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Abstract
As the groundwater quantitative monitoring aimed to determine the factors affecting the aquifer behavior plays an important 
role in its regional management, studying the temporal and spatial groundwater level variations requires a comprehensive 
monitoring network. Effort has been made in this study to introduce a new linked simulation–optimization method, named 
MLPG-TLBO to quantitatively monitor the Birjand aquifer and determine the optimal points for piezometers. This model 
uses meshless local Petrov Galerkin (MLPF) method in the simulation part and teaching–learning-based optimization (TLBO) 
method in the optimization part. The objective function, in this study, is to minimize the difference between the groundwater 
level observed in piezometers and obtained computationally by the model. Since this coupled model is independent from the 
meshing, it eliminates the mesh-dependent shortcomings and, hence, yields more accurate results. It has been calibrated and 
validated in previous Birjand area studies and has led to acceptable results. By implementing the model in Birjand aquifer, 
the optimal positions of ten piezometers were determined mostly in areas where the density of the extraction wells was lower. 
Finally, the RMSE of both MLPG-TLBO and FDM was obtained to be 0.334 m and 1.483 m for 10 optimal piezometers. 
The RMSE value for MLPG-TLBO has shown a 0.423 m reduction compared to its previous value. This difference is quite 
meaningful as it shows good performance of this method in designing an optimal network for the aquifer.
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Introduction

The hydrometric monitoring network plays an important role 
in the planning and management of water resources and its 
design for the groundwater aquifer can either be qualitative 
or quantitative, but this does not mean that they do not do 
each other’s duty; it rather shows that their design meth-
ods change according to the users’ objectives. Therefore, 
in a monitoring network proportionate to the aquifer condi-
tions, the concepts of protection and maintenance, as well 
as the development and updating to receive highly uncertain 

hydrometric information, will be very important (Mishara 
and Coulibaly 2009).

The hydrogeological modeling methods of the ground-
water monitoring are either statistical or probabilistic, both 
of which require the access to sufficient information on the 
quantitative and qualitative status of the aquifer for optimal 
management (Mohtashami et al. 2017). The groundwater 
level study/evaluation through the existing models facilitates 
the behavior prediction of groundwater resources. Since the 
groundwater monitoring network design is an optimization 
issue requiring high computation costs, it should provide 
the best results with the least number of observation wells.

Studies on the quantitative and qualitative design of 
the aquifer monitoring network are numerous. Using the 
genetic algorithm, Cieniawski et al. (1995) determined the 
location of groundwater monitoring wells to examine such 
objectives as the maximum reliability and minimum con-
taminated areas in the initial diagnoses. They considered 162 
monitoring-well positions, evaluated the Pareto front values 
for 4 and 5, and showed that the reliability was 48–90% 
and contamination was 3.5–14.5 hectares based on the 
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considered conditions and results (Cieniawski et al. 1995). 
In a study performed in the California National Laboratory 
for groundwater quality monitoring, Kollat et al. (2011) used 
the NSGAII algorithm aimed to reduce the contaminant 
concentration estimation errors, contamination load esti-
mation errors and costs caused by the leakage of the PCE 
contaminant from an underground tank (Kollat et al. 2011). 
There were 29 wells in the flow path, and the Pareto front 
was obtained for 18 to 25 monitoring wells. They showed 
that the algorithm was able, in all the considered cases, to 
provide different options for the location of monitoring 
wells in accordance with the objective functions. To opti-
mally design the groundwater quality monitoring network 
and show spatiotemporal densities, Dhar and Patil (2012) 
used the non-dominated sorting multi-objective genetic 
optimization algorithm and the conventional fuzzy Kriging 
method to determine the minimum number of piezomet-
ric wells in a real Aquifer of India (Dhar and Patil 2012). 
Aboutalebi et al. (2017) used the NSGAII algorithm for the 
optimal design of monitoring networks in river-reservoir 
systems and minimized the average contaminant detection 
time and concentration prediction error at sampling stations 
using the multi-objective optimization method (Aboutalebi 
et al. 2017). Aiming at reducing the number of piezometers 
without affecting the data quality and using KGA (Krig-
ing-combined genetic algorithm) and PSO (particle swarm 
optimization) algorithms, Khorramdel and Kekhaei (2016) 
studied the Astaneh-Kuchesfahan aquifer in the north of Iran 
to optimize the monitoring network. They showed, through 
the results, that the number of observation wells in this aqui-
fer could reduce by 26% without any losses in the data qual-
ity (Khorramdel and Kekhaei 2016). Aiming at minimizing 
the number of piezometric wells and estimation error, Mir-
zaei Nodooshan et al. (2016) used the NSGAII algorithm 
to locate piezometric wells and introduced 311 points in 
Eshtehard aquifer to the NSGAII algorithm as potential 
points for which the observational groundwater levels were 
interpolated using real piezometers and interpolation tools 
in the GIS environment. Locating was done by the NSGAII 
algorithm and the decision variable was the piezometric 
wells (Mirzaei Nodooshan et al. 2016). Mirzaei Nodooshan 
et al. (2019) presented an optimization-based method for 
the network design of the groundwater level monitoring 
and used it for the Eshteharud plain aquifer. Scenarios they 
considered to optimize the position of observational wells 
were: (1) Selecting optimum number of wells from among 
those in the study area and (2) Adding optimum number 
of monitoring wells to the existing ones. Results showed 
that their method could omit a number of extra wells in an 
existing monitoring network with acceptable accuracy or 
add some if it lacked any (Mirzaei Nodooshan et al. 2019). 
To monitor the Gilan plain aquifer qualitatively, Janatros-
tami and Salahi (2020) used the GA optimization method 

