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Abstract
The present paper attempts to reproduce the discharge coefficient (DC) of triangular side orifices by a new training approach 
entitled “Regularized Extreme Learning Machine (RELM).” To this end, all parameters influencing the DC of triangular 
side orifices are initially detected, and then six models are extended by them. For training the RELMs, about 70% of the 
laboratory measurements are implemented and the remaining (i.e., 30%) are utilized for testing them. In the next steps, the 
optimal hidden layer neurons number, the best activation function and the most accurate regularization parameter are chosen 
for the RELM model. As a result of a sensitivity analysis, we figure out that the most important RELM model simulates 
coefficient values with high exactness. The best RELM model estimates coefficients of discharge using all input factors. 
The efficiency of the best RELM model is compared with ELM, and it is demonstrated that the former has a lower error and 
better correlation with the experimental measurements. The error and uncertainty examinations are executed for the RELM 
and ELM models to indicate that RELM is noticeably stronger. At the final stage, an equation is proposed for computing this 
coefficient for triangular side orifices and a partial derivative sensitivity analysis is also carried out on it.

Keywords  Discharge coefficient · Triangular side orifices · Partial derivative sensitivity analysis · Regularized extreme 
learning machine · Simulation

Introduction

In general, side orifices are placed as a slot on main chan-
nel sidewalls to control the flow in irrigation systems, 
water treatment plants and flocculation units. Such orifices 
are utilized with various shapes such as square, rectangu-
lar, elliptical and triangular. The DC is probably the most 
important parameter for the design of side orifices. This 
parameter is affected by several variables which are hardly 
detected due to the existence of three-dimensional flows 
and high turbulence at the entrance of the side orifice. 
Therefore, many scientists have tried to understand the 
hydraulic behavior of such structures and their coefficient 
of discharge. For instance, the first researcher who evalu-
ated the pattern of spatial variable flows around divert 
structures was Carballada (1979). Next, Ramamurthy et al. 

(1986) and Ramamurthy et al. (1987) invented an analyti-
cal technique for the calculation of the flow rate of side 
orifices. They verified their findings with laboratory meas-
urements. They proved that the proposed analytical model 
suitably approximated discharge data. Then, Hussein et al. 
(2010) through an experiment measured the discharge of 
circular side orifices in different geometric and hydraulic 
conditions. They conducted 215 experiments to conclude 
several regression formulae for computing the coefficient. 
Their proposed relations measured the coefficient via the 
channel width, the side orifice diameter and the Froude 
number. Hussein et  al. (2011) through an experiment 
assessed the DC alongside the flow pattern of square side 
orifices. They executed 173 experiments and claimed that 
the DC extremely belongs to the Froude number, Reynolds 
number and geometric parameters. They came to the con-
clusion that the relations presented for circular side ori-
fices could be also used for square orifices. Hussein et al. 
(2016) experimentally and analytically investigated the 
hydraulic behavior of circular side orifices in submerged 
and free conditions. By analyzing the findings of their 
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experiment, they derived several relations to compute the 
coefficient and explained that the errors of these formulae 
for submerged and free conditions are 10 and 5%, sepa-
rately. Moreover, Vatankhah and Mirnia (2018) through an 
experimental study measured coefficients of discharge of 
triangular side orifices for various geometric and hydraulic 
conditions. These authors introduced parameters influenc-
ing the DC and suggested some equations for computing 
the coefficient of discharge. Recently, artificial intelligence 
(AI) models and learning machines have been success-
fully implemented for simulating and predicting the DC of 
divert structures. Such models are accurate, reliable tools 
for the simulation of the discharge capacity and the deter-
mination of the impact level of different variables on the 
coefficient of discharge. Furthermore, AI techniques are 
very fast that researchers can save a considerable amount 
of time and money. For instance, the gene expression pro-
gramming (GEP) approach has been successfully utilized 
for reproducing the DC of weirs (Ebtehaj et al. 2015a; 
Azimi et al. 2017a). Additionally, Khoshbin et al. (2016) 
and Azimi et al. (2017b) utilized hybrid neuro-fuzzy mod-
els to recreate the DC of weirs and side orifices. Via the 
group method of data handling technique, Ebtehaj et al. 
(2015b) forecasted the DC of square side orifices. Akh-
bari et al. (2017) managed to utilize radial base neural 
networks (RBNNs) for computing the DC of triangular-
shaped weirs. In addition, Azimi et al. (2017c) employed 
the extreme learning machine (ELM) model to identify 
factors influencing the DC of weirs placed in trapezoidal 
canals. Moreover, Azimi et al. (2019) managed to utilize 
the support vector regression (SVM) to reproduce the DC 
of side weirs in rectangular shape. These authors proposed 
models for calculating the coefficient of discharge. They 
also detected factors impacting the discharge capacity of 
flow divert structures. Bagherifar et al. (2020) modeled 
the flow field within a circular flume along a rectangular 
side weir by means of a computational fluid dynamics. 
The authors showed that the specific energy along the side 
weir predicted by this model was roughly constant, and 
the energy drop along the side weir was negligible. This 
means that the average difference between the upstream 
and downstream specific energy was estimated as 2.1%.

