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Abstract
Using the outlier robust extreme learning machine (ORELM) method, the discharge coefficient of side weirs placed on rectan-
gular and trapezoidal canals was simulated for the first time in this study. The parameters governing the discharge coefficient 
of side weirs including Froude number (Fr), the ratio of the weir length to the main channel length (L/b), the ratio of the flow 
depth at the upstream of the side weir to the main channel width (y1/b) and the ratio of the crest height of the side weir to 
the flow depth at the upstream of the side weir (W/y1), the ratio of the weir length to the main channel width (L/y1), and the 
side wall slope parameter (m) were initially detected. Using the parameters governing, eight different input combinations 
were defined. By randomly selection approach, 65% of the data were considered to train the ORELM models and the rest of 
samples were applied to test them. The correlation coefficient, Nash–Sutcliffe efficiency coefficient, and Scatter Index for this 
model were calculated to be 0.937, 0.869 and 0.092, respectively. The results of sensitivity analysis indicated the ORELM 
model was more sensitive to the W/y1 and L/b than Fr and y1/b. The results of the ORELM model were also compared with 
the support vector machine optimized with genetic algorithm (SVM-GA) and extreme learning machine (ELM)) and four 
multiple linear regression models, with a better performance of the ORELM model. The ORELM models demonstrated a 
higher precision and correlation with experimental values.

Keywords  Discharge coefficient · Trapezoidal and rectangular channels · Outlier robust extreme learning machine · 
Reliability analysis · Partial derivative sensitivity analysis

Introduction

As one of the main hydraulic structures, a side weir is 
installed to divert and regulate flow on the sidewall of the 
main channels. Such structures have many applications in 
irrigation and drainage networks, urban runoff collection 
systems and water and wastewater treatment plants (Bagh-
eri et al. 2014).

The discharge coefficient is treated as the most significant 
parameter for design a side weir which many researchers 
have conducted several analytical and numerical studies on 
it (Akhbari et al. 2017; Mirzaei and Sheibani 2020). For 
channels with different slopes, they reported the changes 
in the discharge coefficient versus the Froude number, sug-
gesting that the discharge coefficient decreased by increasing 
the Froude number. Furthermore, an experimental research 
on the discharge coefficient of weirs located on rectangular 
and trapezoidal canals was carried out by Keshavarzi and 
Ball (2014). They came to the conclusion that the discharge 
coefficient was a function of the Froude number, the ratio 
of the crest height of the side weir to the flow depth at the 
upstream of the weir, and the wall slope of the main chan-
nel. Moreover, Bagheri et al. (2014) evaluated the discharge 
coefficient of rectangular side weirs experimentally. The 
effects of hydraulic and geometric parameters on the changes 
in the discharge coefficient were evaluated and the variations 
in the free flow surface were calculated.
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The limitation of the multiple linear regressions (MLRs) 
that applied in experimental-based studies to provide a rela-
tionship between input and output parameters is the low 
generalizability of this approach to estimate samples that 
have no role in model calibrations. Indeed, the MLR fits the 
model to find the target value and there is no any training 
phase to teach model for unseen samples. To overcome this 
drawbacks, an accurate and reliable tool known as artificial 
intelligence model have been utilized for simulating and esti-
mating different phenomena. The discharge coefficient of 
side weirs has been simulated across various algorithms and 
models of artificial intelligence throughout recent decades 
(Salmasi and Sattari 2017; Niazkar and Afzali 2018; Olyaie 
et al. 2019).

Using Gene Expression Programming (GEP) model, the 
discharge coefficient of rectangular side weirs was estimated 
by Ebtehaj et al. (2015a). They proposed a formula using 
hydraulic and geometric parameters to determine the dis-
charge coefficient. They also compared the results of the 
developed GEP with existing models and showed that the 
GEP was more accurate. Using group method of data han-
dling (GMDH), Ebtehaj et al. (2015b) estimated the dis-
charge coefficient of side weirs. They also compared the 
results with Artificial Neural Network (ANN) and showed 
that the GMDH was more accurate. Moreover, Khoshbin 
et al. (2016) presented an optimized hybrid model for esti-
mating the discharge coefficient of side weirs through the 
combination of the adaptive neuro-fuzzy inference system 
(ANFIS), the genetic algorithm (GA) and the singular value 
decomposition (SVD). By conducting a sensitivity analysis, 
the parameters influencing the discharge coefficient of side 
weirs located on trapezoidal channels were investigated by 
Azimi et al. (2017a). They defined the superior model and 
the most significant input parameter using the extreme learn-
ing machine (ELM). Azimi et al. (2017b) used the GEP to 
simulate discharge coefficient of side weirs on trapezoidal 
channels through subcritical conditions. They provided an 
equation for the discharge coefficient calculation. Subse-
quently, Azimi et al. (2019a) developed six different models 
for estimating the discharge coefficient of weirs located on 
a trapezoidal channel by the means of the support vector 
machine approach. In determining the discharge coefficient, 
they implemented the superior model by performing a sen-
sitivity analysis.

