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Abstract
Qualitative analysis of water resources is one of the most widely used topics in water resources research today. Researchers 
use various analysis methods of water parameters to achieve the desired goals in this field. This research uses artificial intel-
ligence (AI), learning machine (LM), data mining, and mathematical techniques to simulate water behavior and estimate 
its parametric changes. The proposed model used in this study was a Self-adaptive Extreme learning machine (SAELM) 
to estimate hydrogeological parameters of the Meghan wetland located in Markazi province in Iran. In addition, SAELM 
simulation results were compared to Least square support vector machine (LSSVM), Multiple linear regression (MLR), and 
Adaptive Neuro-fuzzy inference system (ANFIS) models. The simulated parameters were Electrical Conductivity (EC), Total 
Dissolved Solids (TDS), Groundwater Level (GWL), and salinity. This information was related to sampling for 175 months 
in the study area. Finally, after simulation operation, four models were introduced as superior models. Mentioned exceptional 
models were SAELM in GWL modeling, SAELM in modeling the EC, MLR in salinity simulation, and LSSVM in the 
simulation of TDS parameters. Moreover, by five approaches, the models' performance was evaluated. Suggested strategies 
were performance evaluation by statistical indicators, Wilson score method uncertainty analysis (WSMUA), response & 
correlation plots, discrepancy ratio charts, and distribution error diagrams. Based on statistical indicators, the  SAELMGWL 
model was the most accurate model with RMSE, MAPE, and R2 indices equal to 0.1496, 0.0043, and 0.9933, respectively. 
The ANFIS model had the worst results in simulation.

Keyword Data mining · LSSVM · MLR · SAELM · ANFIS · Water parameters

Introduction

Basic statement

Needs assessment proved that one of the vital human needs 
is access to drinking water. For this reason, human beings 
have started various works such as digging wells, building 
dams, aqueducts, and so on. But today, there are many con-
cerns. For example, we have recently seen global warming 
climate change. The increase in the human population is 

another cause for concern. But with the advancement of sci-
ence, the use of new scientific methods to achieve the goal 
has also increased. Modeling the water quality parameters 
is one of the fundamental challenges investigated by several 
studies (Parmar and Bhardwaj 2014; Zhou 2020). One of the 
crucial human issues is access to drinking water. In this case, 
AI and LMs, artificial neural networks (ANN), and engineer-
ing sciences were tools to help human beings. Due to water 
scarcity in countries around the world, the study of water 
resources in different scientific ways has been considered by 
researchers (Poursaeid et al. 2020; Chang et al. 2021). The 
following will be reviewed related studies to water resources 
and their quantitative and qualitative simulations.

Related studies

Today, artificial intelligence methods have been developed 
for various purposes. In previous research, artificial intel-
ligence techniques have been used for scientific challenges. 
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In addition, several studies have been conducted in the field 
of water resources and related modeling. In these studies, 
numerical modeling, analytical modeling, artificial intelli-
gence simulations, etc., have been used. But in this research, 
we review the articles related to water resources modeling 
and quantitative and qualitative simulations that have used 
artificial intelligence.

On the one hand, some studies used ANNs and LMs to 
model water resources separately. ANNs were applied to 
simulate water parameters. ANNs such as multi-layer per-
ceptron neural network, backpropagation neural network, 
Radial basis function neural network, and LMs such as sup-
port vector machine, extreme learning machine, and rein-
forcement learning machine. In mentioned works, the accu-
racy of ANNs and LMs was compared to similar articles. 
Finally, the superiority of these models over previous works 
was confirmed (Gholami et al. 2011; Wu et al. 2014; Yang 
et al. 2014; Kalteh 2014, 2015; Kheradpisheh et al. 2015; 
Shahid and Ehteshami 2015; Nema et al. 2017; Manu and 
Thalla 2017; Wang et al. 2019; Qu et al. 2020; Vijay and 
Kamaraj 2021; Sada and Ikpeseni 2021; Che Nordin et al. 
2021; Sarkar et al. 2021). On the other hand, in some other 
papers, Optimizer & Heuristic algorithms (OHA) simulated 
quantitative and qualitative water parameters. OHAs such as 
genetic algorithm, differential evolution, and particle swarm 
optimization algorithm implemented to model the water 
parameters. Specifically, the OHAs proportionally improved 
the modeling's speed and accuracy in these studies. (Parmar 
and Bhardwaj 2014; Walker et al. 2015; Guneshwor et al. 
2018; Vaheddoost and Aksoy 2018; Elkiran et al. 2019). 
Besides, other articles combined ANNs & LMs with OHAs 
to model water parameters. The results showed that hybrid 
models' simulation, speed, accuracy, and ability were often 
higher than the original models (Heddam et al. 2019; Zhang 
et al. 2019, 2021; Majumder and Eldho 2020; Azimi and 
Azhdary Moghaddam 2020; Poursaeid et al. 2020, 2021).