As discussed, the ELM model has also been used for 
computing the coefficient of discharge. In general, ELM 
is one of the best learning machines with great ability to 
estimate and simulate different problems. This learning 
machine has acceptable exactness and high learning speed 
despite its drawbacks (Azimi and Shiri 2021a, 2021b; Azimi 
et al. 2021). For example, if we intend to gain the best out-
comes, the input variables of ELM ought to be dimension-
less. Moreover, this model does not include a regularization 
parameter, which negatively affects the performance of this 
model during the simulation process, and the phenomenon 

of overfitting may occur for the ELM model. To address 
this restriction, Deng et al. (2009) suggested the regularized 
extreme learning machine (RELM) model.

Therefore, in this study, as the first time, the new RELM 
is adopted to recreate the DC of triangular side orifices situ-
ated inside rectangular canals. To this end, factors impacting 
the DC should be initially introduced. Then, the experimen-
tal measurements are classified into two categories including 
train and test. After that, the hidden layer neurons number 
(HLNN), the activation function and also the regularization 
parameter for the RELM model are chosen through a trial-
and-error process. Then, six RELM models are developed 
and by executing a comprehensive sensitivity analysis, the 
best RELM model and the most influencing variable on the 
DC are identified and introduced. It ought to be noticed that 
the RELM performance is also contrasted with the ELM. 
For practical work, an equation is suggested for computing 
the DC of side weirs.

Methodology

To train the single-layer feed-forward neural network, the 
extreme learning machine (ELM) is presented. This method 
is provided for the first time by Huang et al. (2006). Due 
to its high learning speed and reasonable generalizability 
compared to classical learning algorithms such as back-
propagation, this algorithm has recently gained many water 
scientists’ attention (Azimi et al. 2017c; Azimi and Shiri 
2020a; Azimi and Shiri 2020b; Ebtehaj et al. 2019). Some 
of the advantages of the ELM method are: (i) low compu-
tational cost, (ii) low adjustable parameter, (iii) high gen-
eralization performance and scalability, and (iv) proficient 
approximation of the unknown functions. In modeling by 
the ELM algorithm, two matrices comprising input weights 
and the bias of hidden neurons are initialized in a random 
way; therefore, through the model training process only 
first matrix is approximated. In fact, a nonlinear problem 
becomes linear via in this method. Thus, the modeling speed 
of this approach is very fast. Prior to start modeling using 
the ELM, it is important to determine the type of the activa-
tion function (AF) and the HLNN. There are different AFs 
such as hyperbolic tangent, triangular basis, radial basis, 
hard limit, sigmoid, and sine. It is recommended to set the 
minimum HLNN equal to one and calculate the maximum 
by the following equation (Azimi and Shiri 2021c):

where MNHN represents the maximum HLNN, N denotes the 
number of samples considered for training the model and ln 
denotes the number of input variables of the problem. In fact, 

(1)MNHN ≤
N

In + 2
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using this equation leads to the provision of a model with 
reasonable generalizability so that the model performance 
in dealing with data not involving model training is almost 
similar to the training mode. In fact, considering MNHN more 
than the allowable value in the above relation leads to over-
fitting. In addition to the advantages described for ELM, this 
method has restrictions, which its weak performance in the 
presence of outliers is the most important drawback. In fact, 
due to the lack of heteroscedasticity observed in most real-
world problems, the ELM performance in modeling data 
associated with outliers is significantly reduced. Therefore, 
in this study, this issue is addressed by providing the regu-
larized ELM (RELM) method. First, the basic principles of 
ELM are presented, and then mathematical equations related 
to each developed method are presented.