Bagherifar et al. (2020) simulated the flow field within 
the circular flumes along with the rectangular side weirs 
through a computational fluid dynamics (CFD) model. 
The results showed that the CFD model estimated the flow 
characteristics with a reasonable performance. The authors 

demonstrated that the specific energy at upstream and down-
stream of the side weir was approximately constant.

According to the unique characteristics of the Extreme 
leaning machine (ELM) (Huang et al. 2006) as an effi-
cient, effective machine learning algorithm (Huang 2014) 
in solving complex nonlinear problems has attracted many 
researchers' attention (Azimi et al. 2017a; Ebtehaj et al. 
2018; Zeynoddin et al. 2018; Bonakdari et al. 2019; Azimi 
and Shiri 2021). Some of the advantages of this method are: 
(1) in addition to the ability to approximate the estimator 
function, it can map a training inputs variables to the cor-
responding output one and can perform fast and accurate 
parallel computations during testing and training processes. 
(2) Various experimental studies showed that the ELM tech-
nique has better generalization and scalability performance 
than classical neural network methods such as the multi-
layer perceptron and the support vector machine (Huang 
et al. 2011; Ebtehaj et al. 2016; Azimi and Shiri 2021). (3) 
The modeling speed in the ELM is noticeably high while 
other classical methods are burdened with increased com-
munication costs for training the model. In fact, this feature 
is the most noticeable advantage of the method over classical 
machine learning algorithms so that all parameters relevant 
to hidden nodes (i.e., biases and input weights) are randomly 
produced without encountering with training samples and 
tuning (Huang et al. 2006).

In the current study, a novel version of ELM known as 
Outlier Robust ELM (ORELM) (Zhang and Luo 2015) is 
applied for estimating the discharge coefficient of side weir 
for the first time. The novelty of the present study is third-
fold. (1) The ORELM is applied for the first time in the 
discharge coefficient of side weir, (2) by exploring the lit-
erature, it can be concluded that no previous study on the 
estimating of side weir has used comparative analysis on the 
probable input combinations for the discharge coefficient of 
side weir situated on rectangular and trapezoidal channels. 
In the current study, input combination is carried out on 
eight different models inputs, with six to four input vari-
ables as ORELM 1 to ORELM 8. (3) Most previous equa-
tions were proposed based on restricted database ranges. 
However, in this study, a wide range of datasets were used 
which combine four different experimental datasets. Besides, 
the results of the ORELM are compared with the existing 
artificial intelligence-based methods in estimating of the 
discharge coefficient. The best ORELM model is compared 
with three artificial intelligence (AI) and four empirical 
approaches. According to the performed analyses, the supe-
rior ORELM possesses better performance in comparison 
with these AI-based and empirical models.
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Material and methods

Discharge coefficient of side weir

The parameters influencing the discharge coefficient of 
rectangular side weirs are written as follows (Azimi et al. 
2017b):

where Fr is the Froude number of flow at the upstream of 
the side weir, L is the side weir length; b is the main channel 
width, P is the crest height of the side weir, y1 is the flow 
depth at the upstream of the side weir and S0 is slope of 
the main channel bed. To make the introduced parameters 
dimensionless, the ratio of the side weir length to the main 
channel width (L∕b) , the ratio of the side weir length to the 
flow depth at the upstream of the side weir 

(
L∕y1

)
 , and the 

ratio of the side weir crest height to the flow depth at the 
upstream of the side weir 

(
W∕y1

)
 are defined (Azimi et al. 

2017b):

Also, Borghei et al. (1999) reported that the effects of the 
main channel bed slope are marginal and can be ignored in 
the subcritical flow regime. In this study, the main channel is 
a trapezoidal channel. It is worth mentioning that the effect 
of side wall slope (m) is an effective factor on the discharge 
coefficient (Azimi et al. 2017b). Thus, Eq. (2) is expressed 
as follows:

(1)Cd = f
(
Fr, L, b,W, y1, S0

)

(2)Cd = f

(
Fr,

L

b
,
L

y1
,
W

y1
, S0

)

In addition, to study all parameters influencing the side 
weir discharge coefficient located on trapezoidal channels, 
the influence of the ratio of the flow depth at the upstream of 
the side weir to the trapezoidal channel bed width 

(
y1∕b

)
 on 

the discharge coefficient is taken into account. So, Eq. (3) is 
written in the form of Eq. (4) (Azimi et al. 2017b):

Therefore, to develop the artificial intelligence models, 
the parameters of Eq. (4) are utilized. In Fig. 1, the input 
parameter combinations of the various ORELM models are 
shown.