and showed that it was acceptable based on the calculated 
error criteria. Since the spatial distribution studies and com-
parison of the average observed regional salinity with that 
calculated in the optimal network (covering all selected 
monitoring wells) showed that the calculated values were 
larger than the observed average, the network provided the 
optimal data of the groundwater quality in more polluted 
areas (Janatrostami and Salahi 2020). Temur (2021) used the 
hybrid TLBO algorithm for Optimum design of cantilever 
retaining walls under seismic loads. The robust results were 
obtained by HTLBO with 50 populations. Consequently, the 
results showed that the hybrid TLBO algorithm optimized 
the implementation cost of RC cantilever retaining walls 
well (Temur 2021). Recently, various researchers have used 
combined optimization algorithms to overcome computa-
tional complexity. Veladi and Beig Zali (2021), to optimally 
design single-layer dome structures, used the hybrid TLBO 
algorithm. The analysis results during this comparative 
process indicate that the hybrid TLBO algorithm provides 
a better and simpler design in less time than the standard 
algorithms (Veladi and Beig Zali 2021).

A literature review reveals that research that combines 
numerical and optimization models to design a monitor-
ing network is rare. Numerical models simulate the desired 
phenomenon with great accuracy and predict and simu-
late its behavior through the provided input information 
(Khorashadizadeh et al. 2020). Those used in the ground-
water domain are summarized in the finite difference and 
finite element methods, which form the basis for GMS and 
FEFLOW, respectively (Majidi Khalilabad et al. 2021). Use 
is recently made, in this domain, of new meshless numeri-
cal methods that can be improved by the user-required pos-
sibilities besides being more accurate and capable than 
their predecessors due to their being open-source (Liu and 
Gu 2001). Meshless methods have a wide range including 
the “smoothed-particle hydrodynamics (SPH),” “element-
free Galerkin (EFG),” “meshless local Petrov–Galerkin 
(MLPG),” and so on. As choosing a method depends on 
its application, it is better to use specific methods in fluid-
related problems.

The aim of this study is to use a numerical and an opti-
mization model together to design a monitoring network 
optimally. The MLPG numerical method and the TLBO 
(training-learning-based optimization) algorithm were 
linked together recognized as simulation and optimization 
models to develop a simulation–optimization model for the 
design of an optimal monitoring network on Birjand aquifer 
in South Khorasan province.
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Materials and methods

Case study

Birjand aquifer, in South Khorasan province, is 269  km2 
in area containing 190 extraction wells and 10 piezometric 
wells. It is 1491 m above the sea level with an annual rainfall 
of 160 mm and is known as a dry-climate region according 
to the Domarton classification. Figure 1 shows the location 

of the aquifer, extraction wells (blue) and piezometric wells 
(red) (Khorashadizadeh et al. 2016 and 2018).