Original ELM

Figure 1 depicts the general form of the ELM. It is clear that 
this model consists of three layers: input, hidden and output. 
Moreover, the number of neurons existing in the input layer 
is the same as problem inputs, while this number for neurons 
of the output layer is equal to problem outputs as shown 
in the figure with one output. The connection of the hid-
den layer and the input layer is formed using input weights. 
Additionally, the output of the hidden layer is also computed 
by using the input weights and biases of the hidden layer 
so that by having the value of these two matrices that are 
determined randomly and using the desired activation func-
tion, a matrix named “output matrix of the hidden layer” 
is calculated. So, having this matrix and samples utilized 

for model training, the output weight matrix is calculated 
through the process of solving a linear system.

Consider a problem with one output and N samples for 
training the model ({(xi, yi)}Ni=1) whose inputs are xi ∈ Rn 
and the corresponding outputs are yi ∈ R . If the HLNN is 
assumed to be L and g(x) is used as the AF, the mathematical 
form of the ELM method for creating a relationship between 
input and output parameters is explained as follows (Azimi 
and Shiri 2021c):

In this equation, xi denotes the input variables of the 
problem and yi represents the output corresponding to 
inputs. Moreover, the parameter bi represents the ith 
bias of the hidden layer. It should be stated that all hid-
den layer biases are randomly initialized. In addition to 
biases,�i =

[
wi1,wi2, ...,win

]T which is known as the input 
weight is also initialized randomly. Also, g(.) and βi sepa-
rately are the AF and the output weight vector. In addition, 
N and L are the numbers of training samples and hidden 
layer neurons, individually. It is worth mentioning that 
�i ⋅ �j denotes the internal multiplication of �i and �j . Now, 
if Eq. (2) is rewritten as a matrix, the following relation is 
yielded (Azimi and Shiri 2021c):

where 

The matrix presented for defining H is known as the out-
put matrix of the hidden layer and depends on the activation 
function, problem inputs and matrices of the input weight 
and biases of the hidden layer. Due to the fact that these two 
matrices are chosen randomly, this matrix is also obtained in 
the same way. Therefore, the value of this matrix is specified 
prior to the modeling start. In addition, we have the matrix 
y comprising the corresponding values to input variables 
for all training samples. So, the only unknown matrix is the 
output weight (β) which is computed through the training 
process. Equation (2) seems simple to solve; however, as 
the matrix H is generally a non-square matrix, solving this 
relation comes with hardships. The simplest way to yield 

(2)
L∑
i=1

�ig(�i ⋅ �j + bi) = yj, j = 1, 2, ..,N

(3)�� = �

(4)

�(�1, ...,�L, �1, ..., �N , �1, ..., bL, )

=
⎡

⎢

⎢

⎣

g(�1 ⋅ �1 + b1) ⋯ g(�L ⋅ �1 + bL)
⋮ ⋱ ⋮

g(�1 ⋅ �N + b1) ⋯ g(�L ⋅ �N + bL)

⎤

⎥

⎥

⎦N×L

(5)� = [y1, ..., yN]
T

(6)� = [�1, ..., �L]
T

Fig. 1   Structure of ELM
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the output weight matrix is to calculate the optimal value of 
least squares 𝛽  by minimizing the loss function as (Azimi 
and Shiri 2021c):

The optimal response of the above formula is expressed 
in the following form:

where H+ denotes the Moore–Penrose generalized inverse 
of the matrix H (Rao and Mitra 1971). Given the restrictions 
set for the maximum HLNN (Eq. 1), the HLNN is generally 
less than the number of training samples; thus, 𝛽  is com-
puted by the following relationship:

RELM

Based on the structure defined for ELM, the only matrix 
determined via the training procedure is the output weight 
matrix. This matrix is computed in such a way that the train-
ing error has the least possible value. However, the mini-
mization of the training error sometimes can decrease the 
generalizability of the developed model so that the proposed 
model might be weakened in the estimation of samples not 
involving in the model training. In the single-layer feed-
forward neural network, the highest generalizability occurs 
once the norm of weights and training error are minimized 
simultaneously (Bartlett 1997). Thus, in this study, the regu-
larization parameter (C) is defined to increase the generaliz-
ability of the developed model. Due to the fact that the main 
difference between the developed method and the original 
ELM is in the use of regularization parameter, this technique 
is called regularization ELM (RELM). The regularization 
parameter is used to modify the loss function provided for 
ELM to minimize the norm of weights and the training blun-
der simultaneously. The modified function is expressed as:

