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Abstract
Many real water issues involve rivers’ sediment load or the load that rivers can bring without degrading the fluvial ecosys-
tem. Therefore, the assessment of sediments carried by a river is also crucial in the planning and designing of various water 
resource projects. In the current study, five different data-driven techniques, namely artificial neural network (ANN), wavelet-
based artificial neural network (WANN), support vector machine (SVM), wavelet-based support vector machine (WSVM), 
and multiple-linear regression (MLR) techniques, were employed for time-series modeling of daily suspended sediment 
concentration (SSC). Hydrological datasets containing the daily stage (h), discharge (Q), and SSC for 10 years (2004–2013) 
from June to October at Adityapur and Ghatshila station of Subernrekha river basin, Jharkhand, India, were considered for 
analysis. The Gamma test was used to determine the input variables in the first step. Various combinations were made by 
lagging the maximum three-day time step for predicting current-day SSC. The outcomes of ANN, SVM, WAAN, WSVM, 
and MLR models were evaluated with the actual values of SSC based on statistical metrics. Pearson correlation coefficient 
(PCC), root-mean-square error (RMSE), Nash–Sutcliffe efficiency (NSE), and Wilmot index (WI) as well as visual inspection 
of time variation, scatter plots, and Taylor diagrams. Our results stated that the WSVM model discovered the best trustwor-
thy models among all existing models. PCC, RMSE, NSE, and WI values were 0.844 and 0.781, 0.096 g/l and 0.057 g/l, 
0.711 and 0.591, 0.907 and 0.878, respectively, throughout the training and testing processes at the Adityapur site. Also, at 
the Ghatshila location, it was the most accurate model. During the training and testing stages, PCC, RMSE, NSE, and WI 
values were 0.928 and 0.751, 0.117 g/l and 0.095 g/l, 0.861 and 0.541, 0.962 and 0.859, respectively. Our findings showed 
that the WANN model was the second-best model during the testing phase for both sites. Hence, the WSVM technique can 
model SSC at this location and other similar (i.e., geomorphology and flow regime type) rivers.
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Introduction

Sedimentation is one of the critical issues in the geomorpho-
logical processes within a basin. Due to sediment transport 
dynamics, various geological, hydrological, and hydraulic 
sedimentation issues are caused due to sediment transport 
dynamics (Adib and Mahmoodi 2017; Gholami et al. 2018; 
Jian et al. 2014). In the construction of hydraulic systems 
on various watershed sections, sediment content is often 
impacted. Thus, sediment loads are decisively calculated 
(Choubin et al. 2018; Kuriqi et al. 2020; Moeeni and Bonak-
dari 2018). It is essential to correctly estimate the amount of 
river sediment to design dams, storage structures, and canals, 
evaluate environmental effects, and decide the effectiveness 
of watershed management and other catchment treatments. 
Regression-based sediment rating curves are often used to 
estimate a river’s sediment load. Generalization capability 
problems subject to multi-linear regression (MLR) and curve 
fitting techniques have proven insufficient (Kisi 2005). The 
high degree of scattering that can be reduced but not elimi-
nated is an inherent problem in the rating curve technique 
(Jain 2001). Asselman (2000) used the sediment rating curve 
approach at four separate sites along the Rhino River and its 
major tributaries, showing that rating curves obtained from 
logarithmically transformed results are likely to underesti-
mate sediment transport levels by 10 50%. Diverse studies 
contrast-suspended concentration, which has been carried 
out and predicted, shows that conventional rating curves can 
significantly underestimate existing sediment concentrations 
(Adib and Mahmoodi 2017; Asselman 2000; Hauser-Davis 
et al. 2010).

More advanced methods based on artificial neural net-
works (ANN) algorithms have been developed for sediment 
transport and accumulation estimation in different rivers 
and lakes (Banadkooki et al. 2020; Cigizoglu 2004; Coba-
ner et al. 2009; Jain 2012; Kumar et al. 2016; Partal and 
Cigizoglu 2008). ANN is an adaptive framework that can 
predict previously encountered datasets but with specific fea-
tures connected to input datasets, learning input/output rela-
tionships (Gholami et al. 2018; Kisi 2005). ANN was used 
to model the stage–discharge that usually performs better 
than traditional ones (Ajmera and Goyal 2012; Hasanpour 
Kashani et al. 2015; Heggen 1999; Song et al. 2013; Sudheer 
and Jain 2003).

The support vector machine (SVM) algorithm is also 
successfully used in several hydraulic and hydrologic-
related problems (Cherkassky and Ma 2004; Jain 2012). 
The SVM follows the principle of structural risk mitigation 
of upper binding to generalization mistake instead of mini-
mizing a training error greater than the philosophy of meth-
odological risk minimization (Jain 2012). This is an effec-
tive way to address nonlinear classifications, regression 

processes, and time series (Wang et al. 2008). The SVM 
stands for kernel-based learning utilizing a high-dimension 
linear theory space called feature space as a supervised 
machine learning environment that has become quite popu-
lar. The SVM works by mapping data to a higher-dimen-
sional space using inferred kernel functions (Sivapragasam 
and Muttil 2005). SVMs are used effectively by many sci-
entists in hydrological studies (Ghorbani et al. 2013; Jain 
2012; Khan and Coulibaly 2006; Kisi and Cimen 2011; 
Malik and Kumar 2015; Rahgoshay et al. 2018; Wu et al. 
2008).

In conjunction with ANN, many research types used 
wavelet techniques for water management and environmen-
tal engineering issues (Kişi 2010). Combined methods have 
recently gained growing popularity. Wavelet analysis (WA) 
is a standard analysis technique as spectral and temporal data 
can be seen simultaneously in a single signal (Nourani et al. 
2009). Kim and Valdés (2003) predict droughts using wave-
let-ANN in Mexico. Adib and Mahmoodi (2017) developed 
a hybrid wavelet-ANN model for the monthly rainfall–runoff 
research in Italy. Kişi (2008) investigated the precision in 
monthly streamflow prediction for wavelets-ANN and single 
ANN models and found that wavelets-ANN function much 
better than single ANNs. Nourani et al. (2009) examine the 
impact of data preprocessing on the outcomes of ANN mod-
els using continuous and discrete wavelet transformations. 
Partal and Cigizoglu (2008) suggested utilizing wavelets and 
neural networks in a study to estimate and forecast a load of 
rivers’ suspended sediment. These studies showed that the 
preprocessed data with wavelet analysis performs better than 
the undecomposed raw data. It can be shown that the differ-
ent features of the suspended sediment load prediction time 
series can be expressed by the sub-time series obtained using 
wavelets (Kuo et al. 2010). Short- and long-term forecasts’ 
accuracy is enhanced (Nourani et al. 2018; Sharghi et al. 
2018; Shiri and Kisi 2010).