Contributions

In this paper, quantitative and qualitative groundwater 
parameters were predicted using LM techniques and math-
ematical methods. However, there are many articles in this 
field, but in this study, for the first time in the study area, 
four AI and mathematical models have been used simultane-
ously to quantitatively and qualitatively simulate the water 
of Meghan Wetland located in the Arak plain, Markazi 
province of Iran. Three models of artificial intelligence 
SAELM LSSVM, ANFIS, and MLR as a mathematical 
model, simulated the EC, TDS, GWL, and salinity param-
eters. It should be noted that there are several parameters 
in the water resources quality management, including  Cl−, 
EC, TDS,  SO4

2 +, etc. Many researchers have used the most 

widely used parameters in this field, such as above-men-
tioned parameters.

The structure of this work in the following sections is as 
follows: Defining the water quality parameters discussed in 
the second part. The third part of the article describes mate-
rials and methods, including AI models and mathematical 
models. Moreover, In mentioned section, the characteristics 
of the study area and the data collection steps are presented. 
Also, in Sect. 5, the results of the research are discussed. 
Finally, the general conclusion is summarized in the last 
section.

Problem statement

In this part, water quality parameters are introduced as 
follows.

Water quality parameters

This section explains the water quality parameters. Although 
there are several parameters in this field (Solanki et al. 2015), 
we have tried to describe the most widely used parameters 
in this work.

Total dissolved solids (TDS)

Total dissolved solids (TDS) means the numerical sum of 
solids soluble in water (Jamei et al. 2020). This parameter 
is measured in milligrams per liter  (mgl−1). This parameter 
includes different types of mineral salts such as soluble 
bicarbonates  (HCO−3), organic matter, magnesium  (Mg+2), 
calcium  (Ca+2), sodium  (Na+), potassium  (K+), chloride 
 (Cl−), sulfate  (SO4

−2), nitrates  (NO−3) (Ahmadianfar et al. 
2020).

Salinity

Water salinity is one of the water quality parameters. This 
parameter is equivalent to salt concentration in water accord-
ing to the definition. However, some research has defined 
salinity as the concentration of water-soluble mineral salt in 
a specific volume or weight per square meter (Sparks 2003). 
It should be noted that some factors such as increased con-
sumption or high evaporation rate lead to increased salin-
ity (Harris 2009). It should be noted that this parameter is 
measured in milligrams per liter  (mgl−1).

Electrical conductivity (EC)

Electrical conductivity (EC) is one of the quality parameters 
of water sources and is measured in micro Siemens per cen-
timeter (μScm−1). EC is considered equivalent to the salinity 
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of water (Serrano-Finetti et al. 2019). Because this param-
eter indicates the number of salts in the water and is equal to 
the amount of electrical transfer of water, this parameter is 
an essential factor in drinking water quality and agriculture. 
However, the amount of ionic salt in water reduces its qual-
ity for drinking (Ahmadianfar et al. 2020).

Materials and methods

Study area

The study area of this research is Meghan Wetland, located 
in Markazi province in Iran as Fig. 1. According to the 
statistical results of synoptic stations, the maximum and 

minimum precipitation varies from 461 mm in the northeast 
to 208 mm in the center of Arak plain.

AI models

In the following sections, the AI and MLR models will be 
explained.

Self Adaptive Extreme Learning Machine (SAELM)

The proposed method in this study is SAELM model. 
Extreme learning machine was proposed in 2004 by 
Huang et al. (2004). This model is one of the learning 

Fig. 1  Meghan wetland. Source: Wikimedia and GoogleMap
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machine types, and in various research, its superiority 
over other methods (including neural networks and learn-
ing machines) has been proved (Huang et al. 2006, 2012). 
If we have n neurons in the hidden layer, then we can 
define the single-layer feedforward network of the learn-
ing machine based on mathematical relations as follows 
(Liang et al. 2006; Poursaeid et al. 2020):

So that g, ci, and βi are the transfer function between 
input and output layers, respectively. The above relation 
can be rewritten in the form of the following:

Finally, the output weights can be calculated using the 
Moore–Penrose generalized inverse matrix method.

