoglu 
and Tekir 2008; Meena et al. 2008). The black gram husk had 
an uptake capacity of 50.0 mg/g (Saeed et al. 2005). Gupta 
et al. (2009) used peanut hulls, discarded tea leaves, banana 
peels, rice husk, rice stem, and coir fibers in removing lead 
ions. The maximum adsorption capacity was reported to 
be in the range of 31.1–72.8 mg/g (Table 4). The orange 
peel xanthate was reported to adsorb up to 204.5 mg/g of 
Pb2+ (Liang et al. 2009). The formaldehyde-treated orange 
peel was reported to have a maximum adsorption capacity 
of 46.6 mg/g (Lugo-Lugo et al. 2009). The peels of banana 
(Afolabi et al. 2021; Anwar et al. 2010; Gupta et al. 2009), 
pomegranate (El-Ashtoukhya et al. 2008), citrus (Schiewer 
and Balaria 2009), and skins of onions (Saka et al. 2011) 
were also studied in removing Pb2+ from water. The maxi-
mum uptake capacity of banana peel was 2.2 mg/g, and the 
maximum removal efficiency was 85.3% (Anwar et al. 2010). 
The adsorption capacity of banana peel was 66.7 mg/g 
(Afolabi et al. 2021). The pHpzc of banana peel was 4.83, 
indicating that the surface of the adsorbent was acidic and 
favorable for cation adsorption. It was reported to remove 
98–100% Pb2+ from 10 mg/L solutions within 4 h. The 
adsorbent was also tested in binary metal ion systems with 
Cu2+, which showed that the adsorption of Pb2+ was higher 
than copper (Afolabi et al. 2021). The ionic radius of Pb2+ 
is smaller than Cu2+. As such, more Pb2+ were adsorbed 
readily on the active sites of banana peels. Zhou et al. (2017) 
used hydrothermal carbonization (HTC) to prepare dehy-
drated and fresh banana peels biochar. HTC has been consid-
ered a low-cost carbonization technique to produce effective 
biochar adsorbents with simple procedures and low energy 
consumption (Zhou et al. 2017). The dehydrated and fresh 
banana peel biochars had a maximum adsorption capacity 
of 359 and 193 mg/g, respectively (Zhou et al. 2017). The 
maximum uptake capacity and removal efficiency for the 
onion skin was 200 mg/g and 93%, respectively (Saka et al. 
2011). Using the citrus peel, the maximum uptake capacity 
and removal efficiencies were reported to be 658.9 mg/g and 
90%, respectively (Schiewer and Balaria 2009).

The activated carbon produced from hazelnut, pista-
chio, and almond had higher surface areas (Dolas et al. 
2011). The Brunauer–Emmett–Teller (BET) surface 
area, Dubinin–Radushkevich (DR) surface area, and DR 
micropore volume of the activated carbon produced from 

pistachio shells, treated with ZnCl2 and HCl, and activated 
at 900 °C were 3256 m2/g, 3822 m2/g, and 1.36 cm3/g, 
respectively (Dolas et al. 2011). When treated with sodium 
chloride and activated at 900 °C, these values were 3895 
m2/g, 5235 m2/g, and 1.86 cm3/g (Dolas et al. 2011). Sev-
eral studies used coconut and coconut shell-derived acti-
vated carbon, which showed the maximum adsorption 
capacity in the range of 3.8–26.5 mg/g (Goel et al. 2005; 
Gueu et al. 2007; Sekar et al. 2004). A number of stud-
ies used the shells of peanut (Chaduka et al. 2020; Fang 
et al. 2017; Gupta et al. 2009), walnut (Çelebi and Gök, 
2017; Kazemipour et al. 2008), almond (Kazemipour et al. 
2008; Pehlivan et al. 2009), hazelnut (Kazemipour et al. 
2008; Pehlivan et al. 2009), palm (Issabayeva et al. 2008; 
Iyagba and Opete 2009), arca (Dahiya et al. 2008), pistachio 
(Kazemipour et al. 2008; Meunier et al. 2003), and cocoa 
(Meunier et al. 2003) in removing Pb2+ from aqueous solu-
tion, which showed the maximum adsorption capacity in the 
range of 2.5–370.4 mg/g. The removal efficiency of walnut 
shells, hazelnut shell, and pistachio shell was 96.2, 96.9, and 
83%, respectively (Kazemipour et al. 2008). Another study 
showed that the removal efficiency of groundnut shells was 
98% (Janyasuthiwong et al. 2015). Çelebi and Gök (2017) 
used a walnut shell and removed 92.3% lead from an initial 
concentration of 100 mg/L Pb2+ solutions. The maximum 
adsorption capacity of peanut hulls was 69.8 mg/g (Gupta 
et al. 2009). Cahduka et al. (2020) prepared a novel graft 
copolymer by copolymerizing activated carbon from peanut 
hulls and methyl methacrylate and reported the maximum 
adsorption capacity of 370.4 mg/g. The adsorbent removed 
99.3% of Pb2+ from an initial concentration of 76.25 mg/L 
within one hour with an adsorbent dose of 4.5 g/L (Chaduka 
et al. 2020). The palm shell had the maximum uptake capac-
ity of 92.6 mg/g, and after pretreating, the uptake capacity 
was increased to 95.2 mg/g (Issabayeva et al. 2008). The 
point of zero charges of palm shell activated carbon was 1.43 
(Issabayeva et al. 2006). In addition, a high concentration of 
acidic surface groups was present in the palm shell-activated 
carbon, which promoted higher adsorption of metal ions at 
higher pH (Saka et al. 2012).