However, while machine learning models have shown 
to be reliable in general, they are still not widely used for 
estimating the stage–discharge–sediment relationship in 
some situations. As a result, applying techniques to model, 
this dynamic relationship is motivated by previous use of 
effective learning strategies for various hydrological and 
hydraulic issues. Using specific actual datasets with ANN, 
SVM, WAAN, WSVM, and MLR, this work explores 
how current data-driven models are applied to explore the 
stage–discharge–sediment relationships Adityapur and 
Ghatshila sites of the Subernrekha river basin. According to 
the author’s understanding, there has been less work to use 
modeling to estimate suspended sediment using the stage 
as input parameters. No work has been done using the given 
model for the given study site. This research aims to apply 
modern data-driven models to water management to solve 



Applied Water Science (2022) 12:87 

1 3

Page 3 of 21 87

various complex problems in hydraulics and hydrology in 
the study area.

Materials and methods

Study area and data acquisition

This study was carried out in the Adityapur and Ghatshila 
sites in the Saraikela Kharsawan districts of Jharkhand, 
India. Adityapur site is at Kharkai River, a major tributary 
of the Subernrekha River, which lies at a latitude of 22° 
47′29ʺ N and longitude 86° 10′06ʺ E. The Ghatshila site is 
situated on the main river course of Subernrekha, having a 
latitude of 22° 34′49ʺ N and a longitude of 86° 20′08ʺ E. 
Map for the studied area is shown in Fig. 1.

The area contributing runoff to the study site is 
8335.25  km2. It is located at the height of 140 m above sea 
level. The study site’s estimated annual rainfall ranges from 

1000 to 1400 mm. The southwest monsoon generally influ-
ences the study area, which has onset timing in June and 
extended up to October. The temperature variations during 
the summer season are from 35 to 40 °C, while during the 
winter season, it varies from 10 to 15 °C. The topography 
is generally flat with some undulations, small hillocks, 
and scattered ridges. The different rock types included in 
the study area are mica-schist, quartz-mica, quartzite, and 
schistose amphibolite of the Precambrian age. The vegetal 
cover is sparse, and the primary crop grown is wheat, rice, 
and maize, among others. The daily stage, discharge, and 
suspended sediment concentration (SSC) of the study area 
from June 1, 2004, to October 31, 2013, are considered in 
the analysis. Figure 2a–c presents the dataset of total data 
length of the period mentioned above as 1530 in which 
70% (2004–2010) were used for training the dataset for 
model development, while the rest 30% (2011–2013) was 
used for the testing phase and validation purpose. The data 

Fig. 1  Location map of the 
Ghatshila watershed



 Applied Water Science (2022) 12:87

1 3

87 Page 4 of 21

are acquired from the government portal https:// india wris. 
gov. in.

Statistical analysis

The statistical analysis of daily stage (m), discharge  (m3/s), 
and suspended sediment concentration (SSC, g/l) for the 
Adityapur site and Ghatshila site (Jharkhand, India) is pre-
sented in Tables 1, 2. Statistical analysis for the datasets 
collected containing the training and the testing sets includes 
the meaning, median, minimum, maximum, standard 

deviation (Std. Dev.), coefficients of variations (C.V.), and 
skewness values. In general, Tables 1 and 2 showed statisti-
cal characteristics for all data, training sets, and testing sets 
that were more or less comparable in terms of mean, median, 
standard deviation, C.V., and skewness.

The mean values of stage and discharge are greater for 
testing data than all data and training sets, but SSC’s value is 
lesser for the testing set than for the other two. The values of 
the stage range from 1.380 to 13.950 m and 1.60 to 12.59 m, 
respectively, for Adityapur and Ghatshila. The discharge val-
ues for Adityapur and Ghatshila range from 0.001 to 5.856 

Fig. 2  Time-series representa-
tion: a stage, b discharge and 
c SSC for the Adityapur and 
Ghatshila site
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(×  103  m3/s), and 0.007 to 9.609 (×  103  m3/s), respectively, 
and the SSC ranges from 0.0 to 2.085 g/l and 0.0 to 1.76 g/l, 
respectively. The skewness values in Tables 1 and 2 show 
that the distribution is positively skewed (Ghorbani et al. 
2013; Liu et al. 2013; Rajaee et al. 2011). The skewness 
coefficients for discharge values are more significant, fol-
lowed by SSC and stage values.

Artificial neural network (ANN)

The ANN technique is used to simulate a similar process 
as the human brain’s problem-solving process. The ANN 
technique has received much attention in the last few dec-
ades to model and predict the nonlinear hydrologic and 
hydraulics processes’ nonlinear behavior. Among ANN, the 
feed-forward back-propagation techniques have drawn much 
attention due to their less complexity (Choubin et al. 2018; 
Solomatine and Ostfeld 2008). The ANN technique has three 
layers: (i) the input layer, I (ii) the hidden layer (j), and (iii) 
the output layer (j) (k) (Fig. 3).

Between the layers of neurons (1, 2,…, L, M, N), entan-
gled weight Wij and Wjk are used to link them. An input 
layer’s neurons coordinate in a forward direction. The output 
for the given input value is computed during a nonlinear 
function called the activation function. The weight value 
is adjusted during training using the trial-and-error process 

Table 1  Statistical investigation 
for all data, training data, 
and testing data of stage (m), 
discharge  (m3/s), and SSC (g/l) 
for the Adityapur site

Statistical parameters Mean Median Minimum Maximum Std. dev. C.V. Skewness

Whole data
Stage 2.911 2.600 1.380 13.950 1.417 8.425 2.189
Discharge 0.200 0.047 0.001 5.856 0.423 0.179 6.113
SSC 0.123 0.071 0.000 2.085 0.160 23.014 3.648
Training set
Stage 2.830 2.540 1.400 13.950 1.389 9.491 2.361
Discharge 0.183 0.043 0.002 5.855 0.444 0.197 6.756
SSC 0.145 0.084 0.000 2.085 0.178 19.381 3.385
Testing set
Stage 3.101 2.830 1.380 12.800 1.466 6.865 1.883
Discharge 0.241 0.132 0.001 3.0333 0.365 0.133 3.447
SSC 0.073 0.047 0.003 0.653 0.089 10.464 2.719