Data sets used in this study

A detailed database is used in this paper to model the dis-
charge coefficient of side weirs. To this end, four different 
experimental models including Cheong (1991), Emiroglu 
et al. (2011), Keshavarzi and Ball (2014) and Bagheri et al. 
(2014) are implemented. Cheong’s (1991) model involves 
a straight trapezoidal channel with the length of 10 m and 
the bed width of 0.67 m in which the side weir is placed on 
the sidewall at a distance of two-thirds of the main channel 
length from the inlet. Slope of the trapezoidal channel side-
walls in Cheong (1991)'s model is adjustable and the open-
ing length at the location of the side weir varies by poly-
wood sheets with variable lengths. Moreover, Emiroglu et al. 
(2011)'s model is composed a straight rectangular channel 
with the length of 12 m and the height and the width of it 

(3)Cd = f

(
Fr,

L

b
,
L

y1
,
W

y1
,m

)

(4)Cd = f

(
Fr,

L

b
,
L

y1
,m,

y1

b
,
W

y1

)

Fig. 1   Combinations of input 
parameters for developing 
ORELM models
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are both equal to 0.5 m. Also, Keshavarzi and Ball (2014)'s 
model is an open trapezoidal channel with the length of 
36 m, the height of 0.5 m and the bed width of 0.4 m. In 
Keshavarzi and Ball (2014)'s model, a side weir with the 
length of 0.4 m and the height of 0.13 m is installed at the 
middle of the channel. In addition, Bagheri et al. (2014)'s 
experimental model consists of 8 m long open rectangular 
channel with a side weir placed on the sidewall of the main 
channel at a 4.5 m distance from the inlet. The width and 
length of the main channel are, respectively, 0.4 m and 0.6 m 
and the main channel bed slope is horizontal. The number 
of the experimental measurements used in this study is 314. 
Approximately 65% of the experimental samples are ran-
domly selected to train models of artificial intelligence and 
the remaining 35% is used to test them. Figure 2 demon-
strates the layout of the experimental models used in this 
analysis. The maximum, minimum, and average values of 
the applied experimental measurements are tabulated in 
Table 1.

Outlier robust extreme learning machine (ORELM)

A method for generating the single-layer feed-forward neu-
ral network (SLFFNN) is the Extreme Learning Machine 
(ELM) technique (Huang et al. 2006).

Assuming Z training samples as {(�j, �j)}Zj=1 where 
�j ∈ Rn is the matrix of problem inputs and qj ∈ R , and if the 
proposed model has the ability to establish mapping between 
�j and qj with reasonable accuracy, the ELM with the activa-
tion function f(k) and N hidden layer neurons can be 
expressed as follows (Huang et al. 2006):

where �j is the output weight matrix connecting the jth hid-
den layer neuron to the output neuron (target variable), f(k) is 
known as the activation function, �j = [gj1, gj2, gj3, ..., gjn] is 
the input weight matrix so that connects the jth hidden layer 

(5)
N∑
j=1

�jf (�j ⋅ �i + bj) = yi, i = 1, 2, ..., Z

neuron to input neurons and bj is the bias relevant to the 
jth hidden layer neurons. In addition, �j ⋅ �i is the internal 
multiplication of Gj and ki. If we express Z obtained rela-
tionships from Eq. (5) in a matrix form, the following linear 
system is achieved (Huang et al. 2006):

Here,

According to the above relationship, it is shown that the 
only parameter which requires to be calculated is the output 
weight matrix (γ) and the other ones (the bias and the output 
weight matrix) are constant. It is obvious that the matrix W 
is non-square in most cases and there might be no answer for 
γ as �� = � (Huang et al. 2006). To overcome this issue, the 
optimal answer is obtained using the least square solution. 
To this end, the main aim is to minimize the loss function:

Eventually, the optimal response of the problem for mini-
mizing the l2-norm is as follows:

where �+ is Moore–Penrose generalized inverse (MPGI) of 
W (Rao and Mitra 1971). As the number of training samples 
is greater than the number of hidden layer nodes (Z > N), it is 
possible to rewrite the above equation as follows:

(6)�� = �

(7)� = [y1, y2, y3, ..., yZ]
T

(8)� = [�1, �2, �3, ..., �Z]
T

(9)

�(�1, ..., �N , �1, ..., �N , b1, ..., bN)

=

⎡
⎢⎢⎣

f (�1 ⋅ �1 + b1) … f (�N ⋅ �1 + bN)

⋮ … ⋮

f (�1 ⋅ �Z + b1) … f (�N …�Z + bN)

⎤
⎥⎥⎦

(10)� = min ‖� −��‖2
2

(11)𝛾̂ = �+�

Fig. 2   Layout of used experi-
mental models

Table 1   Maximum, minimum, 
and average values of 
the applied experimental 
measurements