The acid or alkaline treatment of agricultural waste-
derived activated carbon typically increased the adsorption 
capacity (Aziz et al. 2019). The maximum adsorption capac-
ity of coffee endocarp waste, coffee endocarp waste treated 
with HCl, coffee endocarp waste treated with NaOH were 
174.4, 193.0, and 272.6 mg/g, respectively (Mariana et al. 
2021). The chemical activation increased the adsorption 
capacity and the removal efficiency. The chemical activa-
tion released the impurities on the adsorbent resulting in the 
widening of the pores and promoting the formation of func-
tional groups that effectively absorb the metal ions (Mariana 
et al. 2021). In addition, the NaOH-activated sorbent had 
the largest surface area to pore volume ratio and the largest 
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pore size, which might be the cause of increased adsorption 
capacity. The acid-treated wheat bran showed a maximum 
adsorption capacity of 79.4 mg/g at pH of 6 and an initial 
concentration of 50–500 mg/L (Ozer 2007). However, an 
earlier study by Bulut and Baysal showed the maximum 
adsorption capacity of 87.0 mg/g for the untreated wheat 
bran for a wide range of pH (4–7) and higher initial concen-
trations (50–1000 mg/L) (Bulut and Baysal 2006). Singh 
et al. (2006) reported the maximum adsorption capacity of 
the maize bran-based activated carbon of 142.9 mg/g. The 
Pb2+ removal efficiency was 96.8% for the initial concentra-
tion of 100 mg/L at a pH of 6.5. Boudrahem et al. (2011) 
used coffee residue as the raw materials for powder-activated 
carbon, which was activated ZnCl2. The pore surface area 
and micropore volume of the activated carbon were 890 
m2/g and 0.77 cm3/g, respectively. With an initial concen-
tration of 10–90 mg/L Pb2+, the maximum uptake capacity 
of the activated carbon was 63.3 mg/g (Boudrahem et al. 
2011). Some other agricultural wastes, including okra waste 
(Hashem 2007), sunflower waste (Zhang and Banks 2006), 
and grape stalk (Martinez et al. 2006), were used in remov-
ing Pb2+ from aqueous solution. The okra waste removed 
99% of Pb2+ for an initial concentration of 240 mg/L of lead 
solution (Hashem 2007).

The maximum uptake capacity of raw bamboo charcoal 
was 10.7 mg/g (Lalhruaitluanga et al. 2010). Following acti-
vation by chemical treatment, the maximum uptake capacity 
was increased to 53.8 mg/g (Lalhruaitluanga et al. 2010). 
The maximum removal efficiency was also increased from 
13.6 to 83.0% (Lalhruaitluanga et al. 2010). The adsorption 
capacity of ethylene diamine tetraacetic acid (EDTA) func-
tionalized bamboo activated carbon (123.5 mg/g) was more 
than twice the adsorption capacity of raw bamboo activated 
carbon (45.5 mg/g) (Lv et al. 2018). The adsorption capac-
ity of chemically modified Moso bamboo with pyromellitic 
dianhydride was (181.8 mg/g) (Chen et al. 2020), which was 
almost similar to the adsorption capacity of ammonium per-
sulfate pretreated bamboo biochar (181.2 mg/g) (Shen et al. 
2021). These studies indicated that modifying or pretreating 
bamboo-activated carbon significantly increased the adsorp-
tion capability of the adsorbent. However, the increase in 
cost due to modification or pretreatment was not discussed. 
The Pb2+ removal performances were reported to be higher 
than 90% for a large number of agricultural waste-based acti-
vated carbon (Table 4). Further details on the agricultural 
waste-based adsorbents can be found in Table 4.

The adsorption capacity of carboxylated jute stick 
activated carbon (Chowdhury et al. 2020) and rice husk 
nanocomposite (Kamari et al. 2019) was very high. The 
carboxylated jute stick activated carbon, and rice husk 
nanocomposite adsorption capacity was 2079 mg/g and 
1665 mg/g, respectively. Both the adsorbents are likely to 
be low-cost.

Forest waste

The forest waste is likely to be closely linked to agricultural 
byproducts. However, as these materials are not the direct 
byproducts of agricultural activities, the forest waste-based 
adsorbents are separately discussed in this study. The natu-
ral processes of shedding tree leaves and barks have made 
forests the abundant sources of low-cost and environment-
friendly raw materials for the adsorbents (Bhattacharyya 
and Sharma 2004; Khatoon et al. 2018). Several past stud-
ies have investigated the forest waste-based adsorbents in 
removing heavy metals from wastewater. The maximum 
adsorption capacity of the forest waste-derived adsorbents 
ranged from 0.4 to 769.2 mg/g (Table 5). Using the Vis-
cum album leaves, Erenturk and Malkoc (2007) reported 
the maximum adsorption capacity and removal efficiency 
of 769.2 mg/g and 92.2%, respectively, for an initial con-
centration of 100–500 mg/L. Iqbal et al. (2009) reported 
99.1% removal of Pb2+ using the mango peel waste. Gupta 
et al. (2009) reported the maximum adsorption capacity of 
31.5 mg/g using the mango leaves. Argun and Dursun (2007) 
reported 90.0% removal of Pb2+ using the Pinus nigra tree 
bark for an initial concentration of 35 mg/L, while the max-
imum adsorption capacity was 49.0 mg/g. The maximum 
adsorption capacity of Ficus religiosa leaves was 37.5 mg/g 
(Qaiser et al. 2009). The maximum adsorption capacity of 
Peepul tree leaves was 127.3 mg/g (Gupta et al. 2009).