The basic structure of the above equation is similar to 
Eq. (7), with the difference that the norm of weights (sec-
ond term) is added to it and the regularization parameter is 
incorporated into the first term. The relation can be rewritten 
as follows:

(7)EELM = min ‖� −��‖

(8)𝛽 = �+�

(9)𝛽 = (�T�)−1�T�

(10)ERELM = min
�

C‖� −��‖2
2
+ ‖�‖2

2

(11)ERELM = min
�

C‖�‖2
2
+ ‖�‖2

2
subjected to � −�� = e

By defining the corresponding Lagrangian as Eq. (12), 
the optimal response of Eq. (11) is presented as Eq. (13) 
(Tabak and Kuo 1971):

where λ is the Lagrangian multiplier matrix, � = [e1, .., eN]
T 

is the training error, and N represents the number of training 
samples. Based on the previous equation, output weights are 
yielded as

where I is the unit matrix. It is obvious that neurons exist 
in the hidden layer are fewer than training samples (condi-
tion presented in Eq. (1)). However, if for any reason this 
condition is not met, the output weight is calculated in the 
following way:

The flowchart of the RELM method is presented in Fig. 2.

Physical model

In this step, the experimental model utilized in this paper 
is introduced. In addition, the experimental measurements 
recorded by Vatankhah and Mirnia (2018) are employed 
to validate the outcomes of the numerical models. In the 
current study, the experimental measurements reported by 
Vatankhah and Mirnia (2018) were used since this dataset 
was quite new (2018) and comprehensive. Their model is 
composed of a rectangular-shaped canal equipped by a tri-
angular side weir placed on the sidewall. The main channel 
is assumed to be 12 m in length, 0.25 m in width, and 0.5 m 
in height. To measure and control the flow in the rectangular 
channel, a tailgate is implemented at the end of the channel 
and a stilling tank is installed to mitigate the flow and avoid 
turbulence. Moreover, they employed side orifices with dif-
ferent shapes to examine various geometric conditions. All 
side orifices were made of Plexiglas sheets with a thickness 
of 0.01 m, while the crest thickness of triangular orifices was 
about 1 mm. Figure 3 illustrates a channel with side orifices 
in different shapes.

(12)L(�, �, �) = C‖�‖2
2
+ ‖�‖2

2
+ �T (� −�� − �)

(13)

⎧
⎪⎪⎨⎪⎪⎩

�L

��
= 0 ⇒ 2� −�T� = 0

�L

��
= 0 ⇒ 2C� − � = 0

�L

��
= 0 ⇒ � −�� − � = 0

(14)𝛽 =
(
�T� +

�

C

)−1

�T�

(15)𝛽 = �T
(
��T +

�

C

)−1

�
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DC of triangular side orifice

Vatankhah and Mirnia (2018) demonstrated that the DC of 
triangular side orifices 

(
Cd

)
 can be interpreted as a function 

of the triangular orifice length (L), side orifice height (H), 
orifice crest height (W), main channel width (B), flow depth 
upstream the triangular side orifice 

(
y1
)
 , flow velocity inside 

the main channel upstream the triangular side orifice 
(
V1

)
 , 

Fig. 2   Flowchart of RELM
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gravitational acceleration (g), water surface tension (�) , 
water viscosity (�) , and water density (�):

They proved that Eq. (1) is expressed as a function of the 
following dimensionless groups:

Vatankhah and Mirnia (2018) asserted that the Reynolds 
number 

(
Re =

�V1L

�

)
 and the Weber number 

(
We =

�V2L

�

)
 

have no noticeable impact on the DC of triangular side ori-
fices. Thus, Eq. (17) is expressed as

Therefore, the parameters introduced in the above equa-
tion are used for the development of the RELM models. In 
Fig. 4, the RELM 1 to RELM 6 models alongside the com-
binations of the input parameters are shown.

Goodness of fit

To test the precision of the presented RELM models, dif-
ferent statistical indices such as the correlation coefficient 
(R), variance accounted for (VAF), root-mean-square error 
(RMSE), BIAS, mean absolute relative error (MARE), and 
Nash–Sutcliffe efficiency (NSC) are utilized (Azimi and 
Shiri 2021b).