Table 2  Statistical investigation 
for all data, training data, 
and testing data of stage (m), 
discharge  (m3/s), and SSC (g/l) 
for the Ghatshila site

Statistical parameters Mean Median Minimum Maximum Std. dev. C.V. Skewness

Whole data
Stage 3.83 3.58 1.60 12.59 1.48 2.19 1.28
Discharge 0.532 0.285 0.007 9.609 0.790 0.624 4.166
SSC 0.18 0.08 0.00 1.76 0.27 0.08 2.59
Training set
Stage 3.77 3.52 1.97 12.59 1.47 2.16 1.36
Discharge 0.481 0.241 0.007 9.609 0.775 0.601 4.976
SSC 0.20 0.05 0.00 1.76 0.31 0.10 2.24
Testing set
Stage 3.96 3.65 1.60 11.22 1.49 2.23 1.13
Discharge 0.651 0.367 0.017 5.580 0.813 0.661 2.670
SSC 0.14 0.12 0.00 1.16 0.14 0.02 3.23

Fig. 3  Structure for the three-layer artificial neural network,  adapted 
from Kişi (2010)
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(Alp and Cigizoglu 2007; Kişi 2010). Overfitting is one of 
the biggest challenges during training processes. In this anal-
ysis, Levenberg–Marquardt was used to train the model. The 
hyperbolic tangent sigmoid transfer function was used to 
calculate the layer’s output from its net input.

Support vector machine (SVM)

The SVM approach depends on the theory of statistical 
learning (Vapnik 1999). The SVM is a community of arti-
ficial networks notable for its overall success in classifying 
patterns and nonlinear regression (Cao and Tay 2003). The 
SVM is used for evaluating variable time series regression to 
estimate and simulate the same variables. The SVM model’s 
relationship is as follows Kisi et al. (2017).

In the case of a training dataset, T, which is denoted by

where x ϵ X and ℝn are the training inputs and y ϵ Y and 
ℝn are the training outputs. Assume that f(x) is a nonlinear 
equation and given by:

where w refers to the weight vector, b corresponds to the 
bias, and Φ(xi) denotes the high-dimensional feature space, 
linearly mapped from the input space x. SVM aims to reduce 
the gap between data from observations and simulations. 
Thus, SVM techniques reduce the objective function to 
minimize errors depending on the process of optimization. 
The error function ignores errors that are smaller than the 
threshold ε.

(1)T =
{(

x1, y1
)
,
(
x2, y2

)
,… ,

(
xm, ym

)}

(2)f (x) = wT�(xi) + b

(3)
minimize ∶

1

2
wTw

subject to ∶

{
yi−

(
wT�

(
xi
)
+ b

)
≤ �

yi−
(
wT�

(
xi
)
+ b

)
≥ �

where ε (≥ 0) represents the maximum acceptable deviation.
For solving Eq. (3), the slack variables account for pos-

sible infeasible optimization problems. This may further lead 
to the following formulation as given by Vapnik (1995):

where C is the penalty coefficient represents the weight loss 
function. The term wTw represented the regularization term 
and makes them as ‘flat’ as possible; second term C 
m∑
i=1

�
�+
i
+ �−

i

�
 is called a practical term and measures 

ε-incentive loss function. The slack variables, i.e., �+
i
, �−

i
 

represents upper and lower deviations, respectively. The 
highest deviation represents the ε-tube. Since all of the data 
points in this tube are equal to 0, they do not refer to the 
regression model (Fig. 4).

The values of the above parameters are then substituted in 
Eq. 2 to obtain f(x). Nonlinear time series can be predicted 
and analyzed using the SVM model. Thus, the final expan-
sion of support vector regression is given by:

where �+
i
,�−

i
 are Lagrangian multipliers which are used to 

remove a few primary variables, and the term K
(
xi, xj

)
 is the 

kernel function. It has the advantage of independent of both 
dimensionalities of the input space X and the sample size m. 
The kernel function of the SVM technique allows nonlinear 
approximations. Linear function was the kernel function that 
was used in this analysis (L.F.). The most basic kernel func-
tion is as follows Han et al. (2007):

(4)

minimize ∶
1

2
wTw + C

m�
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�
�+
i
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i

�
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⎧
⎪⎨⎪⎩
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i
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K
(
xi, xj

)
+ b

Fig. 4  Schematic presentation 
of the support vector machine 
structure
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The efficiency of the SVM techniques depends on the 
environment for an ε-insensitive loss of the function of 
three parameters of the training process (kernel, C, � , and 
ε). For each kernel type, though, the values of C and ε affect 
the complexity of the final model. This value measures the 
number of support vectors (S.V.) used for projections. The 
greater value of ε intuitively results in fewer supporting 
vectors leading to less complex regression estimates. On 
the other hand, the value of C is a trade-off between model 
complexity and the variance allowed within the optimization 
formulation. As a result, a higher C value reduces model 
complexity (Cherkassky and Ma 2004). The optimal values 
for these training parameters (C and ε) ensure fewer complex 
models. This is an active research field.

Wavelet transform

Wavelet transform overcomes conventional solution issues 
by delivering the most potent way to dismantle signals into 
two-dimensional space: time or space (Sharghi et al. 2018). 
Like the Fourier transform, the wavelet transform allows for 
time conversion of the different frequency parts of a data 
set. However, with one crucial difference, the short-term 
Fourier transform produces a more accurate window width 
operation. Therefore, both the resolution of the time and the 
resulting transformations’ frequency must be provisionally 
established. Still, in wavelet transform, the study will adjust 
its time width to the frequency. Higher-frequency waves 
become very narrow, while lower-frequency waves become 
very broad (Khan and Coulibaly 2006). The wavelet trans-
form’s ability to concentrate on brief intervals for high-fre-
quency components and extended periods for low-frequency 
components improves signal processing of concentrated 
impulses and oscillation. As a result, wavelet decomposition 
is an excellent choice for evaluating transient signals and 
obtaining a more accurate comparison and discrimination 
process (Wang et al. 2008; Youssef 2003).