The maximum adsorption capacity of curry leaf powder 
was 60.9 mg/g (Mukherjee et al. 2020). It had a surface area 
of 21.56 m2/g. The removal efficiency of curry leaf pow-
der increased while pH was increased from 4.5 to 6.5. The 
adsorbent also showed less removal efficiency at a pH higher 
than 10.5 (Mukherjee et al. 2020). As the removal efficiency 
was directly related to the protonation or deprotonation of 
surface functional groups, the presence of more chelating 
sites at pH range 5.5–7.5 makes the adsorbent more efficient 
(Hojati and Landi 2015; He et al. 2018). The precipitation 
of metal hydroxides and their limited solubility at highly 
alkaline pH (pH > 10.5) might be the reason for less removal 
of metals (Kumar et al. 2010). The surface area of Tama-
rix leaves activated carbon was 252.3 m2/g, which had a 
maximum adsorption capacity of 42.2 mg/g (Koohzad et al. 
2019). The highest removal efficiency for Pb2+ was 97.9%, 
achieved within 60 min at a temperature of 25 °C. The ini-
tial concentration of Pb2+ was 10 mg/L, and the adsorbent 
dosage was 3 g/L (Koohzad et al. 2019). The Azadirachta 
indica (neem leaves) showed similar adsorption capacity 
(39.7 mg/g) and removal efficiency (93.5%) (Elkhaleefa 
et al. 2021). Ziziphus jojoba and Eriobotrya Japonica leaves 
showed adsorption capacity of 80.0 mg/g and 73.1 mg/g, 
respectively (Salman et al. 2019). The maximum adsorption 
capacity of tobacco leaves was 238.6 mg/g. The optimum 
pH, temperature, contact time, and the adsorbent dose were 
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1.0, 30 °C, 80 min, and 0.5 g/L, respectively. The adsorption 
efficiency was 67.45% (Yogeshwaran and Priya 2021). These 
tree leaves are widely available in nature, which makes the 
adsorbent low-cost and environmentally friendly. The for-
est waste appeared to be an abundant natural resource for 
producing a mass scale of adsorbents. Further details on 
the forest waste-based adsorbents can be found in Table 5.

Among the forest waste-based adsorbents, Viscum album 
leaves showed a high adsorption capacity (769.2 mg/g) 
(Erenturk and Malkoc 2007). The removal efficiency was 
up to 92.2% for a concentration range of 100–500 mg/L.

Biotechnology‑based materials

In recent years, biomass-based adsorbents have been used 
in removing heavy metal ions. Table 6 summarizes the 
application of biosorbents for the removal of lead ions 
from wastewater. The biochar obtained from pyrolysis of 
sludge is a low-cost, environmentally friendly material, 
which has the potential to be a heavy metal adsorbent. The 
maximum adsorption capacity of the biochar and activated 
biochar was 7.6 and 38.5 mg/g, respectively. After treat-
ing with hydrochloric acid (HCl), the adsorption capacity 
of the biochar and activated biochar was increased to 9.8 
and 40.4 mg/g, respectively. After treating with hydrofluoric 
acid (HF), the adsorption capacity was further increased to 
16.7 and 49.5 mg/g, respectively (Zhang et al. 2020a, b). 
The acid treatment increased the biochar's specific surface 
area and pore structure significantly. The specific surface 
area of activated biochar was increased from 583.4 to 718.7 
and 991.6 m2/g after HCl and HF treatment, respectively 
(Zhang et al. 2020a, b). The surface areas were increased 
primarily because the inorganic minerals obstructing the 
pores of sludge-based biochar were washed away, revealing 
more pores and improving the pore structure characteris-
tics. Further removal of silicon by hydrofluoric acid, which 
also blocked the pores, increased the adsorption capacity 
of biochar (Zhang et al. 2020a, b). Ho et al. (2017) used 
anaerobic digestion sludge biochar (ADSBC) and reported 
the maximum adsorption capacity of 53.4 mg/g at pH 6. 
Using the adsorbent dose of 10 g/L, up to 100% of lead 
ions were removed for an initial concentration of 100 mg/L 
(Ho et al. 2017). The ferric-activated biological sludge had 
the maximum uptake capacity of 43.0 mg/g, and it removed 
98.5% of Pb2+ at the pH range of 4–6 (Yang et al. 2019).

Chemical modification of yeast with silsesquioxanes by 
exploiting the reactivity of the nanostructures presented by 
silsesquioxanes positively affected the biosorption process 
in living cells (Trama-Freitas et al. 2017). It is a promis-
ing adsorbent at high concentrations (100–1000  mg/L) 
with excellent efficiency in short contact periods (15 min) 
at room temperature and pH of 4. The removal efficiency 
and maximum adsorption capacity were 82% and 248 mg/g, Ta
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Table 6   Biotechnology-based adsorbents

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentra-
tion (mg/L)

Temperature 
(°C)

Remarks References

1 Alginate-
immo-
bilized 
Chlorella 
vulgaris

–  > 90.0 6.0 3 × 107 
cells:1 ml

50.0 RT Low-cost Abdel-Hameed 
(2006)

2 Sewage 
sludge-
derived 
biochar 
immo-
bilized 
nanoscale 
zero-valent 
iron

– 91.0 4.0 1.5 15.0 RT – Diao et al. 
(2018)

