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Abstract

The growing contamination of various freshwater resources due to industrial effluent is a serious concern among the scien-
tific community. Several organic compounds are essentially used as chemical intermediate in variety of industrial processes.
These organic compounds are hazardous chemicals which are already considered dangerous to global public health and
other forms of life due to their high toxicity, carcinogenicity. These organic contaminants are found present in the industrial
effluents. Several treatment methods were applied in the literature for their elimination from wastewater to make their final
disposal safe for environment. In this article, different kinds of physical, biological and advanced oxidation methods (AOPs)
applied for the treatment of various important organic compounds were compared for their advantages and disadvantages.
The results showed that the conventional treatment methods are not effective to treat these kinds of toxic and refractory
chemical compounds. Therefore, AOPs were found to be the most promising treatment methods.
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Abbreviations
NIOSH National Institute for Occupational Safety
and Health

OSHA PEL  Occupational Safety and Health Administra-
tion Permissible Exposure Limit

IDLH Immediately Dangerous to Life or Health

TWA Time-weighted average

AOPs Advanced oxidation processes

IARC International Agency for Research on
Cancer

Introduction

Water is a precious commodity for each living organism
on the planet Earth. Though earth has large reservoirs of
water in the form of oceans (70%), snow ice caps and gla-
ciers (3%), the water actually available for human use is
only 1% of total available water and is continuously getting
lesser and lesser due to the contamination from various point
(Zhou et al. 2016) and nonpoint sources (Ma et al. 2018) of
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water pollution. The point sources are the bulk contributors
in polluting water resources day by day (Yang et al. 2016;
Barilari et al. 2020). They include various industries and
sewage treatment plants which directly discharge their efflu-
ent in environment. Due to the growing concern for the con-
tamination of water bodies and their consequential effect on
humans and other forms of life, these industrial discharges
are regulated and checked by various federal and govern-
ment agencies. Hence, industries must treat their effluents
to meet the safe limits of several important water parameters
and removal of harmful contaminants before disposal into
freshwater resources. Therefore, the need of simple, effec-
tive and low-cost treatment techniques arises to minimize
the burden of effluent treatment, to efficiently remove the
harmful contaminants and to increase the overall productiv-
ity of industries (Rajasulochana and Preethy 2016). Various
organic contaminants are such compounds of serious con-
cern to the industries due to their potential detrimental effect
on humans and other forms of life (Sang et al. 2019; Dewage
et al. 2019; Chaturvedi and Katoch 2020a). In this study, I
have tried to compare several treatment technologies to find
out the most efficient and cost-effective treatment technology
for organic contaminants.
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Aniline-based organic contaminants

There are several important but toxic organic compounds
such as anisidine, aminobenzene, nitro aniline and pyri-
dine which are still being used, produced and are present
in the effluent of various industries. Most commonly and
widely used organic compounds are either aniline itself
or its derivatives. Aniline, also called as aminobenzene
or phenylamine, is an aromatic organic compound with
the chemical formula C¢HsNH,. An amino (-NH,) group
is attached to the benzene ring; hence, it is a prototypi-
cal aromatic amine (Bolt et al. 2016). It has an unpleas-
ant rotten fish like odor like the other volatile amines
(PodkoScielny and Laszld, 2007). Aniline readily catches
fire and starts burning with smoky flames which is a char-
acteristic of all the aromatic hydrocarbons. Aniline is basic
in nature and appears as colorless oily liquid. Aniline is
easily soluble in variety of solvents such as cold/hot water,
diethyl ether and methanol (European Commission 2004).
Aniline is required as an essential intermediate in the
preparation of many organic substances such as fuel and
rubber additives, corrosion inhibitors, azo dyes, antioxi-
dants, pharmaceuticals, pesticides and antiseptics (Edalli
et al. 2018; Bose et al. 2016; Wang et al. 2007). The pri-
mary use of aniline is in production of polyurethane pre-
cursors. The major use of aniline is to prepare methylene
diamine and related organic compounds through conden-
sation with formic aldehyde. The diamines thus produced
undergo condensation with phosgene to give methylene
diphenyl diisocyanate. The rest of the aniline is used to
produce chemicals for rubber processing (9%), dyes and
pigments (2%) and for herbicides (2%). Diphenylamine
and phenylenediamines are aniline derivatives and act as
antioxidants in when added to rubber. Aniline is also used
in the preparation of paracetamol (acetaminophen), a com-
mon drug used to relieve fever. In dye industries, aniline is
mainly used to prepare Indigo dye, which makes the jeans
blue. Polyaniline, a polymer cable of conducting electric-
ity intrinsically, is also a product of aniline.