(6)K
(
xi, xj

)
=
(
xi, xj

) A continuous-time signal, x(t), is transformed by the 
wavelet time-scale as Addison et al. (2001):

where ‘a’ and ‘b’ denote the function’s dilatation factor and 
temporal localization g(t), respectively, to enable the study 
of the signal around ‘b,’ * denotes equivalent to the complex 
conjugation, and g(t) denotes the wavelet or mother wavelet 
function (Youssef 2003).

Equation (7) discretization is perhaps the simplest discre-
tization based on the trapezoidal law of a continuous wavelet 
transformation (CWT). From the given data set of length 
N, the above transformation method yields N2 coefficients; 
thus, obsolete information is plugged inside the coefficients, 
which might or might not be desirable (Kişi 2010; Rajaee 
et al. 2011). For overcoming this complexity, uniform loga-
rithmic spacing can be used for a correspondingly coarser 
resolution of b positions, allowing a complete definition of 
a signal length N by N transforming coefficients. A discrete 
wavelet of this kind has the following shape:

WANN and WSVM model

The present study used a discrete wavelet transformation 
to hybridize the model. Hybridized approaches for model 
creation and validation were used for the wavelet-based arti-
ficial neural network (WANN) (Kumar et al. 2016; Liu et al. 
2013) and wavelet-based support vector machine (WSVM). 
To begin, the time-series data for the measured stage (h), 
discharge (Q), and sediment (S) were decomposed into many 
frequencies. Figure 5 represents the decomposed time series 
by wavelet transform (Sudheer and Jain 2003).

The decomposed components of time series by DWT 
like hDi(t), …, hDi(t − n), hAi(t),.., hAi(t − n), QDi(t),…, 

(7)T (a, b) =
1√
a

+∞

∫
−∞

g∗
�
t − b

a

�
x(t) ⋅ dt

(8)gm,n(t) =
1√
am
0

g

�
t − nb0a

m
0

am
0

�

Fig. 5  Construction of proposed 
WANN and SVM model
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QDi(t − n), QAi(t),.., QAi(t − n), and SDi(t − 1),..,SDi(t − n), 
 SAi(t − 1),..,SAi(t − n) were used for stage–discharge–sedi-
ment modeling, where, hDi(t), …, hDi(t − n) and hAi(t),.., 
hAi(t − n) are the details and approximate sub-signals of stage 
time series. QDi(t),…, QDi(t − n) and QAi(t),.., QAi(t − n) are 
the details and approximate sub-signals of discharge time 
series, respectively. SDi(t − 1), …, SDi(t − n) and SAi(t − 1), 
…, SAi(t − n) are the detail and approximation coefficients 
of SSC time series, respectively (Bajirao et al. 2021). The 
original h, Q, and SSC time series selected per the Gamma 
test were decomposed using Haar á trous mother wavelet at 
appropriate decomposition levels. Afterward, these decom-
posed time-series values act as input for ANN and SVM 
techniques to predict the output value.

Multiple linear regression (MLR)

MLR is a form of linear regression analysis that involves 
more than one independent variable. The advantage of MLR 
is that it is simple, which shows how dependent variables 
are with independent variables (Choubin et al. 2018). The 
overall model of the MLR is:

(9)y = c0 + c1x1 + c2x2 +…+ cnxn

Y represents the dependent variable, and x1, x2,..,xn refer 
to independent variables, c1, c2, …,cn correspond to regres-
sion coefficients, and c0 is intercepted. The least-square rule 
or regression rule is used to measure these values, represent-
ing the local actions (Kisi and Cimen 2011).

Gamma test

The Gamma test is a versatile and impartial method for 
assessing each input parameter’s significant potential. 
Stefánsson et al. (1997) pioneered gamma testing in mod-
eling, later adopted by other researchers (Kumar et al. 2016; 
Malik and Kumar 2015; Nourani et al. 2009). The Gamma 
test was used for any input–output dataset to estimate a mini-
mum standard error for continuous nonlinear models. A lin-
ear regression line is built to measure gamma as:

Y denotes the regression line’s output vector, A represents 
the gradient, and Γ corresponds to the intercept (Δ = 0). The 
value of Γ corresponds to the output at Δ = 0. The smaller 
value of Γ (close to zero) is acceptable. The gamma test 
was processed in ‘winGamma’ software (Hassangavyar et al. 
2020). The flowchart of the adopted methodology in this 
study is shown in Fig. 6.

(10)Y = AΔ + Γ

Fig. 6  Flowchart of SSC 
estimation methodology in the 
study area Collection of daily SSC data
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Model development and performance evaluation

This research was undertaken to establish the relationship 
between stage–discharge–sediment for the Adityapur site 
of Jharkhand, India. The modeling included ANN, SVM, 
WAAN, WSVM, and MLR techniques to develop and vali-
date the model. ANN and wavelet decomposed data were 
developed using MATLAB (R2015a) software. SVM models 
were developed in R-Studio and MLR models constructed 
in MS-Excel 2019 software. The model’s performance was 
assessed using quantitative metrics (RMSE, PCC, and WI) 
and qualitative metrics (time variance map, scatter plot, and 
Taylor diagram) between observed and expected SSC (g/l) 
values. The input variables for the ANN, SVM, WAAN, 
WSVM, and MLR models developed were selected by 
gamma test based on minimum gamma value.

Three performance standards were used in the present 
study to assess the model’s performance. These are Pear-
son correlation coefficient (PCC), root mean square error 
(RMSE), Nash–Sutcliffe efficiency, and Wilmot index (WI). 
The combined use of RMSE (Bajirao et al. 2021; Kumar 
et al. 2016; Malik and Kumar 2015) and WI (Willmott 1984) 
provides an adequate evaluation of the results. It compares 
the exactness of the various measurement and modeling 
techniques used in this study, further discussed by Ghor-
bani et al. (2013).

The PCC value ranges from − 1 to + 1, and the value close 
to + 1 represents the best fit. Its aim in hydrological studies 
is to determine the degree of collinearity between observed 
and predicted variables. It is oversensitive to extreme value 
(Liu et al. 2013), from 0 to infinity, the RMSE value ranges. 
The value close to zero represents the model’s better per-
formance. The RMSE value has the same unit as the model 
output and reports the typical error size. The NSE was 
initially proposed by McCuen et al. (2006) and frequently 
used to assess the hydrologic model’s performance. It deter-
mines the relative magnitude of residual variance compared 
to measured data variance. NSE values vary from − ∞ to 
1. The WI value ranges from 0 to 1. The values close to 1 
represent the best fit, while 0 means disagreement between 
observed and predicted data. It is also known as the index 
of agreement.