3 Chlorella 
vulgaris

133.8 99.4 5.0 0.25–4.0 50.0 RT Low-cost Goher et al. 
(2016)

4 Biomass of 
Spirulina 
maxima

– 92.0 5.5 0.1–2.0 50.0 20.0 – Gong et al. 
(2005)

5 Anaerobic 
digestion 
sludge 
biochar

53.4 100.0 6.0 1.0–10.0 100.0 20.0–40.0 – Ho et al. (2017)

6 Aspergillus 
niger

172.2 45.5 4.0–5.4 – 200.0–1400.0 37.0 – Iram et al. 
(2015)

7 Alkali-treated 
mango seed 
integuments

49.9 75.2 7.0 0.5–3.0 1.0–50.0 30.0 – Kanjilal et al. 
(2014)

8 Neurospora 
crassa

43.3 – 4.0 2.0 5.0–300.0 25.0 – Kiran et al. 
(2005)

9 Xanthan 
biopolymer 
integrated 
graphene 
oxide

199.2 80.8 5.2 0.1–1.0 10.0–300.0 30.0–70.0 – Lai et al. 
(2020)

10 Phosphate-
modified 
baker's 
yeast

92.0 88.2 5.0 0.2–2.0 25.0–250.0 25.0–40.0 Low-cost Liu et al. 
(2018)

11 Sargassum 
glaucescens

244.5 – 5.0 – 207.2 20.0 ± 2.0 – Naddafi et al. 
(2007)

12 Iron oxide 
modified 
clay-
activated 
carbon 
composite 
beads

74.2 95.0 4.5 2.0 12.0–350.0 25.0 Low-cost Pawar et al. 
(2018)

13 Calcium 
alginate 
beads doped 
Caryota 
urens seeds 
carbon

86.9 96.0 7.0 0.5–5.0 50.0–250.0 30.0–60.0 – Ravulapalli and 
Kunta (2018)
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Table 6   (continued)

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentra-
tion (mg/L)

Temperature 
(°C)

Remarks References

14 Sodium algi-
nate graft-
poly(methyl 
meth-
acrylate) 
beads

526.0 96.0 4.0 2.0 200.0–1000.0 RT – Salisu et al. 
(2016)

15 Encapsulated 
Agrobac-
terium 
fabrum

197.0 85.0 5.5 10 
beads:2 ml

100.0–4000.0 37.0 – Tiwari et al. 
(2017)

16 Bio-hybrid 
silsesquiox-
ane/yeast

248.0 82.0 4.0 50–
500 cm3/g

100.0–1000.0 25.0–40.0 Low-cost Trama-Freitas 
et al. (2017)

17 Immobilized 
inactivated 
cells of 
Rhizopus 
oligosporus 
in calcium 
alginate

25.8 – 2.0–5.0 – 50.0–100 25.0 – Xia et al. 
(2003)

18 Ferric-
activated 
biological 
sludge

43.0 98.5 4.0–6.0 0.5–3.0 50.0 25.0 – Yang et al. 
(2019)

19 Fungi 
Penicillium 
oxalicum

155.6 98.3 4.0–5.0 107 spores/
ml

100.0–2500.0 30.0 – Ye et al. (2018)

20 Nano-ZnO/
yeast com-
posites

66.7 – 6.0 4.0 25.0–250.0 RT Economical Zhang et al. 
(2016)

21 Baker’s yeast 22.5 – 6.0 4.0 25.0–250.0 RT Low-cost
22 Sludge-based 

biochar
7.6 – 8.0 – 5.0–300.0 15.0–45.0 – Zhang et al. 

(2020a, b)
23 Activated 

sludge-
based 
biochar

38.5 – 8.0 – 5.0–300.0 15.0–45.0 –

24 Sludge-based 
biochar 
pretreated 
with HCl

9.8 – 8.0 – 5.0–300.0 15.0–45.0 –

25 Activated 
sludge-
based 
biochar 
pretreated 
with HCl

40.4 – 8.0 – 5.0–300.0 15.0–45.0 –

26 Sludge-based 
biochar 
pretreated 
with HF

16.7 – 8.0 – 5.0–300.0 15.0–45.0 –
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respectively (Trama-Freitas et al. 2017). The used yeast Sac-
charomyces cerevisiae is a waste of the alcoholic fermen-
tation process. An inexpensive, readily available, and safe 
industrial microorganism, Baker’s yeast has been investi-
gated to remove lead from aqueous solution (Liu et  al. 
2018; Zhang et al. 2016). Nano-ZnO/yeast composites had 
an adsorption capacity of 66.48 mg/g (Zhang et al. 2016). 
After adsorption/desorption for four cycles, it demonstrated 
more than 85% adsorption (Zhang et al. 2016), while the 
phosphate-modified baker's yeast (PMBY) exhibited more 
than 90% of the original adsorption capacity after four cycles 
of adsorption/desorption (92 mg/g) (Liu et al. 2018). Moreo-
ver, the equilibrium was reached within 3 min.