Aniline is established as one of the highly toxic organic
compounds (Hussain et al. 2014; Jagtap and Ramaswamy
2006). Aniline can be a potential mutagen and carcinogen;
therefore, IARC has categorized it into group 2B (IARC
2012). Aniline has a water solubility of 3.4 g/100 mL,
but the hydrochloride of aniline can dissolve up to
100 g/100 mL in water. Industrial wastewater containing
aniline can be harmful to harms aquatic biomes due to
its high toxicity and incalcitrant structure. NIOSH has
considered aniline as a possible occupational carcinogen
in humans and confirmed its carcinogenicity in animals
(Pohanish 2017; Wang et al. 2016; Okazaki 2001). The
NIOSH IDLH value and OSHA PEL value for aniline are
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100 ppm and 5 ppm (19 mg/m?), respectively (Pendergrass
1994). Aniline exposure can occur by dermal adsorption,
inhalation and ingestion (Korinth et al. 2012, 2008, 2007).
Its direct contact can result in skin burns and severe irri-
tation to permanent damage of eyes. Acute exposure of
aniline can decrease the potential of oxygen carrying and
absorbing capacity of blood which may result in breathing
difficulty, collapsing and finally death of exposed person
(Pohanish 2017).

There are also vast variety of other organic compounds
like aniline which are of prime concerns to various federal
and local government authorities. Some of them are ani-
sidines, nitroaniline, phenols, methylaniline, aminophenol,
etc. which are some of the important chemicals used in
several industries and are found in their wastewater. These
contaminants are infamous for their carcinogenicity, toxic-
ity and adverse effects on aquatic life and human being as
well (Larrafiaga et al. 2016; European Commission 2002;
Budavari et al. 1996). The important regulatory parameters
for different aniline-based organic compounds are shown
in Table 1.

Table 1 clearly shows the threshold limit of various regu-
latory parameters, exposure after which can result in serious
health effects for living organisms. The smaller the value of
regulatory parameter for the organic compounds, the more
dangerous it is for the living organisms. The OSHA PEL
value and NIOSH REI value is smallest for o-Anisidine
and p-Anisidine making them most dangerous among other
organic compounds shown in the Table 1.

Therefore, several treatment methods have been applied
for the removal of these kinds of organic compounds from
the industrial effluents before their disposal into the environ-
ment. These contaminants have been treated and eliminated
by various technologies including physical, biological and
AOPs (Chaturvedi and Katoch 2020a; Bajpai et al. 2019).
In this study various physical, biological and AOPs related
methods used for treatment of wastewater containing these
types of contaminants are reviewed and discussed for their
merits and demerits.

Removal technologies for aniline-based
organic contaminants

Aromatic aniline-based organic compounds have been
treated from effluents by electrolysis (Li et al. 2017), pho-
todecomposition (Pirsaheb et al. 2017), ozonation (Faria
et al. 2007), biodegradation (Huang et al. 2018; Dino et al.
2019) and resin adsorption (Chen et al. 2020; Li et al. 2020).
Complete decomposition has not been achieved by activated
sludge processes, and their incalcitrant nature can prevent
the biodegradation of several other harmful chemical species
in wastewaters. Most of the physical methods like adsorption
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Table 1 Hazard regulatory parameter for several aniline-based organic compounds