(11)
RMSE =

�����
∑N

i=1

�
Sp���,i − Sp���,i

�2

N
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��
Sppre,i − Sppre,i

�
�∑N

i=1

�
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�2 ∑N

i=1

�
Sppre,i − Sppre,i

�2

Results and discussion

This section discusses the outcomes of dividing the 
stage–discharge–sediment model into two sections. The first 
section contains the results of the gamma test used to pick 
input variables, and the second section contains the results 
of model creation and output for both the Adityapur and 
Ghatshila sites.

Input selection: gamma test

The first step in every modeling process is to choose input 
variables. Many scientists have stated that the present-day 
suspended sediment concentration (SSC) can be estimated 
more accurately by the simultaneous current day stage (h), 
discharge (Q), along with previous day h, Q, and SSC val-
ues (Cigizoglu 2004; Jain 2012). Therefore, current day 
(t), one-day lag (t − 1), two-day lag (t − 2), and three-day 
lag (t − 3) time steps ht, ht−1, ht−2, ht−3, Qt, Qt−1, Qt−2, Qt−3, 
St−1, St−2, and St−3 which is represented by model 48 (mask-
11111111111) and 0 represents the absence of that vari-
ables in other combinations (Table 2). A total of forty-eight 
combinations were created using different time steps of the 
stage, discharge, and SSC data, as seen in Tables 3 and 4 for 
the Adityapur and Ghatshila sites. The gamma value (Γ), 
variance ratio (Vratio), and mask for various combinations 
of input variables for model creation are shown in Tables 3 
and 4.

The selection process depends on the smallest value of Γ 
and Vratio (Jain 2012; Malik et al. 2019; Nourani et al. 2018). 
Vratio tests its predictability with the available inputs for the 
specified output. Vratio near 1 indicates that the fundamental 
model is not quite close to being smooth. However, Vratio 
near 0 demonstrates that the results are generated from the 
smooth model (Malik et al. 2019). As shown in Table 3, 
the integration of ht + ht−1 + Qt + Qt−1 + Qt−2 + St−1 (Model 
no.-19) showed the most negligible value of Γ and Vratio as 
0.0813 and 0.3253, respectively.

Therefore, the combination (mask-11001110100) of ht + 
ht−1 + Qt + Qt−1 + Qt−2 + St−1 was selected as input variables 
for ANN, SVM, WAAN, WSVM, and MLR models for 

(13)NSE = 1 −

⎡
⎢⎢⎢⎣

∑N

i=1

�
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�2
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Adityapur site. Likewise, Table 4 showed the combination 
ht + Qt + St−1 + St−2 + St−3 (Model-3) observed the minimum 
values of Γ and Vratio as 0.0046 and 0.1853, respectively. As 
a result, for the Ghatshila location, the combination (mask-
10001000111) of ht + Qt + St−1 + St−2 + St−3 variables was 
chosen as input variables for ANN, SVM, WAAN, WSVM, 
and MLR models. As shown in Fig.  7, the correlation 
between output St and other input variables was satisfac-
tory for all datasets (a, b).

Trials of models

The ANN, WANN, SVM, WSVM, and MLR were ana-
lyzed in two phases to select the best model. The first phase 
involves developing the model during the training phase—
the second phase checks to validate the model. The mod-
el’s performance was evaluated based on the lower value 
of RMSE (0: + ∞: good: poor), a higher value of PCC, 
NSE, and WI (close to + 1) for selections of the best model 
(Kumar et al. 2020). Several trials were conducted for sin-
gle output on the best model for ANN, WANN, SVM, and 
WSVM (Tables 5 and 6). The number of neurons in hidden 
layers was varied in ANN trials. An input layer, a hidden 
layer, and an output layer make up the ANN architecture. 
Considering architecture 6-4-1, 6 represents the number of 
input parameters, and the number of neurons in the un-seen 
layer is 4. The output is 1.

The 24 represents the input parameters in the WANN 
architecture, 9 represents the number of hidden layer neu-
rons, and 1 represents the output. Simultaneously, SVM 
trails were run using a variety of SVM-γ, SVM-c, and SVM-
ε parameter values. All sites’ cost parameters (SVM-c) were 
taken as 10 based on separate trials, whereas ε is an insensi-
tive loss feature. Training effects were not taken into account 
in this analysis to prevent the biases and overfitting of data.

Results at Adityapur site

At the Adityapur location, Table 5 displayed the quantitative 
results of all produced models. For the training period, PCC 
values ranged from 0.783 to 0.801, RMSE values ranged 
from 0.106 to 0.111 g/l, and NSE values were found in 
the range of 0.613 to 0.644 WI values ranged from 0.866 
to 0.894. During the testing process, PCC values ranged 
from 0.562 to 0.632, RMSE values ranged from 0.097 to 
0.106 g/l, NSE values ranged from − 0.425 to − 0.216, and 
WI values ranged from 0.690 to 0.729 for ANN techniques. 
During the training phase, the performance of WANN mod-
els showed that the PCC values were obtained in the range 
of 0.835–0.863. RMSE values were obtained in the range 
0.090–0.099, the values of NSE obtained in the range of 
0.691–0.745 while for WI were 0.899–0.921. The PCC 

Table 3  Findings of the gamma test obtained for different combina-
tions of input variables for the Adityapur site

St = f(ht,ht−1,ht−2,ht−3,Qt,Qt−1,Qt−2,Qt−3,St−1,St−2,St−3) = f(1111111111-
1)
Bold represents the best input combination