Teaching–learning‑based optimization method

Rao et al. (2011) were the first to introduce the TLBO algo-
rithm in the “Computer-Aided Design” Journal to solve the 
related problems (Rao et al. 2011), but about a year later, 
they introduced it in the “Information Sciences” Journal in a 
larger scale and for more general problems (Rao et al. 2012).

(a) (b)

(c)

Fig. 1  Location of Birjand unconfined aquifer in Iran (Mohtashami et al. 2022)
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Contrary to other meta-heuristic methods that usually 
model the nature, the TLBO algorithm (described later in 
more details) models the classroom teacher-student pro-
cess and uses it to find the optimal solution. It is based on 
teaching (teacher) and learning (student) steps and its output 
at each step is the students' scores and level of knowledge 
(Črepinšek et al. 2012).

Generation of initial population

In the first step, a series of points (students) are formed and 
distributed randomly in the solution space and then, the 
objective function (students grades and level of knowledge) 
is calculated for each point based on the problem’s main 
objective function and coordinates of each point; the score 
distribution has been assumed to be bell-shaped (Fig. 2) 
without reducing the problem all-inclusiveness. As shown, 
the best student becomes the teacher and the training step 
begins.

Teaching stage

Here, the point specified the “best” by the objective func-
tion becomes the teacher and starts teaching others; in other 
words, all the points with situations worse than the teacher 
move toward the latter causing the average distribution to 
move toward it. It is worth noting that in meta-heuristic algo-
rithms, since use is always made of a randomizing factor 
to randomly check the points, the distribution movement 
toward the teacher, too, has the mentioned factor. In short, 
for any distribution point xi , there is a relation as follows:

where ri is a random number between 0 and 1, TA is the 
coordinates of the teacher point, and Tf  is the teacher training 
factor selected randomly to be either 1 or 2.

(1)xnew
i

= ri
(
TA − Tf xi

)

Now, if ( xnew
i

 ) has a higher value than xi , it will replace it. 
Training step changes are shown in Fig. 3.

Learning stage

Next is the learning step where the mutual learning of the 
students of one class is simulated in such a way that for 
each student, another one is randomly selected. Then, if 
the second has a better position than the first as regards the 
objective function, the first will move toward the second; 
otherwise, the second will move toward the first.

This algorithm-diversifying move too has a random fac-
tor, and the step for each student is as follows:

Next is the checking of algorithm termination conditions; 
if conditions are met, the algorithm terminates, and if not, 
the loop is repeated.

Meshless local Petrov–Galerkin (MLPG)

Used for the first time by Atluri and Zhu (1998) to solve 
potential equations (Atluri and Zhu 1998), MLPG (mesh-
less local Petrov–Galerkin) has since been used by a 
large number of researchers in scientific and engineering 
problems. In this method, since the test and experiment 
functions are selected from two different spaces, many 
meshless methods have used it as a basis for their for-
mulation (Akbari et al. 2010). It uses the moving least 
squares approximation function to construct the shape 
function, but as the latter does not satisfy the Delta Kro-
necker function conditions, it fails to apply the problem’s 
necessary boundary conditions (Dirichlet Boundary Con-
ditions) making the use of such other methods as the “col-
location” and “penalty function” a necessity (Liu and Gu 
2005). But since these methods add approximate values 
to the results, it would be better to replace with those 
that eliminate these approximations and bring the model 

(2)xnew
i

=

{
xold
i

− ri
(
xj − xi

)
iff

(
xi
)
≥ f

(
xj
)

xold
i

+ ri
(
xj − xi

)
iff

(
xi
)
< f

(
xj
)

Fig. 2  Bell distribution of students grads Fig. 3  Changes in grads at teaching stage
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closer to reality. Although error rates are small in these 
methods, their removal and replacement with the moving 
Kriging method is a serious measure because by satisfy-
ing the Delta Kronecker function, it can apply the neces-
sary boundary conditions without adding an approxima-
tion (Mohtashami et al. 2021). As it is necessary in this 
research to study and analyze the uncertainty of the prob-
lem’s boundary conditions, the moving Kriging method 
is used to directly apply the necessary ones. According 
to different references, this method has been used since 
2013 to do approximation and construct shape function 
in the field of solids; however, this is the first time it is 
being used in this study in the field of fluids, especially 
groundwater (Khankham et al. 2015).