(16)Cd = f1
(
L,H,W,B, y1,V1, g, �,�, �

)

(17)

Cd = f2

�
W

H
,
B

L
,
B

H
,
y1

H
,F1 =

V1√
gy1

, Re =
�V1L

�
,We =

�V2L

�

�

(18)Cd = f2

(
W

H
,
B

L
,
B

H
,
y1

H
,F1

)

(19)R =

∑n

i=1

�
Fi − F

��
Oi − O

�
�∑n

i=1

�
Fi − F

�2 ∑n

i=1

�
Oi − O

�2

(20)VAF =

(
1 −

var
(
Fi − Oi

)

var
(
Fi

)
)

× 100

(21)RMSE =

√
1

n

∑n

i=1

(
Fi − Oi

)2

(22)BIAS =
1

n

n∑
i=1

||Fi − Oi
||

(23)MARE =
1

n

n∑
i=1

||||
Fi − Oi

Oi

||||

Fig. 3   Layout of experimental model used in study

Fig. 4   RELM 1 to RELM 6 models and combinations of different 
input variables
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where Oi denotes the observed data, Fi represents the data 
forecasted via numerical models,O represents the average 
of observed data, and n denotes the number of observed 
data. In the current study, the dataset was divided into two 
major subsamples, the training and testing datasets. In the 
first round, 50% of the data were utilized for testing and 
50% of the rest for testing. In the next round, 60% of the 
data were applied for training, while 40% of the remaining 
were considered for testing. This procedure was repeated 
for other ratios comprising 70% for training vs. 30% for 
testing, and finally 80% for training against 20% for test-
ing. Analyses showed that the machine learning models had 

(24)NSE = 1 −

n∑
i=1

�
Oi − Fi

�2

n∑
i=1

�
Oi − O

�2

better performance when 70% of data were employed for the 
training and 30% of the rest for testing.

Results and discussion

Neurons of hidden layer

First, the HLNN is examined. It should be reminded that by 
increasing the HLNN, the exactness of RELM increases; 
however, the computational time significantly increases. In 
Fig. 5, the changes in the HLNN of the RELM model versus 
the computed statistical indices are depicted. In the current 
study, one hidden layer neuron is considered for the model 
in the beginning. For the model with one neuron in its hid-
den layer, R, MARE, and BIAS, respectively, are yielded to 
be 0.953, 0.011, and 0.004. Next, the HLNN increases to 
12. As shown, the model with two neurons within the hid-
den layer demonstrates the lowest accuracy and the poorest 

Fig. 5   Changes of HLNN versus different statistical indices
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performance. Moreover, for this model, RMSE, BIAS, and 
NSE are computed to be 0.009, 0.0002, and 0.803, sepa-
rately. Regarding the results yielded from the sensitivity 
analysis executed on hidden layer neurons, the outcomes 
of the models with more than 9 neurons within their hid-
den layer have no significant changes. Thus, this value is 
chosen for the HLNN. It implies that for the RELM model, 
HLNN = 9, NSC, VAF, and R, respectively, are estimated to 
be 0.976, 98.930, and 0.995.

Thus, in the present study, 9 neurons are incorporated 
within the RELM hidden layer. The scatter plot of RELM 
with 9 hidden layer neurons is shown in Fig. 6. As displayed, 
the model displays a good correlation with the observed 
measurements and predicts coefficients of discharge with 
the highest exactness and the least error.

Activation function

The RELM model has six AFs including triangle basis 
(tribas), tangent hyperbolic (tanh), radial basis (radbas), hard 
limit (hardlim), sinusoidal (sin), and sigmoid (sig) whose 
efficiencies are studied in this part. In Fig. 7, the results of 
such activation functions are depicted. Among all activa-
tion functions, hardlim showed the weakest performance. 
In addition, R, MARE, and BIAS for this function are equal 
to 0.589, 0.039, and 0.017, separately. By contrast, sig has 
the highest accuracy among these functions so that MARE, 
RMSE, and VAF are computed for this function to be 0.007, 
0.005, and 97.178, respectively. In general, the function sig 
produces better values in the range between zero and one 
using the curve provided by the function. Thus, this function 
acts better than step functions.