The maximum adsorption capacity of xanthan biopolymer 
integrated graphene composite was 199.2 mg/g (Lai et al. 
2020). In addition, it retained 84.8% of its initial adsorption 
capacity after the 5th regeneration cycle indicating its high 
regenerable characteristics (Lai et al. 2020). The maximum 
uptake capacity of Penicillium chrysogenum was 155.6 mg/g 
(Ye et al. 2018). Goher et al. (2016) used Chlorella Vulgaris 
in alginate beads for removing Pb2+. The maximum uptake 
capacity and removal efficiency of Chlorella Vulgaris algi-
nate (CVA) beads were 133.8 mg/g and 99.4%, respectively 
(Goher et al. 2016). Immobilization of Chlorella Vulgaris 
in alginate beads decreased the removal efficiency (Goher 
et al. 2016). The surface area and pore volume of CVA beads 
were 16.2 m2/g and 0.0116 cm3/g, respectively. The Fourier 
Transformation Infrared Spectroscopy (FTIR) analysis of 
CVA beads before and after Pb2+ showed a shift of the peak 
of different functional groups. This indicated the biosorption 
of Pb2+ with the cells. The shift of the peak, disappearance 
of peaks, and appearance of new peaks suggested that bind-
ing occurred on the surface of the CVA beads. However, 
up to 95% of Pb2+ were desorbed from the alginate beads 
using citric acid, which were reused at almost a similar effi-
ciency (Goher et al. 2016). The maximum uptake capacity 
of the encapsulated agrobacterium fabrum was reported to 
be 197.0 mg/g at an optimum pH of 5.5. This study reported 
the maximum removal efficiency of 85% for the initial con-
centrations of Pb2+ in the range of 100–4000 mg/L (Tiwari 

et al. 2017). During the first 120 min, the adsorption rate 
was rapid, followed by a slower adsorption rate for up to 
240 min prior to achieving equilibrium. The initial high 
adsorption rate indicated the highly porous structure of the 
composite beads. The intra-particle diffusion might cause 
a slower adsorption rate until it reaches equilibrium. The 
biosorbent showed good adsorption capacity even after 
repeated use for up to five consecutive cycles (Tiwari et al. 
2017). Ravulapalli and Kunta (2018) developed activated 
carbon from the seeds of the Caryota urens plant (ACSCU) 
and impregnated ACSCU into the calcium alginate beads 
(CABCU). The ACSCU and CABCU removed 89% and 96% 
of lead ions, respectively, from an initial Pb2+ concentration 
of 50 mg/L with a dose of 2 g/L. The adsorption capacity 
of CABCU (86.9 mg/g) was almost double the adsorption 
capacity of ACSCU (42.9 mg/g). During 7 cycles of regen-
eration, the removal efficiency reduced from 96.0 to 80.7%, 
indicating the excellent reuse potential CABCU. The BET 
surface area and adsorption capacity of iron oxide-modified 
clay-activated carbon composite beads were 433 m2/g and 
74.2 mg/g, respectively (Pawar et al. 2018). The adsorbent 
was also tested in removing low-level concentrations of toxic 
metal ions from a ternary mixture. It reduced Pb2+, Cd2+ 
and As5+ from 48.7, 52.3 and 51.2 µg/L to 1.21, 1.14, and 
7.5 μg/L, respectively, which were below the WHO guide-
lines (Pawar et al. 2018).

The adsorption capacity of sodium alginate grafted 
poly(methyl methacrylate) beads (526 mg/g) was higher 
compared to other adsorbents (Salisu et al. 2016). The max-
imum removal efficiency was 96% for a 200–1000 mg/L 
concentration range. In addition, the beads were found to be 
regenerated multiple times.

Promising low‑cost adsorbents

Many natural material-derived adsorbents showed very 
good to excellent efficiency in removing lead ions. The 
natural sand particles removed 91.5% of Pb2+ from an 
aqueous solution, whereas the natural goethite removed up 

Table 6   (continued)

Sl. No Adsorbent Maximum 
sorption 
capacity 
(mg/g)

Maximum 
removal 
(%)

Optimum pH Dose (g/L) Concentra-
tion (mg/L)

Temperature 
(°C)

Remarks References

27 Activated 
sludge-
based 
biochar 
pretreated 
with HF

49.5 – 8.0 – 5.0–300.0 15.0–45.0 –

RT Room temperature
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to 100% (Abdus Salam and Adekola 2005; Shawket et al. 
2011). Among the adsorbents, peat moss, sphagnum peat 
moss, senecio anteuphorbium, acid-activated bentonite clay, 
activated aloji clay, bentonite, zeolite, barite, chalcopyrite, 
natural goethite, talc, chitin showed excellent performances 
(Table 2). The activated aloji clay had a maximum adsorp-
tion capacity of 333.3 mg/g. The maximum removal effi-
ciency was 97.3%, while the concentrations of Pb2+ were 
varied from 30 to 150 mg/L. Bentonite and zeolite also 
showed excellent performance. The maximum adsorption 
capacity of bentonite and zeolite were 119.7 and 137.0 mg/g, 
respectively (Table 7). The maximum removal efficiency was 
98.1% and 99.5%, respectively (Table 7). The cost of natural 
clay is $0.005-0.46/kg, and it is nearly 20 times cheaper 
than the commercial activated carbon (Babel and Kurniawan 
2003). Although many natural material-based adsorbents 
showed very good to excellent performances, their applica-
tion might face issues in terms of material availability, cost, 
environmental effects, and toxicity. The adsorbents are likely 
to produce large amounts of lead-containing sludge, which 
must be disposed of safely. Further, it is often challenging 
to desorb the lead ions from the adsorbents. Besides, the 
initial concentrations of lead ions were much higher in the 
laboratory experiments (Table 2), which were more reflec-
tive of industrial wastewater. The reported efficiency might 
not be similar for low concentrations of lead ions, such as 
surface water, groundwater, drinking water, and domestic 
wastewater. For application in drinking water, toxicity is an 
issue. The toxicity of these adsorbents is not well known.