Moving kriging

The moving Kriging approximation function is a well-
known method for spatial interpolation in geometry and 
mining (Khankham et al. 2015). To formulate its shape func-
tion considers function H (x) discretized by several nodes 
in domain Ω . There are xinodes, i = 1, 2,… ,N where N is 
the total number of nodes distributed in the domain, and 
it is assumed that only N nodes surrounding point x affect 
H(x) . Subdomain Ωx that contains the surrounding nodes 
is called the approximation domain of point x , and since 
moving Kriging approximation Hh(x) is defined at this point 
(Liu and Gu 2001), formulation of the shape function of the 
meshless moving Kriging is as follows:

where H =
[
H
(
x1
)
H
(
x2
)
…H

(
xN

)]T is the function vector 
in domain Ω and Φ(x) is the shape function vector with size 
1 × N expressed as follows:

Matrices A and B are defined in Eqs. (4) and (5):

where I is an N × N unit matrix and vector p (x) is as follows:

In N × M matrix P, base polynomials are written for each 
point as follows:

(3)Hh(x) =

N∑
i=1

�i(x)Hi = Φ(x)H, x ∈ Ωx

(4)Φ(x) = pT (x)A + rT (x)B

(5)A =
(
PTR−1P

)−1
PTR−1

(6)B = R−1(I − PA)

(7)pT (x) =
[
p1(x)p2(x)… pN(x)

]

Matrix R and vector r(x) are found as follows:

where r
(
xi, xj

)
 is a correlation function between two points 

located at Xi and Xj and represents the covariance of H(x) 
real value:

The above equations show that matrix R and r
(
xi, xj

)
 

play important roles in the calculations. The simple cor-
relation function, used frequently, is a Gaussian function 
(Mohtashami et al. 2021):

where rij = xi − xj and dc and 𝛼c > 0 are constant-value cor-
relation parameters used for fitting.

Governed equation of groundwater in unconfined 
aquifer

When the aquifer is unconfined, the governing equation in an 
unsteady state will be as follows based on Dupuit assump-
tion and continuity equations (Dupuit 1863; Mays and Todd  
2005):

where H is the groundwater level (m), k is the hydraulic 
conductivity (m/day), s kx is in the horizontal direction, 
ky . is in the vertical direction, Sy . is dimensionless specific 
discharge, Q is concentrated discharge (− ive if exploita-
tion well and + ive,  m3/day, if injection well), and q is the 
distributed flow (+ ive, e.g. rain or − ive, e.g. evaporation) 
(Mohtashami et al. 2020). It is worth noting that since the 
equation is time-depdent (unsteady state), the initial condi-
tions are derived from the steady state and then put in the 
equation (Mohtashami et al. 2019).
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Objective function (OF)

In this study, the objective functions are defined as in Eqs. 
(14) and (15) borrowed from (Jafarzadeh and Khashei-Siuki 
(2018), Cieniawski et al. (1995):

In Eq. (14), hObs . and hSim are water levels observed in 
piezometers and simulated by the simulator model, respec-
tively, E is estimation error, and F is the value of the objec-
tive function. The selected objective function varies in a 0–1 
range and error E > 2.3 m will cause the objective function 
to tend to 1. Applying this objective function, especially for 
estimating the groundwater level, has caused the algorithm 
to search and discover the optimal points with very high 
severity.