As discussed, the function sig owns the highest exactness 
and correlation with the observed measurements. The results 
of the coefficients of discharge recreated by sig are shown 
in Fig. 8. In the next steps, the activation function sig is 
employed for forecasting the DCs of triangular side orifices 
by the RELM model.

Regularization parameter (C)

One of the most important features of RELM is the imple-
mentation of the regularization parameter (C). The proper 
selection of the regularization parameter value notice-
ably enhances the RELM efficiency. For the regulariza-
tion parameter of the RELM, six different values are cho-
sen. Once C = 1, RELM has lower accuracy so that VAF, 
NSC, and R, respectively, are achieved to be 64.937, 0.012, 
and 0.843. By contrast, in the situation where C = 0.0001, 
the RELM demonstrates its best performance in terms of 
accuracy and correlation. It means that for the RELM with 
C = 0.0001, MARE and R are yielded 0.005 and 0.995, sep-
arately. The statistical indices estimated for regularization 
parameters are displayed in Fig. 9.

In the developed machine learning model, the optimized 
value of regularization parameter (C) was tuned as 0.0001 
because the RELM demonstrated a good performance to 
predict the target parameter.

As shown, once C = 0.0001, the RELM model displays 
its best performance. Moreover, for this model, BIAS, VAF, 
and NSE for this model are yielded to be -0.003, 98.930, and 
0.976, individually. The outcomes of the coefficients of dis-
charge for the model with C = 0.0001 are shown in Fig. 10.

RELM models

In this step, the introduced RELM models are examined. The 
comparison of the performances of the RELM 1 to RELM 
6 models is displayed in Fig. 11. It ought to be noticed that 
the RELM1 model estimates the coefficients of discharge of 
triangular side orifices using all input parameters. It means 
that the factors W∕H,B∕L,B∕H,H∕y1,F1 are chosen as 
the inputs. Compared to the other RELM models, RELM 
1 shows the lowest error and the highest correlation. For 
instance, for RELM1, R, MARE, and NSE, respectively, are 
calculated to be 0.995, 0.005, and 0.976. Next, the impact of 
each input is removed and RELM 2 to RELM 6 are devel-
oped. For RELM 2, the impacts of the Froude number are 
not taken into accounts and this model simulates the DC 
of triangular side orifices using the input factors such as 
W∕H,B∕L,B∕H,H∕y1 . It should be considered that RELM2 
shows the worst performance among all RELM models. For 
example, RMSE, MARE, and NSC for RELM2 are yielded 
to be 0.014, 0.021, and 0.224, separately.

Fig. 6   Scatter plot for RELM with HLNN = 9
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For RELM 3, the impact of the parameter H∕y1 is 
neglected and the model computes the target function in 
terms of W∕H,B∕L,B∕H,F1 . For RELM3, RMSE, BIAS, 
and R, respectively, are equal to 0.005, − 0.001, and 0.980. 
Moreover, for RELM4, NSC, VAF, and MARE are achieved 
to be 0.862, 86.317, and 0.017, respectively. It ought to be 
noticed that RELM4 forecasts the DCs via parameters such 
as W∕H,B∕L,H∕y1,F1 and eliminates the impact of the 
dimensionless parameter B∕H . It ought to be noticed that 
for RELM5 the impacts of the input factor B∕L are neglected 
and other variables such as W∕H,B∕H,H∕y1,F1 are selected 
as the inputs of this model. Also, NSC, MARE, and BIAS for 
RELM5 individually are equal to 0.108, 0.067, and 0.037. 
Furthermore, for RELM6, VAF, RMSE, and R, respectively, 
are achieved to be 85.049, 0.010, and 0.923. It ought to be 
noticed that that RELM6 forecasts the coefficients of dis-
charge by means of the factors B∕L,B∕H,H∕y1,F1 and 
eliminates the impact of W∕H.

Fig. 7   Different statistical indices for RELM AFs

Fig. 8   Scatter plot of activation function sig
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The RELM 1 model was the best machine learning model 
in this study because RELM 1 had the highest level of pre-
cision and correlation in comparison with other machine 
learning models.