Organic compounds IDLH value  OSHA PEL NIOSH REL IARC Prime use

Aniline 100 ppm 19 mg/m® TWA (skin) - Group 3 Pharmaceuticals, dyes, pigments
o-Anisidine 50 mg/m?3 0.5 mg/m® TWA (skin) 0.5 mg/m® TWA (skin)  Group 2B Pharmaceuticals and dye
p-Anisidine 50 mg/m® 0.5 mg/m® TWA (skin) 0.5 mg/m® TWA (skin) ~ Group 3 Pharmaceuticals and dye
p-Nitroaniline 300 mg/m®* 6 mg/m® TWA (skin) 3 mg/m® TWA (skin) Group 3 Dye industry

o-Toluidine 200 mg/m? 22 mg/m® TWA (skin)  — Group 1 Pesticides and dyes

Phenol 250 ppm 19 mg/m® TWA (skin) 19 mg/m® TWA (skin) Group D Resins and Nylon

Nitrobenzene 200 ppm 5 mg/m® TWA (skin) 5 mg/m® TWA (skin) Group 2B Dyes, drugs, Pesticides, etc
2-Aminopyridine 5 ppm 2 mg/m® TWA (skin) 2 mg/m® TWA (skin) Group D Pharmaceuticals

N, N-Dimethylaniline 100 ppm 25 mg/m> TWA (skin) 25 mg/m> TWA (skin) Group 3 Dyes and pigments

p-Phenylene diamine 25 mg/m’ 0.1 mg/m® TWA (skin) 0.1 mg/m> TWA (skin)  Group 3 Permanent hair dye

Nitraamine 750 mg/m® 1.5 mg/m® TWA (skin) 1.5 mg/m> TWA (skin) — Explosives

1,4-Diaminobenzene 25 mg/m’ 0.1 mg/m® TWA (skin) 0.1 mg/m> TWA (skin)  Group 3 Polymer, dyes and Kevlar
Cresols (o/m/p) 250 ppm 22 mg/m> TWA (skin) 10 mg/m® TWA (skin) Group C Chemical intermediate ad herbicides

Source NTP (2016), IARC (1999) and Barsan (2007)

are found to be very sensitive to pH of the wastewater. Other
methods like incineration and ultrafiltration are not economi-
cal (Tanhaei et al. 2014; Shi et al. 2014), and thermal incin-
eration can also cause air pollution (Sénger et al. 2001; Bie
et al. 2007). Biological methods are eco-friendly techniques
to destroy contaminants and transform them into non-toxic
forms by natural means (Padoley et al. 2011; Jianping et al.
2006). However, for highly toxic and incalcitrant contami-
nant like aniline-based compounds, direct subjection to bio-
logical treatment can be troublesome. Therefore, chemical
pretreatment by AOPS can be a suitable alternative as they
increase the biodegradability and also minimize the toxic-
ity of these compounds for microorganisms (Padoley et al.
2011; Chen et al. 2007). In recent researches, AOPs have
surfaced as favorable technologies to destroy various harm-
ful organic compounds in wastewater and reduce their toxic-
ity and refractory nature. Various physical, biological and
AOPs related methods used for treatment of aniline-based
compounds are discussed below.

Physical treatment methods

Physical treatment methods such as membrane filtration,
thermal incineration and adsorption have been used for
the elimination of aniline-based organic compounds from
wastewater. They have been shown to be treated with adsorp-
tion by resins (Gu et al. 2008; Jianguo et al. 2005), acti-
vated carbon (Valderrama et al., 2010), carbon nanotubes
(Yan et al. 2011; Xie et al. 2007) and zeolites (O’Brien
et al. 2008). Despite the low efficiency of adsorption sys-
tem, the regeneration of adsorbent is also troublesome
and incurs to additional cost (O’Brien et al. 2008, 2004).
Aniline was also treated by thermal incineration in some
studies but incineration is an energy intensive process with

high fuel consumption and if incomplete combustion takes
place, secondary pollution can happen due to the release
of nitrogenous oxides (NOx) into the atmosphere as a by-
product (Crini and Lichtfouse 2019; Sanger et al. 2001).
Several membranes such as liquid emulsion membrane
(Datta et al. 2003), silicone membrane (Sawai et al. 2005),
reverse osmotic membranes (Gémez et al. 2009), nanofil-
tration (Shao et al. 2013) and ultrafiltration (Tanhaei et al.
2014) membranes were also applied in the treatment of ani-
line compounds. Although membrane filtration processes
were found to be effective, complex rejection mechanism,
incomplete removal and regular cleaning of the membrane
by backwashing are several associated drawbacks (Hidalgo
et al. 2011; Bellona et al. 2004; Drewes et al. 2003). Mem-
brane fouling over time is also a significant limitation of this
technology (Jhaveri and Murthy 2016; Cui et al. 2016). Dif-
ferent physical treatment technologies available for aniline-
based organic compounds are summarized in Table 2.