The most common industrial byproducts used as the 
adsorbents for lead removal are red mud, sunflower wood 
waste, blast furnace slag, sawdust, and fly ash. Many studies 
used sawdust, sawdust activated carbon, and sawdust waste 
as the adsorbents (Table 3). Among these, sawdust (Yu et al. 
2001), sawdust activated carbon (Krishnan et al. 2003), mer-
anti sawdust (Rafatullah et al. 2009), and sawdust of Pinus 
sylvestris (Taty-Costodes et al. 2003) showed the removal 
efficiency of 98.8, 98.9, 97.0, and 98.0%, respectively. In 
these studies, the corresponding initial concentrations were 
10.–200, 51.8–414.4, 1–200, and 1–50 mg/L, respectively, 
and the pH was 2.0–5.0, 6.5, 6.0, and 5.5, respectively 
(Table 3). The average cost of wood residue from mills was 
reported to be US$0.018-0.036/Kg (Clauser et al. 2018). 
The sawdust waste might emerge as a potential low-cost raw 
material from the timber industries. The production cost of 
sawdust activated carbon was reported to be approximately 
US $7.0/kg (Krishnan et al. 2003). The beer yeast waste and 
coal fly ash removed 96.4 and 91.7% of Pb2+, respectively, 
from the 100 mg/L of the lead solution (Parvathi 2007; 
Sridevi et al. 2013). The beer yeast waste can be obtained 
at no cost, as the beer industries face problems in dispos-
ing of the waste (Parvathi 2007). Steel slag and steel dust 
also showed excellent performance in removing lead from 

water. The maximum adsorption capacity of ladle furnace 
steel dust was 208.9 mg/g. The maximum removal efficiency 
of steel slag was 85.6% (Table 3). The cost of steel slag 
in India was US$6.0-11.5/Kg (Dhoble and Ahmed 2018). 
Despite the low cost of the raw materials, the application 
of industrial byproducts might be limited to the wastewater 
only as the toxicity of the sawdust mix and beer yeast waste-
based adsorbents are not well known.

The agricultural waste-based adsorbents comprised the 
most significant fraction of publications (Table 4). As dem-
onstrated in Table 4, a wide variety of agricultural waste, 
including rice husk, orange peel, coconut, peanut, walnut, 
bran, coffee, tea waste, jute stick, and palm kernel shell, was 
used as the raw materials for adsorbents (Table 4). The rice 
husk-based adsorbents showed up to 99.8% removal of Pb2+. 
In the batch and column experiments, Naiya et al. (2009) 
showed the excellent performance of rice husk adsorbents. 
Up to 99.3% removal of Pb2+ was observed at a pH of 5.0, 
and the maximum adsorption capacity was 91.7 mg/g (Naiya 
et al. 2009). The rice husk nanocomposite and functional-
ized graphene from rice husk had the maximum adsorption 
capacity of 1665 and 748.5 mg/g, respectively (Table 7). The 
maximum removal efficiency was 99.8% and 96.8%, respec-
tively (Table 7). The rice husk can be obtained free of cost or 
at a meager price as agricultural waste. The dry biomass of 
natural orange peel and okra waste also removed 99% of lead 
ions from an aqueous solution (Hashem 2007; Lugo-Lugo 
et al. 2009). The biochar of banana peels removed > 90% 
lead ions from 5 to 1000 mg/L lead solution (Zhou et al. 
2017). The tea waste was reported to remove 96% of Pb2+ 
from 20 mg/L lead solution (Ahluwalia and Goyal 2005). At 
pH 6.5 and an initial concentration of 100 mg/L, the maize 
bran-based adsorbents removed 96.8% of Pb2+ with the 
maximum adsorption capacity of 142.9 mg/g (Singh et al. 
2006). The onion skin and citrus peel also showed excellent 
results (Saka et al. 2011; Schiewer and Balaria 2009). Up to 
99.8% removal of Pb2+ was achieved using the carboxylated 
jute stick-based activated carbon for the concentrations in 
the range of 5–500 mg/L (Aziz et al. 2019; Chowdhury et al. 
2020). In this study, the maximum adsorption capacity was 
reported to be 2079 mg/g (Aziz et al. 2019; Chowdhury et al. 
2020). Jute stick was an agricultural waste, which was cheap 
and eco-friendly. In addition to wastewater, this adsorbent 
might be used for drinking water systems following the tox-
icity assessment.

The forests were abundant natural resources of raw 
materials for adsorbents. The Schleichera oleosa bark had 
maximum adsorption capacity and maximum removal effi-
ciency of 69.4 mg/g and 97%, respectively (Khatoon et al. 
2018). The mango peel waste removed 98.8% Pb2+ with a 
maximum adsorption capacity of 99.1 mg/g (Iqbal et al. 
2009). The Nile rose plant adsorbent removed 98.7% Pb2+ 
at a pH of 8.5 from the initial concentration of 5–40 mg/L 
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(Abdel-Ghani and El-Chaghaby 2007). The Viscum album 
leaves had maximum adsorption capacity and maximum 
removal efficiency of 769.2 mg/g and 92.2%, respectively 
(Erenturk and Malkoc 2007). Several forest waste-based 
adsorbents have shown outstanding performances, which 
deserve further research for a more comprehensive appli-
cation. Also, the toxicity of the adsorbents needs to be 
assessed prior to application for drinking water.