The flowchart diagram of the MLPG-TLBO model is 
shown below (Fig. 4). The model, as mentioned in the 
introduction, has been formed by connecting two simula-
tion and optimization models. The left part in the diagram 
shows the optimization section run athe main program of 
the simulation model. In the optimization diagram, the 
simulation model is executed after the parameters of the 
optimization model are given their initial values to cal-
culate the objective function; then, the optimization steps 
continue after the initial values of the objective function 
are obtained (Table 1).

Results and discussion

To model the groundwater flow by the MLPG method, 
Birjand aquifer was first drawn by spreading points on 
its slope and boundary 500 m apart (Fig. 5) based on its 
earlier studies (Mohtashami et al. 2017) which enable the 
results obtained with this method to be compared with 
those of (Sadeghi tabas et al. 2016) and (Hamraz et al. 
2015) based on the finite difference method. Next, the 
hydrodynamic information of each point was assigned 
to that node according to its position in the aquifer the 
hydrodynamic parameters of which include hydraulic 
conductivity and specific discharge information cali-
brated and validated by ( Sadeghi tabas et  al. 2016). 
The aquifer boundary conditions defined for the related 
points (shown by arrows in Fig. 1) are 0 for constant 
head and flow. It is worth mentioning that this model 
was calibrated and validated by Mohtashami et al. (2017)  
in both steady and unsteady modes the results of which 
are listed in Table 2; modeling period was one year with 
monthly time-steps.

(14)E =
(
abs

(
hObs − hSim

))

(15)F = 1 − exp (−E)

As optimization requires the piezometers’ observational 
values to be specified throughout the aquifer and for each 
time-step, they were interpolated with the ArcGIS software 
in each month and at the aquifer surface, and an observa-
tional value was assigned to each point in each time period. 
Then, the objective function was calculated based on these 
values and those obtained from the simulator model and 
checked, based on the minimum value of this function, to 
determine the best location for the piezometric well in the 
aquifer.

Table 2, the results of which were calibrated and validated 
based on the research of Mohtashami et al. (2017), compares 
errors of the MLPG model and those of the finite difference 
method.

The authors of this paper used the MLPG method pro-
posed in previous studies to prepare, calibrate and validate 
the groundwater flow model of the Birjand aquifer. They had 
already calibrated the model in both steady and unsteady 
states and compared the results with those of the finite dif-
ference method (MODFLOW Package). The better and more 
accurate results of the meshless method were an evidence 
of the superiority of this model over the limited difference 
method due to its independence from the aquifer meshing 
which led to the elimination of the related errors. Results of 
these studies are presented in Table 2.

After coupling the meshless model to the optimization 
algorithm, the simulation–optimization calculations were 
done on a CORE I5/8 RAM/5200 U PC. This hybrid model 
was implemented 10 series the best of which was that of 
series 9 (with an objective function value = 0.132 m). The 
model implementation results are shown in Table 3.

Finally, the optimal location of the observational wells 
was selected based on series 9 implementation of the model. 
Piezometers’ new positions are marked in blue in Fig. 6 
where green indicates the previous locations of the obser-
vational wells in the aquifer.

As shown in the aquifer area, the optimal observational 
wells are located where extraction wells are less concen-
trated. While the spatial variations of wells 4, 6 and 9 are 
very high, those of 1, 2, 3, 5, 7 and 10 are almost as much as 
one node due to the proximity of observational wells to areas 
where the density of extraction wells is lower; this is quite 
checkable in well No. 4. New locations of observational 
wells are shown in Table 4 with their UTM coordinates.

The simulated and observed water levels in new observa-
tional wells are plotted on a graph and presented for piezom-
eters 1, 4 and 7 in Fig. 7 to evaluate the performance of 
the optimization model to find the optimal location of the 
observational wells.