Fr L/b L/y1 m y1/b W/y1 Cd

Max 0.988 4 10.714 2 1.76 0.91 1.746
Min 0.08 0.3 0.347 0 0.082 0 0.219
Ave 0.405 1.617 3.804 0.293 0.537 0.555 0.521
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Since outliers possess a little part of training samples, the 
value of this feature for training error € can be specified by 
sparsity. It is clear that sparsity is reflected by the l0-norm 
better than the l2-norm. Therefore, in the ORELM, we are 
trying to find the output weight matrix (γ) with the least 
value of the l2-norm so that the value of e to be sparse:

The above relationship is a non-convex programming 
problem. Since the sparse term can be obtained using the 
l1-norm (Chuang et al. 2002; Daszykowski et al. 2007) it is 
clear that by replacing the l0-norm by the l1-norm in Eq. (9) 
in addition to having overall minimization convex, satisfies 
the sparsity feature. Thus, Eq. (9) is rewritten as follows:

The above equation is a constrained convex problem that 
suits the related domain of the augmented Lagrange multi-
plier (ALM). Hence, the ALM is provided as follows:

where η is the penalty parameter and � ∈ Rn is the Lagrange 
multiplier vector. Also, � = 2Z∕‖�‖1 (Yang and Zhang 
2011). The ALM algorithm yields the optimal answers (γ, 
e) and the value of α through an augmented Lagrangian mul-
tipliers minimization process:

To produce next generations through the minimization 
process, the following relationships are solved by the ALM:

Although the developed ORELM has advantages includ-
ing high ability to map nonlinearly between inputs and out-
puts, rapid training time that overcome the limitation of the 
classical time-consuming approaches, minimum user inter-
vention and high generalization, it also has disadvantage. 
The main disadvantage of this method is random generation 

(12)𝛾̂ = (�T�)−1�T�

(13)min
�

C‖�‖0 + ‖�‖2
2

Subjcet to � = � −��

(14)min
�

C‖�‖1 + ‖�‖2
2

Subjcet to � = � −��

(15)
L�(�, � , �) = ‖�‖1 + 1

C
‖�‖2

2
+ �T (� −�� − �) +

�

2
‖� −�� − �‖2

2

(16)

{
�h+1 = �h + �(� −��h+1 − �h+1) (a)

(�h+1, �h+1) = argminN�(�, � , �h) (b)

(17)

⎧⎪⎪⎨⎪⎪⎩

�h+1 = �h + �(� −��h+1 − �h+1) (a)

�h+1 = argmin
�

N�(�h, � , �h) (b)

�h+1 = argmin
�

N�(�, �h+1, �h)

of the input weights and bias of hidden neurons that can be 
affected in the generalization ability of the developed model. 
To overcome this drawback, it is recommended to run this 
method for different times and check the generalizability of 
it at testing samples that had no role in model calibration. 
The flowchart of ORELM model is presented in Fig. 3.

Goodness of fit

The correlation coefficient (R), variance accounted for 
(VAF), Root Mean Square Error (RMSE), Scatter Index, 
Mean Absolute Relative Error (MARE) and Efficiency 
of Nash–Sutcliffe (NSC) are used as follows in this study 
(Azimi and Shiri 2020a):

where Oi is observed values, Fi represents values predicted 
by numerical models, O is the average of observed val-
ues and n is the number of observed values. In the current 
study, five criteria were applied since the correlation of the 
ORELM models were assessed by using the R and NSC 
indices, whereas the relative errors of the models were eval-
uated by means of the SI and MARE criteria. Moreover, the 
value of absolute errors were examined through the RMSE 
indicator. The total number of used experimental measure-
ments was 314 cased, which 65% of the samples were used 
for training the ORELM models, and the remaining 35% 
were used for testing of the ORELM models.

(18)R =

∑n

i=1

�
Fi − F

��
Oi − O

�
�∑n

i=1

�
Fi − F

�2 ∑n

i=1

�
Oi − O

�2

(19)RMSE =

√
1

n

∑n

i=1

(
Fi − Oi

)2

(20)SI =
RMSE

O

(21)MARE =
1

n

n∑
i=1

||||
Fi − Oi

Oi

||||

(22)NSC = 1 −

n∑
i=1

�
Oi − Fi

�2

n∑
i=1

�
Oi − O

�2
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Results and discussion

The number of secret layer neurons is initially optimized in 
the next sections and various activation functions are inves-
tigated subsequently. After that, the superior model and 
the most effective input parameters are identified through a 
sensitivity analysis. In addition, with some artificial intelli-
gence and regression models, the ORELM superior model is 
compared. In these models, an analysis of uncertainty and a 
reliability analysis are also performed. Finally, for the supe-
rior model, a partial derivative sensitivity analysis (PSDA) 
is conducted. It should be noted that only the testing mode 
results are presented in this research.