Table 2 summarizes the physical treatment meth-
ods applied for the degradation of organic contaminants.
Physical methods like adsorption, membrane filtration and
thermal incineration were applied for these compounds.
Although physical processes were found effective in the
degradation of these compounds, they have certain major
drawbacks like high energy cost, fouling of membrane and
creation of more toxic secondary pollution.

Biological treatment methods

A variety of unicellular and multicellular organisms have
been reported for the treatment of wastewater containing
aniline-based organic compounds via biological meth-
ods (Arora 2015; Gharibzahedi et al. 2014; Liang et al.
2005). Aniline was shown to be treated by several fungi

@ Springer
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Table 2 (continued)

Major findings References

Experimental condition

Chemicals concerned

Physical treatment applied Sub-category/material used

Datta et al. (2003)

98.53% removal of aniline

0.001 M, Feed: Emul-

sion=12:1¢

[Feed];

Aniline

Liquid emulsion membrane

Membrane filtration

=45 min

Approximately 80% removal of  Tanhaei et al. (2014)

5 ppm Vol-
300 mL Effective surface

40 cm?®

7, [Aniline]; =
ume

area

pH

Micellar enhanced ultrafiltration Aniline

aniline

78.36% removal of aniline Fuetal. (2017)

5 [Aniline];=1.5 mM pres-

pH=

Micellar enhanced ultrafiltration Aniline

=3.5 bar

sure

[APD],

Sawai et al. (2005)

Successful recovery of Aniline

0.1 mmol/L Vol-

200 mL Effective surface

9.1x 104 m?

Aniline and Phenol Derivative

silicone rubber membrane

and Phenol from aqueous

mixtures
More than 90% removal of both  Shao et al. (2013)

ume
area

[APD]

pH=11

Aniline blue and Safranin O

Nanofiltration

Aniline blue and Safranin O

and microorganisms such as Candida tropicalis (Wang
et al. 2011), Candida albicans (Jianping et al. 2006),
Pseudomonas sp. (Jiang et al. 2016), Delftia sp. (Shelud-
chenko et al. 2005), Acinetobacter sp. (Takeo et al. 2013)
and Pigmentiphaga daeguensis (Huang et al. 2018). Differ-
ent biological treatment methods for aniline-based organic
compounds are summarized in Table 3. Recently, several
studies on microbial fuel cells for the treatment of these
kinds of wastewater have also resulted in energy production
(Singh and Dharmendra 2020; Zhang et al. 2019). Biologi-
cal methods utilizes natural pathways in order to treat the
wastewater for achieving the requisite wastewater quality,
which makes them the most eco-friendly technique, but they
become impractical when organic compounds of incalcitrant
nature and high toxicity are to be treated by biological means
(Padoley et al. 2008; Gotvajn and Zagorc-koncan 2005).
Industrial wastewater contains a vast variety of harm-
ful organic compounds and their treatment to achieve the
mandatory effluent standards is problematic with biologi-
cal methods. The main limitations of biological methods
are: difficulty to grow and maintain culture in pure form; it
requires longer time to stabilize the microorganisms and also
for the oxidation of organic pollutants (Neyens and Baeyens
2003; Tony et al. 2012). It is very important to monitor and
maintain healthy environmental condition for the proper
growth of microorganism daily. Biological methods are the
best eco-friendly practices and found efficient in the destruc-
tion of various organic compounds. Although the efficacy of
biological methods is determined by the nature of available
substrate to be acted upon by microbial enzymes (Karigar
and Rao 2011), these processes are ineffective in the case
of toxic contaminants with higher COD values than BOD
(De Morais and Zamora 2005; Martinez et al. 2003). AOPs
can be a good pretreatment options to address these limita-
tions earlier to biological methods as they can improve the
biodegradability by reducing the toxicity of organic con-
taminant non-specifically to a great extent (Padoley et al.
2011; Kavitha and Palanivelu 2004). Biological and physical
treatment methods were found effective in the treatment of
organic contaminants, but have certain disadvantages like
high energy requirements, secondary pollution, cleaning and
maintenance, slower elimination rate, etc. These problems
can be overcome by AOPs as they have shown to be more
successful and effective in the removal of similar organic
compounds having high toxicity and incalcitrant nature.
Table 3 shows that a variety of biological processes
have been applied for the effective elimination of these
organic compounds. They seemed to be the eco friendli-
est as they utilize natural pathways for the degradation of
organic compounds. But biological processes have many
treatment constraints like selectiveness of microorganisms,
organic compounds and also the need of large time duration
for the effective removal of these kind of toxic compounds.