Model no. Mask (combination) Gamma V-ratio

M1 10001000100 0.0945 0.3781
M2 10001000110 0.0938 0.3753
M3 10001000111 0.0867 0.3467
M4 10001100100 0.0901 0.3603
M5 10001100110 0.0909 0.3638
M6 10001100111 0.0861 0.3444
M7 10001110100 0.0911 0.3643
M8 10001110110 0.0891 0.3564
M9 10001110111 0.0842 0.3367
M10 10001111100 0.0897 0.3587
M11 10001111110 0.0912 0.3647
M12 10001111111 0.0827 0.3308
M13 11001000100 0.0833 0.3334
M14 11001000110 0.0901 0.3604
M15 11001000111 0.0877 0.3510
M16 11001100100 0.0911 0.3646
M17 11001100110 0.0915 0.3660
M18 11001100111 0.0904 0.3618
M19 11001110100 0.0813 0.3253
M20 11001110110 0.0904 0.3615
M21 11001110111 0.0914 0.3657
M22 11001111100 0.0847 0.3390
M23 11001111110 0.0972 0.3887
M24 11001111111 0.0863 0.3454
M25 11101000100 0.0900 0.3599
M26 11101000110 0.0843 0.3370
M27 11101000111 0.0840 0.3360
M28 11101100100 0.0844 0.3376
M29 11101100110 0.0932 0.3729
M30 11101100111 0.0908 0.3633
M31 11101110100 0.0901 0.3606
M32 11101110110 0.0920 0.3682
M33 11101110111 0.0897 0.3589
M34 11101111100 0.0900 0.3599
M35 11101111110 0.1031 0.4125
M36 11101111111 0.0875 0.3500
M37 11111000100 0.0920 0.3678
M38 11111000110 0.1012 0.4050
M39 11111000111 0.0846 0.3386
M40 11111100100 0.0858 0.3433
M41 11111100110 0.1026 0.4103
M42 11111100111 0.0947 0.3787
M43 11111110100 0.0890 0.3560
M44 11111110110 0.1035 0.4138
M45 11111110111 0.0905 0.3620
M46 11111111100 0.0985 0.3942
M47 11111111110 0.1085 0.4339
M48 11111111111 0.0926 0.3704
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values for WANN models ranged from 0.634 to 0.718, the 
RMSE values ranged from 0.071 to 0.078 g/l, the NSE val-
ues ranged from 0.232 to 0.356, and the WI ranged val-
ues from 0.767 to 0.812 during the testing process. Dur-
ing the training period of SVM models, PCC values ranged 
from 0.760 to 0.768, RMSE values ranged from 0.114 to 
0.117, NSE values ranged from 0.568 to 0.586, and WI val-
ues ranged from 0.857 to 0.859. During the SVM models’ 
performance testing phase, the values of PCC ranged from 
0.572 to 0.610, the values of RMSE were obtained in the 
range of 0.086–0.094, the NSE values ranged from − 0.139 
to 0.046, and WI values ranged from 0.724 to 0.760. The 
performance of the hybrid techniques of wavelet support 
vector machine (WSVM) during training phase, the values 
of PCC ranged from 0.844 to 0.847. RMSE was obtained 
around 0.095 to 0.096 g/l, the values of NSE ranged from 
0.711 to 0.714, and WI values ranged from 0.906 to 0.907. 
During the testing period, PCC values ranged from 0.745 to 
0.781, RMSE ranged from 0.057 to 0.062, NSE ranged from 
0.516 to 0.591, and WI varied from 0.856 to 0.878.

Table 5 shows that the WSVM model found the most 
reliable models out of all the existing models. During the 
training and testing processes, PCC, RMSE, NSE, and WI 
values were 0.844 and 0.781, 0.096 g/l and 0.057 g/l, 0.711 
and 0.591 0.907 and 0.878, respectively. In contrast to other 
models, the NSE values for the WSVM model during the 
testing process significantly increased. The MLR model did 
not do well.

Figures 8a–e and 9a–e show the line diagram and scatter 
plots for all created models. These figures qualitatively rep-
resent the results of all developed models. On nearly all sim-
ulations, the expected values were over-predicted for lower 
SSC values and under-predicted for higher SSC values. The 
determination coefficient was the highest for the WSVM 
model (0.6096), followed by WANN values (0.5159). The 
R2 value was poorly obtained for the MLR model (0.2890).

The sequence of models results from best to poor in order 
WSVM > WANN > ANN > SVM > MLR for Adityapur site. 
Hence, the WSVM model can be used to estimate SSC for 
the Adityapur site.

Results at Ghatshila site

Table 6 shows the results of the various performance met-
rics that were used to choose the best model. Table 6 shows 
that during training and testing, the values of r, RMSE (g/l), 
NSE, and WI ranged from 0.906 to 0.919 and 0.548 to 0.580, 
0.054 to 0.131 and 0.131 to 0.139, 0.819 to 0.843 and 0.030 
to 0.125, and 0.946 to 0.956 and 0.722 to 0.746, respec-
tively. A-3 model with architecture (5-9-1) was observed 
to be superior model as compared to other ANN models. 

Table 4  Findings of the gamma test obtained for different combina-
tions of input variables for the Ghatshila site

St = f(ht,ht−1,ht−2,ht−3,Qt,Qt−1,Qt−2,Qt−3,St−1,St−2,St−3) = f(1111111111-
1)
Bold represents the best input combination