Least square support vector machine (LSSVM)

LSSVM model is a type of SVMs that can adjust the con-
stant factors of the support vector model with least-square 
solutions and self-adapting changes. The support vector 
model was developed by Vapnik (Sapankevych and Sankar 
2009). These learning machines operate based on Struc-
tural risk minimization. Meanwhile, some other AI meth-
ods use the Empirical risk minimization method. (Cris-
tianini and Shawe-Taylor 2000; Dibike et al. 2001). SVM 
is used in classification problems. In short, an equation 
is obtained in a Quadratic programming problem in this 
theory. The fixed parameters of the model are determined, 
and then with optimization algorithms such as genetic 
algorithm (GA) or other methods, we can get the opti-
mal values for this equation. The SVM can also be used 
for regression problems. The mathematical definition of 
LSSVM is that if xi and yi are the inputs and outputs, then 

(1)yi =

k∑
j=1

�jg(ajxi + cj) = ui , i = 1, 2, 3, ...,N

(2)

cj = [cj1, cj2, ..., cjn]
T , cj ∈ R, j = 1, 2, 3, ..., k

aj = [aj1, aj2, ..., ajn]
T , aj ∈ Rt, j = 1, 2, 3, ..., k
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(3)
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the nonlinear regression function is as follows (Valyon and 
Horvath 2007):

where w is the weight vector, and b is the bias, and φ are 
nonlinear functions for mapping data into large feature 
spaces, so:

The nonlinear regression problem can be solved by mini-
mizing the following Quadratic programming problem:

where C is the tradeoff variable between two terms of the 
equation, so:

It should be noted that δi is defined as network noise. Then 
for each xi, the output is a weighted set of n kernel functions, in 
which the central variable of the kernel functions is determined 
using the xi as inputs data. We will have the Lagrangian form 
of the equation as follows:

In Eq. 10, ai are lagrangian multipliers. In the following 
solution, we solve the problem with a constrained optimization 
problem. Then we have the optimization with the following 
conditions as follows:

And the final solution to the problem is as follows:
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And in Eq. 12, the Φi,j is the kernel matrix. Also, ϕ(xi,xj) 
is the kernel functions:

Adaptive neuro‑fuzzy inference system (ANFIS)

Adaptive Neuro-Fuzzy Inference System, or ANFIS for 
short, is a feed neural network that simulates based on fuzzy 
logic (El-Shafie et al. 2006). In this type of network, two 
types of inferential systems based on FIS fuzzy logic are 
used (Tokachichu and Gaddam 2021; Arora and Keshari 
2021):

• A fuzzy inference system-based network, called Mam-
dani, is known as M-FIS for short.

• Takagi–Sugeno fuzzy inference system-based network, 
known as TS-FIS for short.

In these networks, there are at least two inputs I1 and I2, 
for the network based on TS-FIS fuzzy inference system and 
two if–then conditional principles for each output Oi and 
the conditional rules of these fuzzy networks are as follows:

Rule (1): If x is input I1 and output O1, then we have:

Rule (2): If x is input I2 and output O2, then we have:

Neuro-fuzzy networks are organized of one input layer 
and the other five layers, which can be a type of multi-lay-
ered neural network.

• Layer 0: Input layer with n Input nodes
• Layer 1: This layer provides a membership function for 

points using gaussian rules by fuzzifying each node.

where φi, ti, and hi are adaptive functions in a fuzzy 
network.

(12)
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• Layer 2:all of fuzzified data are passed into operators. 
Also, Ii and Oi are the membership parameters of the 
antecedent parameters of rule (1).

• Layer 3: in this layer, All of the nodes are normalized as 
below:

where the wi , in 2nd layer, is the Sum of Operator in the 
ith order.

• Layer 4: The corresponding linear function is calculated 
for each node in this layer. Then the coefficients of the 
functions are computed using the BNN-error (backpropa-
gation neural network error).

where ai is the parameter for the input I, also wi as the 
output parameter of Layer 3.