As discussed, RELM 1 has the best performance 
among all RELMs. The comparison of the DCs predicted 
by RELM1 with the observed data is depicted in Fig. 12. 
RELM 1 displays the lowest blunder and the highest cor-
relation. After RELM 1, other models such as RELM 3, 
RELM 4, RELM 5, and RELM 6, respectively, are chosen 
as the second, third, fourth, fifth, and sixth best models. By 
contrast, RELM 2 is identified as the sixth or the worst AI 
model of the present study in estimating the coefficient of 
discharge. According to the outcomes, the Froude number is 
considered as the most impacting input variable, because by 
eliminating this variable, the modeling accuracy is signifi-
cantly declined. Also, other parameters such as W∕H , B∕L , 
B∕H , and H∕y1 are considered as the second, third, fourth, 
and fifth influencing variables, separately.

Fig. 9   Different statistical indices estimated for different regularization parameters

Fig. 10   Scatter plot for regularization parameter equal to 0.0001
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Comparison between RELM and ELM

This section attempts to compare the performances of the 
RELMs and ELMs in estimating the DC of triangular side 
orifices. In Table 1, the statistical indices computed for 
these two AI models are listed. According to the simula-
tion results, RELM showed higher efficiency than ELM. As 
an example, VAF, NSE, and BIAS for ELM separately are 
obtained to be 89.019, 0.885, and 0.006. However, other 
indices such as RMSE, R, and MARE for ELM are estimated 
to be 0.010, 0.982, and 0.016, individually.

Therefore, the RELM model has higher correlation and 
less error compared to the ELM model. The comparison of 
the DCs reproduced by RELM and ELM with the experi-
mental measurements is illustrated in Fig. 13. In the follow-
ing, further examination is done on the performances of the 
RELMs and ELMs.

Now, an error examination is performed for the RELMs 
and ELMs. Figure 14 depicts the error analysis results for 

Fig. 11   Values of statistical indices for RELM1 to RELM6

Fig. 12   Scatter plot for RELM1
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these two models. Based on the corresponding results, 
the vast majority of the outcomes achieved by the RELM 
model have an error of less than 2% (i.e., 84% of the RELM 
results), while this percentage for ELM is equal to 67%. 
Moreover, about a third of the ELM model outcomes dis-
play an error between 2 and 5%; however, this percentage is 
calculated to be approximately 14% for the RELM model. 
Approximately 2 and 3% of the coefficients of discharge 

recreated using the RELM and ELM models have an error 
of more than 5%, respectively.

The uncertainty analysis (UA) is one of the best tools 
for specifying the efficiency of numerical models. Using 
this analysis, error values can be interpreted properly 
(Azimi and Shiri 2020a). Table 2 lists the UA results for 
RELM and ELM. According to Table 2, the RELM model 
demonstrates an underestimated performance for the simu-
lation of the DCs of triangular side orifices, while the ELM 

Table1   Comparison of RELMs 
and ELMs

Model R VAF RMSE MARE BIAS NSE

RELM 0.995 98.930 0.003 0.005 –0.003 0.976
ELM 0.982 89.019 0.010 0.016 0.006 0.885

Fig. 13   Comparison of coef-
ficients of discharge simulated 
by RELM and ELM

Fig. 14   Error analysis outcomes 
for RELMs and ELMs
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demonstrates an overestimated performance for predicting 
the coefficients. It should be noted that the uncertainty 
bandwidth of the RELM model is much narrower than the 
uncertainty band of the ELM model (approximately three 
times narrower). In other words, the uncertainty band val-
ues for the ELMs and RELMs, respectively, are yielded to 
be ± 0.0011 and ± 0.00035.

The superior RELM model

According to the findings of the present research, RELM1 
is specified as the most successful model for simulating the 
DC of triangular side orifices. It ought to be noticed that 
RELM1 reproduces the DCs in terms of all input variables. 
The general expression of the formula obtained from the 
RELM is as follows:

where
InW = matrices of input weights.
InV = input variables.
BHN = bias of hidden neurons.
OutW = matrices of output weights.
The matrices of RELM1 are presented as

(25)Cd =

[
1

(1 + exp (InW × InV + BHN))

]T
× OutW

(26)InV =

⎡
⎢⎢⎢⎢⎢⎣

W∕H

B∕L

B∕H

H∕y1
F1

⎤⎥⎥⎥⎥⎥⎦

(27)BHN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3548

0.3036

0.1627

−0.2202

−0.4865

−0.4437

0.2869

0.0362

−0.4354

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

InW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0918 −0.5653 0.2762 −0.2999 −0.0988