Number of hidden layer neurons

The number of ORELM hidden layer neurons is investigated 
in this section. The selection of optimal neurons increases 
the artificial intelligence model's efficiency in terms of 
modeling accuracy and computational time (Azimi and 

Shiri 2021). The number of hidden layer neurons is initially 
selected to be equal to 5, and this number increases gradu-
ally to 24. The most optimal number of hidden layer neurons 
is chosen to be 22. The values of different statistical indi-
ces measured for all hidden layer neurons are presented in 
Fig. 4. For the model with five hidden neurons, the values 
of R, RMSE and NSC are computed to be 0.773, 0.091 and 
0.563, respectively. However, for the model with 24 hidden 
layer neurons, SI, MARE and R values are obtained to be 
0.116, 0.089 and 0.913, respectively. It is worth mention-
ing that by increasing the hidden layer neurons to a certain 
extent, the accuracy of the artificial intelligence model does 
not increase significantly. Therefore, it is believed that the 
optimum number of hidden layer neurons in this study is 22. 
A comparison of the discharge coefficients simulated by the 
model with 22 hidden layer neurons with the experimental 
data is provided in Fig. 5. For the model with 22 hidden 
layer neurons, the values of R, MARE and NSC are approxi-
mated to be 0.924, 0.091 and 0.852, respectively.

Fig. 3   Flowchart of the ORELM model (Zhang and Luo 2015)
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Activation function

In the following, the ORELM activation functions are stud-
ied. In this paper, for activation functions including sig, 
sin, hardlim, tribas and radbas are utilized for the ORELM 
model. Figure 6 displays the results of the statistical indi-
ces measured for these functions. Based on the modeling 
results, the values of RMSE, SI and NSC for the activation 
function sig are computed to be 0.056, 0.114 and 0.826, 
respectively. In addition, the MARE, R and SI values for the 
sin activation function are 0.128, 0.849 and 0.151, respec-
tively. Also, for the activation function hardlim, RMSE and 
NSC are approximated to be 0.102 and 0.481, respectively. 

Moreover, the RMSE and MARE statistical indices for the 
activation function tribas are obtained to be 0.089 and 0.159, 
respectively. In addition, for the activation function radbas, 
the values of R, SI and NSC are calculated to be 0.846, 
0.167 and 0.713, respectively. Thus, according to different 
activation functions, the function sig is introduced as the 
superior one and used in the following modeling process 
for simulating the discharge coefficient. The results of the 
discharge coefficients simulated by the activation function 
sig and the comparison with the experimental values are 
shown in Fig. 7.

Fig. 4   Values of statistical 
indices calculated for all hidden 
layer neurons
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Sensitivity analysis

The performance of different ORELM models is evaluated 
in this chapter by performing a sensitivity study. Figure 8 
displays the results of the various statistical indices calcu-
lated for these models. For example, the ORELM 1 model 
simulates the discharge coefficient values by the parameters 
Fr, L∕b, L∕y1,m, y1∕b,W∕y1 . For the ORELM 1 model, the 
values of R, RMSE and MARE are obtained to be 0.910, 
0.056 and 0.088, respectively. It should be noted that for 
the ORELM 2 model the influence of the input parameter 
W∕y1 is eliminated and this model simulates the discharge 
coefficient values in terms of the other input parameters 
including Fr, L∕b, L∕y1,m, y1∕b . For the ORELM 2 model, 

the values of SI, NSC and RMSE are estimated to be 0.130, 
0.759 and 0.064, respectively. Moreover, the values of R, SI 
and NSC for the ORELM 3 model are equal to 0.922, 0.110 
and 0.850, respectively. For this model, the effects of the 
dimensionless parameter y1∕b are removed and this model 
simulates the target function values by other dimensionless 
parameters including Fr, L∕b, L∕y1,m,W∕y1 . For estimat-
ing the discharge coefficient by the ORELM 4 model, the 
influence of trapezoidal wall slope (m) is neglected and this 
model simulates the discharge coefficient values using other 
dimensionless parameters such as Fr, L∕b, L∕y1, y1∕b,W∕y1 . 
The values of the MARE, NSC and SI statistical indices for 
the ORELM4 model are yielded 0.086, 0.845 and 0.106, 
respectively. It is worth mentioning that the values of R, 

Fig. 6   Results of statistical 
indices calculated for different 
activation functions
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RMS and NSC for the ORELM5 model are equal to 0.926, 
0.050 and 0.854, respectively. To forecast the discharge 
coefficient by the ORELM 5 model, the impact of the 
dimensionless parameter L∕y1 is eliminated and this model 
predicts the discharge coefficient values by the parameters 
Fr, L∕b,m, y1∕b,W∕y1 . Also, the ORELM6 model estimates 
the discharge coefficient values by the dimensionless param-
eters Fr, L∕b, L∕y1,m, y1∕b,W∕y1 and the influence of the 
ratio of the side weir length to the trapezoidal channel bed 
width (L∕b) is eliminated for this model. For ORELM 6, the 
values of RMSE, MARE and SI are obtained to be 0.058, 
0.103 and 0.118, respectively. For the ORELM 7 model, the 
values of R, NSC and MARE are also approximated to be 
0.901, 0.795 and 0.101, respectively. The ORELM 7 model 
is a function of the parameters L∕b, L∕y1,m, y1∕b,W∕y1 

and the impact of the Froude number (Fr) at the upstream 
of the side weir is ignored for this model. According 
to the modeling results, the dimensionless parameters 
Fr, L∕b, y1∕b,W∕y1 have the greatest impact on the simula-
tion of the side weir. Thus, the ORELM 8 model is devel-
oped by these input parameters. With the highest accuracy 
and the lowest error, this model simulates the discharge coef-
ficient values. Figure 9 displays the results of the simulated 
discharge coefficients along with the observed values. For 
the ORELM 8 model, the values of R, RMSE and MARE 
are equal to 0.937, 0.045 and 0.081, respectively.