Several biotechnologies showed excellent removal effi-
ciency (Table 6). The alginate encapsulated biosorbents 
(i.e., Agrobacterium fabrum) could be regenerated for 
reuse following desorption of the adsorbed Pb2+ ions. The 
maximum removal efficiency of the encapsulated Agro-
bacterium fabrum was 85%. The adsorbents were used 
repeatedly up to five times without affecting the adsorp-
tion capacity (Tiwari et al. 2017). The Chlorella Vulgaris 
adsorbents showed a removal efficiency of 99.4% (Goher 
et al. 2016). Up to 95% of Pb2+ were desorbed from algi-
nate beads using citric acid, which were reused at almost 
a similar efficiency (Goher et al. 2016). The maximum 
adsorption capacity of phosphate-modified baker’s yeast 
was 92 mg/g (Liu et al. 2018). Although the biotechnolo-
gies showed very good to excellent efficiency, their appli-
cation in the drinking water systems is discouraged as the 
effects of the biotechnologies are yet to be better under-
stood. The performances of promising low-cost adsorbents 
are shown in Table 7.

Lead ions in drinking water have been a historical issue 
as the leaded pipes were used in the water distribution sys-
tems (WDS), where lead was used to solder iron and cop-
per pipes (Korshina and Liu 2019; WHO 2014). Recently, 
the presence of copper, chlorine, and lead in drinking 
water caused eight outbreaks (Brunkard et al. 2011; CDC 
2013). Although many national and international standards 
and certification programs are in place to control lead con-
tamination in drinking water, lead-containing pipes and 
fittings are still used (Dignam et al. 2019). In addition, 
the presence of lead in groundwater and surface water is 
an issue in low-income and developing countries. Glob-
ally, approximately 689 million people are living below 
the poverty line, whose income is US$1.90 or less a day 
(Aguilar et al. 2020). Besides, the COVID-19 pandemic is 
likely to force another 88–115 million people to live below 
the poverty, which might be increased to 150 million by 
2021 (World Bank 2020a). In Sub-Saharan Africa, 433.4 
million people were living below the poverty line (World 
Bank 2018). In South Asia, 211.3 million people were 
living below the poverty line (World Bank 2020b). The 
regional distribution of the populations living below the 
poverty line is shown in Fig. 2. Most of these people live 
in rural areas and cannot afford bottled water or advanced 
water treatment methods (Chowdhury et al. 2016). These 

populations mainly depend on groundwater and surface 
water for drinking and other household activities, whereas 
the sources might have higher lead levels than the accept-
able values (Chowdhury et al. 2016).

The concentrations of lead in groundwater and surface 
water from several regions in Bangladesh were reported 
to be in the ranges of 0.04–1167 and 0–230 µg/L, respec-
tively (Bhuiyan et al. 2015; Hasan et al. 2019). The aver-
age lead concentrations in shallow and deep tube wells 
were 1167 and 1120 µg/L, respectively (Mostafa et al. 
2017). In India’s Hindon river, the mean lead concen-
tration was 258 µg/L (30.1–902.1 µg/L) (Suthar et  al. 
2009). The mean lead concentration in groundwater of 
Darrang district, Assam, was 127.2 µg/L (40–350 µg/L) 
(Borah et al. 2010). The lead concentrations in the surface 
water and groundwater in Abakaliki, southeast Nigeria 
were 0–11,400 and 0–38,000 µg/L, respectively (Obasi 
and Akudinobi 2020). There is a need to develop low-
cost technologies for individual and community-level 
applications to address these problems. The processed 
solid residue of olive mill products removed lead ions 
effectively, which is a costless agro-industrial byproduct 
(Tzamaloukas et al. 2021). Ahmedna et al. (2004) used 
the acid-activated almond shell-based carbon with steam-
activated pecan shell in the point-of-use (PoU) filter to 
remove Cu2+, Pb2+, and Zn2+. The filter removed nearly 
100% of lead ions. The average cost of the filter was esti-
mated to be less than US$ 1.0 (Chowdhury et al. 2016). 
The maximum uptake capacity of dry protonated alginate 
beads was 339 mg/g (Lagoa et al. 2007). The maximum 
uptake capacity of sodium alginate-graft-poly (methyl 
methacrylate) beads was 526 mg/g (Salisu et al. 2016). 
The findings indicated that a large number of activated 
carbons could be developed at a low cost using the dis-
carded waste and/or byproducts following further research. 
In addition, following the investigation on toxicity, a num-
ber of low-cost adsorbents can be used in the PoU filter to 
remove lead ions from drinking water.

Fig. 2   Regional share of people living below poverty line (%)
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Post‑adsorption management

The used adsorbents are likely to produce lead-containing 
sludge, which needs to be managed effectively. The used 
adsorbents can be controlled by regeneration, recycling, 
reuse, and safe disposal. The desorption process can do 
regeneration of the adsorbents. The desorption process 
uses acid (sulfuric acid, hydrochloric acid, nitric acid), 
base (sodium hydroxide), or salt (sodium chloride, ammo-
nium chloride) as desorbing agents (Hamad and Idrus 
2022). After a few adsorption–desorption cycles, the effi-
ciency of the adsorbent decreases (Zhang et al. 2020a, b). 
However, several studies showed that the adsorbents could 
be regenerated without significantly reducing efficiency. 
Gupta and Rastogi (2008) used cyanobacterium Nostoc 
muscorum biomass, and the biosorbents were regener-
ated using HNO3 and EDTA. The regenerated biosorbent 
was used for five cycles without affecting the biosorp-
tion capacity. Katsou et al. (2011) used natural zeolite to 
adsorb lead and zinc. The adsorbent was regenerated using 
KCl, and the desorption efficiency was 98.5%. When there 
is no significant desorption, the adsorbent should be dis-
posed of safely. The lead-containing adsorbents can be sta-
bilized and/or solidified prior to landfill disposal (Hamad 
and Idrus 2022). The adsorbents can also be used as ingre-
dients in the production of ceramic materials. Ceramic 
products may aid in the prevention of the leaching of 
heavy metals. For example, iron oxide nanoparticles were 
disposed of by immobilizing inside the phosphoric glass 
matrix (Majumder et al. 2019). In addition, the adsorbents 
can be used in the construction industry to form brick 
(Avinash and Murugesan 2019) or as a filler material in 
the cement industry (Saikia and Goswamee 2019).