0.1848 0.2208 0.4795 −0.0270 0.3259

−0.1488 −0.0752 0.3683 −0.4585 0.0602

0.3847 0.1675 −0.3718 0.2252 0.2741

−0.1717 0.6127 −0.0885 −0.4988 −0.2484

0.5988 0.3706 0.3086 −0.0805 −0.1549

0.0367 0.0290 0.4558 0.3487 0.3001

−0.0582 0.0500 0.2722 0.4665 −0.7552

0.6280 −0.2858 −0.1863 −0.2316 −0.2429

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

OutW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.8312

14.3517

−8.0767

−2.7308

1.5018

−3.3035

−6.8588

0.6647

0.1774

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this step, a partial derivative sensitivity analysis 
(PDSA) is done for the best model. The PSDA is a use-
ful tool for evaluating the effectiveness of each input vari-
able of the target function value, which in this research is 
the DC side orifices with triangular shape (Azimi and Shiri 
2020b). Moreover, the positive indication of the PDSA 
implies increasing impacts of the input parameters on the 
coefficient of discharge, while the negative sign uncovers 
that the impact is diminishing. In other words, the relative 
derivative of each input variable is computed relative to the 
target function (Azimi et al. 2017a). The PSDA findings 
for the best model (i.e., RELM 1) are shown in Fig. 15. As 
discussed, RELM 1 predicts the coefficients of discharge via 
the inputs W∕H,B∕L,B∕H,H∕y1,F1 . Based on the findings, 
all the PSDA values for the parameters W∕H,B∕L , and F1 
are negative. Moreover, for the other input parameters such 
as B∕H,H∕y1 part of the PSDA results are positive and the 
remaining are yielded negatively.

Conclusion

Basically, the DC is the most effective variable for the design 
of a side orifice. In the present paper, as the first time, a 
new training approach entitled “Regularized Extreme Learn-
ing Machine (RELM)” was utilized for reproducing the DC 
of triangular-shaped side orifices. To do this, six different 
RELM models including RELM 1 to RELM 6 were devel-
oped using the variables impacting triangular side orifices. 
After that, the laboratory measurements were classified into 
two categories including training (70%) and testing (30%). 
The most highlighted outcomes of this paper are as follows:

Table 2   Uncertainty analysis 
results for RELMs and ELMs

Model Mean prediction 
error

Standard deviation of 
prediction error

95% prediction error interval Uncer-
tainty 
bandwidth

ELM 0.0063 0.0074 (0.0052, 0.0074)  ± 0.0011
RELM –0.0026 0.0023 (–0.00297, 0.00227)  ± 0.00035
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Fig. 15   PDSA results for RELM1
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•	 The most optimal HLNN was chosen to be 9 through a 
trial-and-error procedure. RMSE, MARE, and VAF for 
the RELM HLNN = 9 hidden layer were obtained to be 
0.003, 0.005, and 98.930, individually.

•	 The function sigmoid was taken into account as the best 
activation function of the RELM model for recreating 
the coefficients of discharge. For this activation func-
tion, R and NSE, respectively, were approximated to be 
0.986 and 0.953.

•	 Seven different values were considered for the regu-
larization parameter (C). It was observed that when 
C = 0.0001, RELM demonstrated its best performance. 
In addition, the estimations of MARE and BIAS for the 
regularization parameter were yielded to be 0.005 and 
-0.003, separately.

•	 Among all RELM models, RELM1 as the best one pre-
dicted the DCs of triangular side orifices via the inputs 
W∕H,B∕L,B∕H,H∕y1,F1 . This model displayed an 
acceptable performance, and R and RMSE for it were 
computed to be 0.995 and 0.003, individually.

•	 The RELM findings were contrasted with the ELM to 
emphasize the superiority of the former. For instance, 
about 86% of the DC recreated by RELM had an error 
of less than 2%. However, this percentage for ELM was 
about 67%.

•	 The RELM model estimated the coefficients of dis-
charge with an underestimated performance, while the 
ELM performance was assessed overestimated.

•	 A RELM-based formula was ultimately put forward 
for the estimation of the DC of triangular side orifices. 
Furthermore, a partial derivative sensitivity analysis 
was conducted on the proposed formula.

For the future works, other machine learning methods 
and optimization algorithms can be used to simulate the 
discharge coefficient of side weirs.
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