Based on the performed sensitivity analysis, the ORELM 
8 and ORELM 2 models have the highest and the low-
est accuracies, respectively. Furthermore, eliminating 
the dimensionless parameters W∕y1 and L∕b declines the 

Fig. 8   Results of statistical 
indices for different ORELM 
models
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modeling accuracy incredibly. So, these dimensionless 
parameters are ascertained as the most influencing input 
parameters on the simulation of the discharge coefficient by 
the ORELM model.

Therefore, the performed sensitivity analysis demon-
strated that ORELM 8 was the best model in order to esti-
mate the discharge coefficient. After ORELM 8, ORELM 5, 
ORELM 3, ORELM 4, ORELM 1, ORELM 7 and ORELM 
6 were, respectively, identified as the second, third, fourth, 
fifth, sixth and seventh-best models for estimating the tar-
get function. However, ORELM 2 showed the worst per-
formance to model the discharge coefficient of side weirs.

Furthermore, W/y1 possessed the highest level of effec-
tiveness on the ORELM network so as to predict the dis-
charge coefficient, while the L/b, Fr, m, and y1/b factors 
were, respectively, recognized as the second, third, fourth 
and fifth-important input parameters. It is worth noting that 
the slope of side wall (m) was insignificant input variables 
so as to approximate the target value.

Comparison of ORELM model with AI‑based 
and regression‑based models

In this section, the superior model (ORELM 8) is compared 
with three artificial intelligence models developed by Roush-
angar et al. (2016), and Azimi et al. (2017a) as well as four 
regression models defined by Singh et al. (1994) (Reg 1), 
Borghei et al. (1999) (Reg 2), Emiroglu et al. (2011) (Reg 
3) and Bagheri et al. (2014) (Reg 4). It is worth mention-
ing that Roushangar et al. (2016) using the support vector 
machines-genetic algorithm (SVM-GA), and Azimi et al. 
(2017a) using the extreme learning machine (ELM) man-
aged to simulate discharge coefficient values. The Reg 1, 
Reg 2 and Reg 4 models were, respectively, derived from 
the Singh et al. (1994), Borghei et al. (1999) and Bagheri 
et al. (2014) experimental studies. Emiroglu et al. (2011) and 
Roushangar et al. (2016) validated the Reg 3 and SVM-GA 
models by using the Emiroglu et al. (2011) experimental 
measurements. Borghei et al. (1999), Emiroglu et al. (2011), 

Fig. 10   Statistical indices 
computed for different artificial 
intelligence and regression 
models

Fig. 11   Comparison of dis-
charge coefficient simulated by 
different artificial intelligence 
and regression models
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and Bagheri et al. (2014), whereas Azimi et al. (2017a, b) 
applied the measurements presented by Cheong (1991) for 
training and testing the ELM model. It should be stated that 
almost all previous studies estimated the discharge coeffi-
cients instead of discharge and also the empirical and artifi-
cial intelligence-based equations were presented to approxi-
mate the discharge coefficient not the discharge. Therefore, 
evaluation of the side weir discharge coefficient is quite 
reasonable in the current study.

Figure 10 provides a comparison of the values of the vari-
ous statistical indices for artificial intelligence and regres-
sion models. Also, Fig. 11 demonstrates the comparison 
of the discharge coefficient simulated by different artificial 
intelligence and regression models. Based on the compari-
son, the value of R for the ELM, and SVM-GA models are 
computed to be 0.162, -0.484 and 0.482, respectively. Also, 
for the Reg1, Reg2 and Reg3 models, the NSC values are 
obtained equal to 0.135, -0.617 and -0.256, respectively. In 
addition, the values of RMSE, SI and MARE for the Reg4 
model are equal to 0.142, 0.288 and 0.207, respectively.