Model no. Mask (combination) Gamma V-ratio

M1 10001000100 0.0473 0.1891
M2 10001000110 0.0407 0.1626
M3 10001000111 0.0046 0.1853
M4 10001100100 0.0416 0.1662
M5 10001100110 0.0501 0.2003
M6 10001100111 0.0485 0.1938
M7 10001110100 0.0506 0.2025
M8 10001110110 0.5008 0.2003
M9 10001110111 0.0485 0.1938
M10 10001111100 0.0506 0.2025
M11 10001111110 0.0505 0.2019
M12 10001111111 0.0486 0.1944
M13 11001000100 0.0472 0.1888
M14 11001000110 0.0477 0.1906
M15 11001000111 0.0488 0.1950
M16 11001100100 0.0442 0.1769
M17 11001100110 0.0503 0.2010
M18 11001100111 0.0458 0.1833
M19 11001110100 0.0424 0.1695
M20 11001110110 0.0472 0.1887
M21 11001110111 0.0467 0.1887
M22 11001111100 0.0430 0.1720
M23 11001111110 0.0512 0.2050
M24 11001111111 0.0463 0.1853
M25 11101000100 0.0469 0.1878
M26 11101000110 0.0456 0.1826
M27 11101000111 0.0444 0.1776
M28 11101100100 0.5112 0.2045
M29 11101100110 0.0492 0.1969
M30 11101100111 0.0467 0.1870
M31 11101110100 0.0456 0.1822
M32 11101110110 0.0404 0.1618
M33 11101110111 0.0504 0.2014
M34 11101111100 0.0472 0.1889
M35 11101111110 0.0489 0.1956
M36 11101111111 0.0443 0.1773
M37 11111000100 0.0427 0.1708
M38 11111000110 0.0430 0.1719
M39 11111000111 0.0437 0.1747
M40 11111100100 0.0486 0.1945
M41 11111100110 0.0463 0.1851
M42 11111100111 0.0416 0.1663
M43 11111110100 0.0457 0.1826
M44 11111110110 0.0433 0.1731
M45 11111110111 0.0410 0.1639
M46 11111111100 0.0368 0.1474
M47 11111111110 0.0402 0.1607
M48 11111111111 0.0434 0.1735
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Likewise, the values of r, RMSE (g/l), NSE, and WI for 
WANN model varied from 0.940 to 0.950 and 0.703 to 
0.725, 0.099 to 0.107 and 0.099 to 0.115, 0.884 to 0.902 
and 0.333 to 0.500, and 0.968 to 0.971 and 0.827 to 0.845, 
respectively, during training and testing phases. W-1 model 
with architecture (20-3-1) found best among all WANN 
models. From Table 5, it is clear that the values of r, RMSE, 
NSE, and WI for SVM ranged from 0.886 to 0.891 and 0.579 
to 0.586, 0.144 to 0.148 g/l and 0.125 to 0.128 g/l, 0.779 
to 0.791 and 0.177 to 0.206, and 0.940 to 0.942 and 0.748 
to 0.753, respectively, during training and testing. S-1 with 
structure (C = 10, γ = 0.2, ε = 0.1) found superior among 
SVM. During the training and testing phases of the hybrid-
ized wavelet SVM model, the values for r, RMSE, NSE, and 
WI ranged from 0.928 to 0.929 and 0.749 to 0.751, 0.116 
to 0.117 g/l and 0.095 to 0.096, 0.861 to 0.862 and 0.538 
to 0.543, and 0.962 and 0.859, respectively. Of all WSVM 
models, WS-1 with structure (C = 10, = 0.05, ε = 0.1) was 
found to be superior.

Table 6 reveals that the WSVM model observed the most 
accurate models among all developed models at the Ghat-
shila site. PCC, RMSE, NSE, and WI values were obtained 
as 0.928 and 0.751, 0.117 g/l and 0.095 g/l, 0.861 and 0.541, 
and 0.962 and 0.859, respectively, during training and test-
ing phases. The results also showed that the NSE values 
for the WSVM model during the testing phase significantly 
improved compared to other models.

The line diagram and scatter plots at the Ghatshila site 
for all created models are shown in Figs. 10a–e and 11a–e. 
The qualitative results from the figures showed that the pre-
dicted values were over-predicted and under-predicted for 
SSC values for almost all models. The R2 values obtained 
maximum for WSVM model (0.5639) followed by WANN 
values (0.5250) and then followed by MLR model (0.2890).

Thus, based on the obtained results discussed above for 
the Ghatshila site, the wavelet hybridized model (WSVM 
and WANN) outperformed all other models by a large 

margin. The sequence of the best to poor performance of 
models given as WSVM > WANN > MLR > SVM > ANN.

The comparative results of each of the best-developed 
Adityapur and Ghatshila sites are shown in Table 7. This 
table shows that the wavelet hybridized model was found to 
be superior to all other models. It is because of the applica-
tion of the wavelet transform that may find various sub-series 
of the primary time series data that have extra information 
obscured by the original time series data. Wavelet transform 
improves the model performance because it simultaneously 
considers both time and frequency information available 
within the signal (Nourani et al. 2009).

Our results are similar to Nourani et al. (2018), who 
applied the SVM technique with different input combina-
tions to predict monthly suspended sediment load and stated 
that the correlation coefficient values ranged from 0.49 to 
0.91 RMSE varied from 0.015 to 0.9. Furthermore, for the 
SVM in sediment yield prediction, our findings agree with 
Kumar et al. (2016), who found that correlation coefficients 
ranged from 0.66 to 0.90 for training models and from 0.24 
to 0.93 for the testing phase. For SVM, the findings of this 
model are close and in line with Choubin et al. (2018), who 
concluded that the SVM gave correlations varied from 
0.43 to 0.67 under different combinations for forecasting 
the suspended sediment. Moreover, Sharafati et al. (2020) 
used WSVM and SVM models in sediment yield (SY) mod-
eling. They observed that the WSVM model produced better 
results than other algorithms. Their outcomes are accept-
able and agree with our results. They showed that the use 
of WSVM is a more reliable alternative to conventional SY 
models. Besides, the efficiency of a wavelet-based model in 
the prediction of suspended sediment load was investigated 
by Nourani et al. (2009). They used WSVM and WANN 
wavelet complementary versions, respectively. Their out-
puts pointed out that the WSVM integrated model gener-
ated more reliable results than WANN. Liu et al. (2013) 
developed a WANN complement model. When the findings 

Fig. 7  Correlation graph of 
input variables for all dataset 
with output St. at a Adityapur, b 
Ghatshila
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from WANN and ANN were compared, it was discovered 
that the WANN model could better forecast the extremely 
nonlinear time series than ANN. Also, as reported by, Partal 
and Cigizoglu (2008), the wavelet-ANN model demonstrated 
higher levels of accuracy than both the conventional ANN 

and the SRC. The results show that wavelet-ANN is capa-
ble of capturing better approximations for peak values. Jain 
(2012) applied ANN, fuzzy logic, and evolutionary algo-
rithms in river stage–discharge–sediment rating modeling. 