Water levels observed in new piezometers found by 
the meshless model and calculated by the finite difference 
method are compared in Fig. 7. In graphs of piezometers 1, 
4, and 7 at their new locations in the aquifer, black, red and 



Applied Water Science (2022) 12:117 

1 3

Page 7 of 12 117

gray lines represent the water levels observed during mod-
eling period, modeled by the meshless model and found by 
the finite difference method, respectively. In all diagrams, 
the meshless model yielded better and more accurate results 
than the finite difference method due to its independence 

from the meshing of the solution domain. In Fig. 7a (pie-
zometer 1), the meshless model and observational results do 
not differ much at the beginning of the period, but over time, 
the difference increases gradually and reaches 0.07 m in the 
last month; for the finite difference model, this difference is 

Fig. 4  Flowchart of MLPG-TLBO method
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0.11 m. In Fig. 7b, results of the meshless model are quite 
close to the observational data almost correlating until the 
month 6. Another point in 7b is the increase in the water 
level results of the finite difference method observable in 
periods 2 and 3 due to method-related errors. In Fig. 7c, 
unlike 7a, the meshless model is more accurate at the end of 
the period than at the beginning.

Figure 8 shows the regression coefficient of the results of 
the meshless and finite difference models where green dots 
represent the water level obtained from the meshless model 
in new piezometers and the orange dots show those of the 
finite difference model. As shown, the regression coefficient 
of the meshless model is higher than that of the finite differ-
ence model in all piezometers; the higher is this coefficient, 
the greater is the correlation between the model results and 
the observational data.

Finally, to evaluate the model accuracy, several known 
error criteria in the groundwater field were used and the 
mean error (ME), mean absolute error (MAE) and root mean 
square error (RMSE) indices were found for all piezometers 
(Table 5).

Table 1  Coordinates of 
observation wells in Birjand 
aquifer

Well number UTM x UTM y Well number UTM x UTM y

1 672076.92 3626500 6 681191.541 3638000
2 673616.684 3629000 7 693716.317 3641500
3 677358.12 3628000 8 696160.839 3639500
4 675,659.263 3634500 9 701775.426 3639000
5 674670.794 3638500 10 716167.142 3636000

Fig. 5  Scattering nodes in Birjand aquifer

Table 2  Computation of error indices in unsteady state

Error criteria (m) MLPG (Mohtashami 
et al. 2017)

FDM (Sadeghi 
Tabas et al. 2016)

Mean error − 0.08 0.159
Mean absolute error 0.573 1.434
Root mean square error 0.757 1.197

Table 3  The achieved results from MLPG-TLBO

Run number Objective func-
tion (m)

Run number Objective 
function (m)

1 0.159 6 0.155
2 0.161 7 0.148
3 0.153 8 0.152
4 0.184 9 0.132
5 0.169 10 0.136
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As shown, displacing piezometric wells to the optimal 
positions found by the MLPG-TLBO model reduced the 
RMSE by 0.423 m which is quite high and meaningful for 
such an aquifer volume and means the monitoring network 
designed to operate in this aquifer is suitable.

Conclusions

This study proposed a novel model, i.e. MLPG-TLBO, as a 
simulation–optimization method aiming at enhancing the 
accuracy of groundwater monitoring and determining the 
optimal locations for piezometers in Birjand aquifer. After 
coupling the teaching–learning-based optimization model to 

the meshless flow model, already calibrated and validated 
in some studies, the optimal locations of ten piezometers 
were determined in Birjand aquifer and their observed water 
levels were compared with those found in different modeling 
periods computationally to evaluate the model performance 
proved to be acceptable because before applying the model, 
the RMSE was 0.757 m, but after optimization it reached 
0.334 m. Considering the aquifer area, this difference is a 
huge volume of water the error of which was omitted by 
the MLPG-TLBO model. The acquired results also show 
the satisfactory performance of this model in this aquifer. It 
is noticeable that, in addition of giving a pervasive knowl-
edge about groundwater behavior, this model helps the water 
engineers to define some scenarios for better management.

Fig. 6  The optimal location of observation wells

Table 4  Optimal coordinates 
of observation wells in Birjand 
aquifer

Well number UTM x UTM y Well number UTM x UTM y

1 671632.311 3627000 6 686659.633 3637500
2 674116.684 3629000 7 695690.187 3642000
3 676724.451 3628500 8 695443.735 3640500
4 675245.214 3627500 9 701216.317 3641500
5 675211.756 3639000 10 715583.703 3635000
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Fig. 7  Computation of groundwater head with MLPG-TLBO
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