In comparison with other studies carried out on the sim-
ulation of the discharge coefficient so far, the ORELM 8 
model therefore has the highest precision and the lowest 
error, as shown. In other words, the ORELM 8 model is 
more flexible than other artificial intelligence and regression 
studies in simulating the discharge coefficient. For instance, 
the accuracy of ORELM model was roughly 87% greater 
than the ELM model, whereas the correlation of ORELM 
model was nearly 94% higher than the SVM-GA model. 
Moreover, the precision of the ORELM model was approxi-
mately 74%, 69% and 61% better than Reg 1, Reg 2 and Reg 
3 models. The made comparison showed a good generaliza-
tion ability of the applied ORELM model in comparison 
with the previous investigation, meaning that the ORELM 
algorithm was used in a wide range of experimental meas-
urements, while other regression and AI-based equations 

were proposed just for some specific experimental values. 
Therefore, the presented ORELM model was more general-
ized algorithm compared with its counterparts. Additionally, 
the ORELM model had high level of precision and correla-
tion with experimental values.

In addition, the 95% uncertainty is performed for the 
artificial intelligence and regression models and the results 
are given in Table 2. The mathematical details of the 95% 
uncertainty can be found at Saberi-Movahed et al. (2020). 
The 95% uncertainty is calculated by (Saberi-Movahed et al. 
2020):

The 95% uncertainty for the ELM, and SVN-GA models 
are 0.0022, 0.0057 and 0.0019, respectively. Moreover, the 
95% uncertainty for the Reg 1, Reg 2, Reg 3 and Reg 4 mod-
els are obtained to be 0.0014, 0.0013, 0.0012 and 0.0012, 
respectively, while this value for the ORELM8 model is 
estimated to be 0.0009. Based on the results of the 95% 
uncertainty, the ORELM8 model has the lowest uncertainty.

In the following, the reliability is conducted for the arti-
ficial intelligence and regression models. The mathematical 
details of the reliability can be found at Saberi-Movahed 
et al. (2020).

The reliability is computed as follows:

here ki is estimated by using two phases. Firstly, the rela-
tive average error (RAE) is calculated as a vector whose ith 
component is as below:

(23)U95 =
(
1.96

n

)√√√√ n∑
i=1

(
Oi − Oi

)2

+

n∑
i=1

(
Oi − Fi

)2

(24)Reliability =
(
100%

n

) n∑
i=1

ki

(25)RAE =
||||
Oi − Fi

Oi

||||

Table 2   Results of 95% uncertainty for artificial intelligence and 
regression models

Method Model U95

AI-based ELM 0.0022
SVM-GA 0.0019
ORELM 0.0009

Regression-based Reg 1 0.0014
Reg 2 0.0013
Reg 3 0.0012
Reg 4 0.0012

Table 3   Results of reliability analysis for different artificial intelli-
gence and regression models

Method Model Reliability (%)

AI-based ELM 13.245
SVN-GA 2.649
ORELM 93.378

Regression-based Reg 1 39.073
Reg 2 31.788
Reg 3 65.894
Reg 4 57.947
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Secondly, if RAEi ≤ Δ, then ki = 1, otherwise, ki = 0, here 
Δ is the threshold value of the target function, meaning that 
ki is determined as the number of times the value of RAE is 
less than or equal to that of Δ. Regarding the Chinese Stand-
ards, the optimal value of Δ is 0.2 (Saberi-Movahed et al. 
2020). The results of the analysis are listed in Table 3. For 
the ELM and SVM-GA models, the reliability value is esti-
mated to be 13.245% and 2.649%, respectively. In addition, 
this value for the Reg 1, Reg 2, Reg 3 and Reg 4 models are 
computed to be 39.073, 31.788, 65.894 and 57.947, respec-
tively. It is worth noting that for the ORELM 8 model, the 
reliability value is computed to be 93.378% indicating high 
accuracy and reliability of the ORELM 8 model.

Partial derivative sensitivity analysis (PDSA)

For the superior model (ORELM 8), a partial derivative 
sensitivity analysis (PDSA) is performed in this section. 
The PSDA is typically used to measure the effect of input 
parameters on the target parameter (Azimi et al. 2019b; 
Azimi and Shiri 2020b). In other words, the PSDA is a 
method for identifying the changing pattern of the objective 
parameter according to input parameters. The positive PSDA 

implies an increase in the objective function (discharge coef-
ficient), while the negative sign implies a decrease in the 
target function. In other words, the relative derivative of 
each input parameter is computed according to the target 
function in this process. According to the PDSA findings, 
the PSDA increases by increasing the value of the Froude 
number. Also, by increasing the parameter L/b, the PDSA 
decreases. Furthermore, by increasing the input parameters 
y1/b and W/y1, the PDSA decreases. The PDSA results for 
the ORELM 8 model are illustrated in Fig. 12.

Superior ORELM model

ORELM 8 was identified as the best model to simulate the 
discharge coefficient in the current study. Thus, a relation-
ship for ORELM 5 is presented as follows:

here InW, InV, BHN and OutW are, respectively, matrices 
of input weights, input variables, the bias of hidden neurons 
and output weights and defined as bellow:

(23)Cd =

[
1

(1 + exp (InW × InV + BHN))

]T
× OutW

Fig. 12   PSDA results for supe-
rior model (ORELM 8)
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The sensitivity analysis showed that the Fr, L/b, y1/b, W/y1 
had significant influence to model the discharge coefficient 
using the ORELM algorithm. Hence, the ORELM 8 was 
developed as the superior model to estimate the discharge 
coefficient in the present work.