Future research

To date, different groups of adsorbents have been devel-
oped and applied to remove lead ions from water and 
wastewater. Significant success has been achieved in 
research and understanding lead contamination and its 
possible effects on humans. However, the development and 
application of low-cost adsorbents are still limited. The 
advanced technologies are often beyond the capacity of 
the low-income populations around the globe (Chowdhury 
et al. 2016). To develop low-cost technologies for low-
income people, future research is warranted. The follow-
ing studies should be carried out for developing low-cost 
adsorbents to remove lead ions from water and wastewater 
efficiently:

•	 The adsorbents are likely to produce large amounts 
of lead-containing sludge, which must be disposed of 
safely. Few past studies have reported the cementation 
techniques in which the lead-containing sludge is hard-
ened and disposed of safely beyond the reach of water 
sources. Future studies may further assess this disposal 
technique's feasibility and economic benefits.

•	 The adsorbents developed to date were primarily used for 
wastewater treatment. As such, the effects of these adsor-
bents on humans were not given much attention. Future 
research is needed to assess the adsorbents' toxicity prior 
to their applications for the surface water, groundwater, 
and drinking water systems.

•	 Natural clay materials such as bentonite and zeolite, 
low-cost and widely available, showed excellent perfor-
mances in treating lead-containing wastewater. Further 
investigation of these materials is needed in context to 
toxicity.

•	 Several industrial byproducts (i.e., steel slag, steel dust, 
fly ash, waste beer yeast, sawdust) showed promising 
results in removing lead ions from an aqueous solution. 
These materials are low-cost, and some of these can be 
obtained free of cost (e.g., waste beer yeast). Further 
investigation on these materials is needed to develop a 
low-cost adsorbent with high efficiency.

•	 Several agricultural wastes (i.e., dried tea leaves bio-
mass, rice husk), forest waste (i.e., pinus pinaster, pinus 
elliottii bark), and industrial by-products (i.e., sawdust) 
based adsorbents showed very good to excellent perfor-
mances in removing lead ions from wastewater. The raw 
materials of these adsorbents were cheap and likely to be 
environmentally friendly. These materials need further 
investigation to develop discharge filtration techniques 
for removing the lead ions. The raw materials can be 
tested for toxicity before application to drinking water.

•	 The bacterial biosorptions of heavy metals are likely 
to be the inexpensive technologies in removing heavy 
metals from aqueous solutions (Aryal 2021). Although 
several fungi (i.e., Aspergillus niger, Chlorella Vulgaris) 
have been used as biosorbents in the lab to remove lead 
ions from an aqueous solution, there are limited large-
scale applications. Future study is needed to apply bac-
terial biosorbents for lead removal, which may help to 
develop low-cost, effective commercial biosorbents.

•	 Regeneration of adsorbents is an important technique to 
reduce the cost. The encapsulated biomass showed regen-
eration capability. For example, 95% of Pb2+ were des-
orbed from the immobilized Chlorella Vulgaris alginate 
beads. The encapsulated Agrobacterium fabrum was used 
for five consecutive cycles without reducing its adsorp-
tion capacity. There are limited studies on alginate-based 
biotechnologies in removing lead ions from water and 
wastewater. Future research is needed in this direction.
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•	 Biosorbents are often used after modification using acid, 
base, or heat. Studies should be carried out to determine 
the minimum requirements of acid, base, or heat, which 
is likely to reduce the toxicity of the adsorbents and the 
cost. The modeling, regeneration, and immobilization of 
biosorbents deserve further investigation.

Conclusions

Heavy metals, particularly lead in the aquatic environment, 
have become an issue due to their toxicity and long-term 
health implications. This review investigated the tech-
nologies for lead ion removal from water and wastewater, 
focusing on low-cost adsorbents. Different technologies are 
available to remove lead ions from domestic and industrial 
wastewater. Adsorption has been chosen as the most suitable 
technology due to its low cost, easy to use, and excellent 
removal efficiency. The different groups of adsorbents were 
investigated and compared. The advantages and disadvan-
tages of these adsorbents were highlighted. The adsorption 
capacity and removal efficiency of the adsorbents were in 
the ranges of 0.7–2079 mg/g and 13.6–100%, respectively. 
Among the low-cost adsorbents, the adsorption capacity of 
carboxylated jute stick activated carbon, rice husk nanocom-
posite, Viscum album leaves, and activated aloji clay was 
2079 mg/g, 1665 mg/g, 769.2 mg/g, and 333.3 mg/g, respec-
tively. The corresponding removal efficiencies were 99.8%, 
96.8%, 92.2%, and 97.3%, respectively. Future research 
directions were identified for developing and applying low-
cost and easy-to-use adsorbents for removing lead ions from 
water and wastewater.
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