@ Springer
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Table 3 Biological treatment methods for organic contaminants

Microrganism/
Method

Type of treatment

Chemicals concerned Experimental conditions

Major findings

References

Delftia sp. XYJ6

Dietzia natronolim-

naea20

Pigmentiphaga dae-
guensis

Moving bed biofilm

reactors

Activated sludge
process

Sequencing batch
reactor system

Aerobic

Aerobic

Aerobic

Aerobic

Aerobic and Anero-

bic

Aerobic and Anero-
bic

Aniline

Aniline

Aniline

Aniline, para-Diam-
inobenzene [PDB]
and para-Ami-
nophenol [PAP]

Several Sulfonated
Aromatic amines

Reactive Red (Azo
dye)

Batch column reactor Aerobic and anerobic Mordant Dye

pH=7, T=30°C
[Aniline];=2000 mg/L,
t=22h

pH=8,
[Aniline];=300 mg/L,
t=120h, T=30°C
pH=7,t=15h,
[Aniline];=10 mg/L,
T=30°C
[COD];=100-3500 mg/L,
t=3 days

pH=7.9,
[Dye];=20-50 mg/L,
volume=10 L

pH=S8,
[Dye];=4000 mg/L,
volume=1L, T=23°C

Delftia sp. XYJ6
showed capability
of Aniline conver-
sion to intermedi-
ates

87% removal of
aniline

100% removal of
aniline

COD removal of
90%, 87% and 75%
for Aniline, [PDB]
and [PAP]

Only 2 and 4-Amin-
obenzene sulfonic
acid showed
removal of less
than 1.8 g/L/day.
And other tested

compounds showed

no sign of bio
degradation

90% color removal,
COD removal 88%

61% dye mineraliza-
tion, 70% aromatic
amines removal

Liang et al. (2005)

Gharibzahedi et al.
(2014)

Huang et al. (2018)

Delnavaz et al. (2008)

Tan et al. (2005)

Kogyigit and Ugurlu
(2015)

Yan et al. (2018)

obtained

Therefore, as suggested and investigated by several research-
ers, pretreatment with AOPs in order to reduce the toxicity
of these recalcitrant compounds can be a possible solution
for their successful elimination from wastewater.

Advanced oxidation processes

AOPs have proved beneficiary in the treatment of several
toxic and non-degradable compounds like aromatic organic
compounds, pharmaceuticals, pesticides, petroleum waste-
water, dyes and other refractory chemicals (Shahidi et al.
2015; Ribeiro et al. 2015; Gadipelly et al. 2014; Diya’uddeen
et al. 2011). AOPs utilize the high oxidizing power of pow-
erful oxidizing agents for the removal of organic compounds
and were effectively used to remove recalcitrant organic
contaminants from wastewater. They can destroy organic
compounds by chemical and photochemical oxidation in
the vicinity of a catalyst (Padoley et al. 2011; Kavitha and
Palanivelu 2004). AOPs rely on the in situ generation of
strong oxidants to eliminate organic compounds (Miklos
et al. 2018; Bolton et al. 2001, 1996). Most of the AOPs

@ Springer

utilize oxidizing species like HO-, but some can be based
on other oxidizing species like sulfate and chlorine radicals
(Miklos et al. 2018). HO- with 2.80 eV as oxidation potential
surpasses most of the other oxidizing agents, and its reaction
rate constants are much more higher than other methods
like ozonation. HO- is unstable and highly reactive species
in nature which must be generated continuously in situ by
several means (Zhu et al. 2012; Esplugas et al. 2002; De Laat
and Gallard 1999).