The performed analyses showed that ORELM 8 had the 
highest level of precision and correlation and this model 
could simulate the discharge coefficient of side weirs with 
a low level of uncertainty. Moreover, the side weir height to 
flow depth ratio (W/y1) and the side weir length to the main 
channel width ratio were detected as the most striking input 
factors for estimating the target function.

Conclusion

The discharge coefficient of side weirs located on rectan-
gular and trapezoidal channels was first simulated using a 
modern model of artificial intelligence called “outlier robust 
extreme learning machine (ORELM)” in this study. Initially, 
a comprehensive database composed of four different experi-
mental models was utilized for validating the artificial intel-
ligence models. It is worth remembering that 65% of the 

(24)InV =

⎡⎢⎢⎢⎣

Fr

L∕b

y1∕b

W∕y1

⎤⎥⎥⎥⎦

(25)BHI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3750

0.9328

0.9058

−0.5293

0.3286

0.5689

0.2195

−0.0143

0.1824

−0.8085

0.2201

0.6236

−0.3488

−0.8940

−0.5150

0.2165

0.3714

−0.5315

0.5362

−0.5896

−0.7944

0.2329

0.6135

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

InW =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5033 −0.4690 −0.1918 0.4387

0.6438 0.3631 0.5365 0.4801

−0.0156 −0.2317 −0.3751 −0.7190

0.3463 0.5765 0.9330 0.9571

−0.7025 −0.0247 −0.1937 0.0172

0.3574 0.2876 −0.1144 0.1973

0.4836 0.8068 0.7469 0.4472

−0.4036 −0.9962 0.2697 0.0161

0.3792 −0.7206 −0.0893 0.2750

−0.2599 −0.6626 0.3405 0.5438

−0.7924 −0.0988 0.1169 −0.8921

−0.2301 0.2882 0.9058 0.2436

0.4439 −0.3989 −0.4653 −0.8047

0.4199 0.4603 −0.3652 −0.4141

−0.3494 0.7792 −0.9349 0.2672

0.5568 −0.5369 0.1611 0.6962

−0.1059 0.6372 −0.7357 −0.0291

0.4486 0.6851 −0.8163 −0.0132

0.7533 0.3867 −0.5588 0.6428

0.5189 −0.7709 −0.0212 −0.5456

−0.4220 0.7437 0.9867 −0.9360

−0.2605 −0.3755 0.2272 0.4094

0.8050 −0.3851 −0.7597 0.2776

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

OutW =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.2188

−55.0945

−29.4923

−0.4244

3.6013

86.5020

85.0936

94.9102

−64.9958

37.6444

52.7523

−57.9293

−16.8418

−147.6459

−36.3055

64.3340

88.6864

10.5740

17.2794

24.6284

4.0088

−210.4479

7.5122

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

observed samples were used for training models of artificial 
intelligence and the remaining 35% were used for testing 
models of ORELM. The most important obtained results are 
summarized as follows:

•	 The optimal number of hidden layer neurons was selected 
to be 22 by performing a trial and error process.

•	 The sigmoid was chosen as the best activation function 
for the ORELM model.

•	 Eight distinctive ORELM models were produced using 
the effective dimensionless parameters and the ORELM 
8 was detected as the superior model.

•	 By performing a sensitivity analysis and the parameters 
W∕y1 and L∕b were introduced as the most influencing 
input parameters.

•	 For the ORELM 8 model, the values of R, RMSE and 
MARE are approximated to be 0.937, 0.045 and 0.081, 
respectively.

•	 To compare the results of the best ORELM-based model 
(ORELM 8) with the existing ones, three nonlinear 
artificial intelligence methods (support vector machine 
optimized by genetic algorithm, and extreme learning 
machine) and four multiple linear regression equations 
were employed. The results indicated that the ORELM 8 
model has better results.

•	 Furthermore, uncertainty and reliability analysis for 
the ORELM 8 model were computed 0.0009 and 93%, 
respectively.
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•	 Finally, for the ORELM 8 model, a partial derivative sen-
sitivity analysis was performed and the PSDA increased 
by increasing the Froude number and by increasing the 
parameter L/b the PDSA decreased.

This study showed that the ORELM model which is cali-
brated with a large number of samples has more flexibility 
and better efficiency. For future works, it is highly recom-
mended to check the performance of other string artificial 
intelligence such as adaptive neuro-fuzzy inference systems 
optimized with the new developed evolutionary algorithms 
such as gray wolf optimization. Additionally, the provided 
ORELM-based equation may be used for the estimation of 
the discharge coefficient in the practical applications. It is 
suggested that the results of the ORELM model can be com-
pared with the computations fluid dynamics (CFD) tools.
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