• Layer 5: This layer is the sum of the outputs of each 
node from the 4th layer, which is calculated as follows 
in Eq. 18:

Multiple Linear Regression (MLR)

Multiple linear regression methods are based on statistical 
and mathematical calculations. These methods can be used 
to study the relationships between input variables and multi-
target variables. The mathematical definition of this model 
is as follows:

where the f (xi) is a secondary variable, xi ‘s are multiple 
Primary variables, ai are regression multipliers, and ε is a 
random error in the equation (Çamdevýren et al. 2005; Asadi 
et al. 2014).

Data collection and performance indicators

Data analysis

The Input dataset was sampled and collected for 175 months 
in the study area. This work used the primary dataset of 
the TDS, salinity, GWL, and EC parameters. After collect-
ing data, the K-Fold cross-validation method was used to 

(15)wi = �Di(x) × �Oi(x)

(16)wi =
wi∑m

j=1
wj

(17)wifi = wi(a0x0 + a1x1 + a2)

(18)
�
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∑
wifi

∑
wi

(19)f (xi) = a0 + a1x1 + a2x2 +⋯ + anxn + �
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randomize the data to improve the accuracy of the models. 
70% of the data were used in the training phase, and 30% 
were assigned for the testing phase.

Performance indicators

In the present study, to evaluate the accuracy of models, the 
statistical indices: Absolute mean error percent (MAPE), 
root means square error (RMSE), and coefficient of deter-
mination  (R2) are used as Eq. 20–22:

where Ii the input values, Oi output values, I the mean of 
observational values, and n the number of observational 
values.

Results and discussions

First, input values were entered for all models. Then EC, 
TDS, GWL, and Salinity parameters were considered out-
put variables. Moreover, the superior model was selected 
in each simulation phase for four output variables. Finally, 
after the simulation, the performance of each model is 

(20)
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��Oi − Ii

��
n

× 100

examined. In this study, models' performance was evalu-
ated by four different methods: performance evaluation 
with statistical indicators, performance evaluation by 
uncertainty analysis by Wilson Score Method (WSMUA), 
performance evaluation with response figures, perfor-
mance evaluation with discrepancy ratio charts, and error 
distribution diagrams (Figs. 2 and 3).
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Evaluation indicators

This section investigates the values of evaluation indicators 
for models performance in the output parameters simulation. 
In this study, statistical indicators MAPE, RMSE, and  R2 
have been used for evaluation.

According to Fig. 4 and Table 1, the best model in quan-
titative and qualitative water simulation were known, and 
bold fonts show the superior model in each output's simula-
tion. The SAELM in GWL and EC modeling, the LSSVM 
model in TDS simulation, and the MLR in salinity simula-
tion were determined as the best models and presented the 
most accurate results.

Wilson score method uncertainty analysis (WSMUA)

After simulation, to investigate the prediction error, the 
amount of uncertainty of models can be calculated, and the 
performance of models can be evaluated in estimating the 
targets. The present study performed uncertainty analysis by 
the WSMUA (Poursaeid et al. 2020; Bonakdari et al. 2020).

Computational parameters in this analysis are prediction 
error (∆i), mean error (Mean), and standard deviation of 
error values (Std), each of which is calculated according to 
Eq. 23–25. The results of the uncertainty analysis with a width 
of uncertainty band that denoted by the (WUB), with 95% con-
fidence bound (PEI 95%) was calculated. Also, based on the 
(Mean) values, if its sign is positive, the model will have an 

overestimation performance. If its mean error is negative, the 
model will have an underestimation performance.

(23)Δi = Oi − Ii
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Fig. 4  Models performance indices: MAPE  R2

Table 1  Models evaluation indices

*The bold fonts show the superior models

Parameter Model RMSE R2 MAPE

Salinity SAELM 24.3524 0.99980001 0.0811
LSSVM 0.0308 0.99980001 1.36E-04
ANFIS 50.7474 0.99980001 0.1282
MLR 5.00E-12 0.80464488 1.28E-14

EC SAELM 70.9114 0.99798102 1.4424
LSSVM 96.0246 0.99199608 1.5016
ANFIS 190.6713 0.969063048 2.6701
MLR 190.4244 0.967842764 2.86E + 00

TDS SAELM 418.1382 0.917917286 12.7324
LSSVM 66.473 0.9900648 1.6597
ANFIS 95.65 0.97495876 2.6226
MLR 97.6525 0.97223544 2.821

GWL SAELM 0.1496 0.98664489 0.0043
LSSVM 0.3775 0.91356752 0.0178
ANFIS 14.2444 0.67895456 8.392
MLR 0.6161 0.8156451 0.032
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In the above equations, Ii is the input values, Oi is the 
output values, and n is the number of observational samples. 
The results of the uncertainty analysis are shown in Table 2.