There are several AOPs available such as UV/TiO, cataly-
sis, Fenton’s oxidation, photo-Fenton oxidation, Fenton-like
oxidation solar photo-Fenton, electro-Fenton oxidation and
titanium dioxide-assisted photolysis (Jain et al. 2018; Bocz-
kaj and Fernandes 2017; Asghar et al. 2015). Aniline-based
organic compounds are shown to be treated and destroyed
successfully by AOPs. Removal of acetanilide, p-nitroani-
line and p-aminophenol using solar photo-Fenton and UV
photo-Fenton oxidation was investigated by some research-
ers and revealed that both the treatment methods were more
advantageous than the classic Fenton process due to their
better oxidation ability, broader pH tolerance and lower Fe**
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requirement (Sheikh et al. 2008). In some researches, a com-
bination of both photo-Fenton process and biological pro-
cesses was studied for the degradation of aniline (Liu et al.
2012). This study showed that pH range of 3—4 and oxida-
tion by photo-Fenton process increases the degradability of
aniline by microorganisms. There are several studies avail-
able in the literature which demonstrated Fenton’s reagent
effectiveness in eliminating toxic organic contaminants from
wastewater (Liu et al. 2012; Mingyu et al. 2011; Andreozzi
et al. 1999). Electro-Fenton process is found more effec-
tive than fluidized bed Fenton process, but higher amount
of H,0, is required for electro-Fenton process, showing that
fluidized bed Fenton process is more economical (Briones
et al. 2012; Anotai et al. 2010). Aniline pretreatment by
ozone followed by titanium dioxide photocatalysis showed
overall increment in total organic carbon removal from the
wastewater (Orge et al. 2017; Sanchez et al. 1998).

AOPs are influenced by several important reaction param-
eters such as solution pH, H2022F62+, initial pollutant con-
centration. The pH of wastewater shown to increase the pro-
ductivity of AOPs (Catalkaya and Kargi 2007). Normally
acidic conditions are favored by AOPs resulting in faster
degradation rather in alkaline conditions (Li et al 2015;
Pera-Titus et al. 2004). The initial increase in Fe?* results in
higher amount of HO-, which further improves the degra-
dation, until a critical concentration is reached after which
the degradation is abruptly inhibited (Yilmaz et al. 2010).
This can be explained by the fact that Fe?* itself starts to
absorb the HO- (Manu et al. 2011). Also, for higher ini-
tial pollutant concentration lower degradation is observed
(Manu and Mahamood 2011). Various advanced oxidation
processes applied for the treatment of aniline-based organic
compounds are shown in Table 4.

Table 4 summarizes different kinds of AOPs applied for
the treatment of organic compounds. There are several kinds
of AOPs available in the literature. AOPs are faster and more
effective than physical and biological processes. They have
shown more than 90% removal in most of the degradation
investigation. Sometimes 100% conversion of organic com-
pound into carbon dioxide and water was also obtained. The
simplest of all AOPs is Fenton oxidation which is the most
eco-friendly of all other AOPs. Industries can opt for any of
the AOPs as per their budget and requirement.

Discussion and conclusions

Aniline-based organic contaminants are found essential as
chemical compounds for various industries. They have been
identified by several governmental agencies as toxic, carci-
nogenic and mutagenic (Table 1). Therefore, their presence
in the untreated effluents of these industries can be harmful

@ Springer

and can cause serious adverse effects on humans as well as
other forms of life. Through extensive studies of the litera-
ture, it was found that there are several treatment methods
available for aniline-based organic compounds. There are
variety of physical methods applied for the treatment of
these compounds such as thermal incineration, membrane
filtration and adsorption. The physical methods were found
to be efficient and fast, but their limitations include forma-
tion of secondary air pollutants as in thermal incineration.
In membrane filtration technologies, the consistent cleaning
of the membrane by backwashing demands both energy and
time, thereby adding costs. Moreover, fouling of membranes
with time is a noteworthy drawback of this techniques. Bio-
logical processes are considered as the most eco-friendly
technologies, but their effectiveness rely on the nature of
the available substrate to be acted upon by microorganisms.
Therefore, for toxic and incalcitrant organic contaminants,
biological processes are not practicable. Moreover, biologi-
cal process has other limitations like slower removal rate
and requires continuous monitoring and maintenance. Due
to these limitations, researches have moved toward AOPs,
as they have advantages like non-specific pollutant degrada-
tion, faster removal rate, ease of operation and found eco-
friendly and economical. AOPs also have certain limitations
like pH dependence, sludge formation and complex reaction
chemistry.
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