According to Table 2 results, the SAELM is the superior 
model in GWL simulation and had the Underestimation per-
formance. The performance of other models was Overesti-
mation, and the SAELM model was the most accurate with 
the minimum of average error equal to 0.0128.

Response and correlation figures

The models' output was illustrated and presented as response 
plots in this section. In addition, correlation plots also are 
displayed.

The proposed model had excellent performance in GWL 
simulation. Moreover, this model was more accurate than 
over models for simulating the EC parameters. The SAELM 
had the most accurate plots with the best correlation between 
observed_predicted values based on Fig. 5 diagrams (Figs. 6, 
7, 8 and 9).

Discrepancy ratio and error distribution

According to the mathematical definition of Discrepancy 
Ratio (DR) written in Eq. 26, according to this definition, the 
closeness of DR values to a horizontal line (DR = 1) shows 
the high accuracy of the simulation.

The diagram of the DR shows the high accuracy of the 
SAELM and the MLR models. The closeness of DR values 
for SAELM and MLR models to the DR line (DR = 1) shows 
the high accuracy of the mentioned models in GWL and 
salinity simulation. Additionally, Error percent is defined 
as Eq. 27.

(24)Mean =
1

n

∑n

i=1
Δi

(25)Std =

√∑n

i=1

(
Δi −Mean

)2
∕(n − 1)

(26)DR =

[
Valuepredicted

Valueobserved

]

According to the prediction results error in Fig. 10, 
The SAELM and MLR model has the most Error-percent 
(100%) in the range of less than 1%. Meanwhile, the 
LSSVM has the best accuracy in prediction in the next 
rank. The SAELM in EC simulation had the worst perfor-
mance with the most error percent in the range of greater 
than 2%.

Conclusions

This study collected sampling data related to 175 months 
for groundwater of Meghan Wetland located in Arak 
plain in Markazi province in Iran. The primary param-
eters of this study were sampling (t), (TDS), (EC), (Cl), 
(Salinity), and (GWL). Then, using three AI models and 
a mathematical model, water parameters modeling was 
performed. The proposed method in this article was the 
SAELM model. Other models are LSSVM, ANFIS, and 
the mathematical model is MLR. After analyzing the 
results, the performance of the models was evaluated 
with five approaches: Based on statistical indicators, the 
best results were recorded for models  SAELMGWL simula-
tion and  MLRsalinity, with the lowest value of RMSE and 
MAPE. Additionally, the mentioned models had the clos-
est  R2 values to 1.

Based on the response & correlation plots, the best 
performance was assigned to the  SAELMGWL model with 
better mapping of simulated values than observed values. 
Based on the results of the WSMUA, the  SAELMGWL 
model with a minimum mean error value equal to 0.0128 
was the best and most accurate model. According to the 
DR diagram, the  SAELMGWL and  MLRsalinity models 
had the highest concentration of output points near the 
DR = 1 line. Also, based on the error distribution percent-
age diagram, the best forecast accuracy was assigned to 
 SAELMGWL and  MLRsalinity models with the lowest error 
percent in the range of less than 1%.

(27)Error Percent =
||||
predicted − observed

observed

|||| × 100

Table 2  Models uncertainty analysis

Model WUB Average (∆i) Std 95% PEI Performance of models

Lower bound Upper bound

SAELM(GWL) 0.033 -0.0128 0.11535 -0.04665 0.02021 Underestimated
SAELM(EC) 9.0267 9311.883 9527.88 9302.8563 9320.9097 Overestimated
LSSVM(TDS) 15.0058 5248.172 5346.963 5233.1662 5263.1778 Overestimated
MLR(Salinity) 1.29E-12 53,897.167 57,759/64 53,897.167 53,897.167 Overestimated
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Fig. 5  Model performance in GWL simulation
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