Table 5  Performance indicators 
of ANN, WANN, SVM, 
WSVM, and MLR models 
during the training and testing 
at the Adityapur site

Bold represents the best model among developed models

Model Structure Dataset PCC RMSE (g/l) NSE WI

ANN-A
A-1 6-4-1 Train 0.783 0.111 0.613 0.866

Test 0.568 0.103 -0.357 0.699
A-2 6-8-1 Train 0.799 0.107 0.636 0.884

Test 0.567 0.098 -0.216 0.693
A-3 6-13-1 Train 0.810 0.106 0.644 0.894

Test 0.562 0.106 -0.425 0.690
A-4 6-14-1 Train 0.849 0.094 0.721 0.913

Test 0.591 0.099 -0.210 0.721
A-5 6-15-1 Train 0.801 0.109 0.628 0.888

Test 0.632 0.097 -0.252 0.729
WANN-A
W-1 24-9-1 Train 0.853 0.094 0.722 0.918

Test 0.718 0.071 0.356 0.812
W-2 24-10-1 Train 0.848 0.095 0.717 0.908

Test 0.634 0.078 0.232 0.772
W-3 24-15-1 Train 0.863 0.090 0.745 0.921

Test 0.645 0.072 0.339 0.776
W-4 24-16-1 Train 0.835 0.099 0.691 0.899

Test 0.663 0.075 0.278 0.767
SVM-A
S-1 � = 0.9, ε = 0.01 Train 0.760 0.117 0.568 0.859

Test 0.609 0.087 0.043 0.759
S-2 � = 0.1667, ε = 0.1 Train 0.760 0.117 0.569 0.859

Test 0.610 0.086 0.046 0.760
S-3 � = 0.1667, ε = 0.01 Train 0.768 0.114 0.586 0.857

Test 0.572 0.094 -0.139 0.724
S-4 � = 0.1667, ε = 0.001 Train 0.767 0.115 0.584 0.857

Test 0.590 0.091 -0.026 0.741
WSVM-A
WS-1 � = 0.04167, ε = 0.1 Train 0.844 0.096 0.711 0.907

Test 0.781 0.057 0.591 0.878
WS-2 � = 0.04167, ε = 0.01 Train 0.844 0.095 0.712 0.907

Test 0.777 0.057 0.582 0.875
WS-3 � = 0.04167, ε = 0.001 Train 0.847 0.095 0.714 0.906

Test 0.745 0.062 0.516 0.856
WS-4 � = 0.1, ε = 0.1 Train 0.845 0.095 0.713 0.906

Test 0.764 0.059 0.556 0.867
MLR-A Train 0.897 0.112 0.606 0.862

Test 0.592 0.111 -0.563 0.675
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When the findings of SVR were compared to those of ANNs, 
it was discovered that SVR outperformed ANNs.

The results for both the sites are also verified from the 
Taylor diagram. The Taylor diagram consists of a line des-
ignated as a straight line and standard deviation and root-
mean-square difference (RMSD) designated as curvilinear 
(Fig. 12). Because of the highest correlation values and 

lower standard deviation and RMSD values for both loca-
tions, the findings of the wavelet hybridized model were 
found to be superior. The Taylor diagram also shows that 
the WSVM model got closer to the observed SSC values for 
both locations. On both sites, the Taylor diagram yields the 
same series of models as previously mentioned.

Table 6  Performance indicators 
of ANN, WANN, SVM, 
WSVM, and MLR models 
during the training and testing 
at the Ghatshila site

Bold represents the best model among developed models

Model Structure Dataset PCC RMSE (g/l) NSE WI

ANN-G
A-1 5-4-1 Train 0.919 0.054 0.843 0.956

Test 0.558 0.136 0.066 0.733
A-2 5-5-1 Train 0.906 0.065 0.819 0.946

Test 0.562 0.131 0.125 0.736
A-3 5-9-1 Train 0.909 0.131 0.825 0.948

Test 0.580 0.137 0.055 0.746
A-4 5-10-1 Train 0.914 0.128 0.834 0.952

Test 0.548 0.139 0.030 0.722
WANN-G
W-1 20-3-1 Train 0.945 0.103 0.892 0.971

Test 0.725 0.103 0.462 0.845
W-2 20-5-1 Train 0.950 0.099 0.902 0.974

Test 0.703 0.115 0.333 0.827
W-3 20-10-1 Train 0.944 0.105 0.889 0.969

Test 0.718 0.099 0.500 0.833
W-4 20-15-1 Train 0.940 0.107 0.884 0.968

Test 0.716 0.100 0.491 0.829
SVM-G
S-1 � = 0.2, ε = 0.1 Train 0.891 0.144 0.791 0.942

Test 0.586 0.125 0.206 0.753
S-2 � = 0.2, ε = 0.01 Train 0.888 0.147 0.782 0.941

Test 0.582 0.125 0.180 0.751
S-3 � = 0.2, ε = 0.001 Train 0.886 0.148 0.779 0.940

Test 0.579 0.128 0.177 0.748
S-4 � = 0.5, ε = 0.1 Train 0.886 0.148 0.779 0.940

Test 0.579 0.128 0.177 0.748
WSVM-G
WS-1 � = 0.05, ε = 0.1 Train 0.928 0.117 0.861 0.962

Test 0.751 0.095 0.543 0.859
WS-2 � = 0.05, ε = 0.01 Train 0.928 0.117 0.861 0.962

Test 0.751 0.095 0.540 0.859
WS-3 � = 0.05, ε = 0.001 Train 0.929 0.116 0.862 0.962

Test 0.749 0.096 0.538 0.858
WS-4 � = 0.5, ε = 0.1 Train 0.928 0.117 0.861 0.962

Test 0.751 0.095 0.543 0.859
MLR-G Train 0.897 0.139 0.805 0.944

Test 0.592 0.129 0.163 0.752
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Conclusions

Estimating river sediment volumes is vital for measuring 
river sediment flow, designing dams, storage structures, and 
canals, evaluating environmental effects, and deciding the 
effectiveness of watershed management and other catch-
ment treatments. In the present analysis, daily SSC model 
estimation was studied at the Adityapur site and Ghatsh-
ila site in the Saraikela Kharsawan district of Jharkhand, 
India. Hydrological datasets containing the daily stage (h), 
discharge (Q), and SSC for 10 years (2004–2013) period 
from June to October were taken for analysis. Five data-
driven approaches, namely artificial neural network (ANN), 

support vector machine (SVM), wavelet-based artificial neu-
ral network (WANN), wavelet-based support vector machine 
(WSVM), and multi-linear regression (MLR) techniques 
were employed for modeling SSC for the study area. The 
gamma test was used for selecting input variables for the 
model, as mentioned earlier. The combination showed the 
most negligible value of Γ and Vratio as 0.0813 and 0.3253, 
respectively, for input combinations based on the gamma 
test ht + ht−1 + Qt + Qt−1 + Qt−2 + St−1 (mask-11001110100). 
Likewise, the combination ht + Qt + St−1 + St−2 + St−3 (mask-
10001000111) observed the minimum values of Γ, and Vratio 
as 0.0046 and 0.1853, respectively. Therefore, it was con-
sidered as input variables for modeling. The performance 

Fig. 8  Line diagram of devel-
oped models a ANN, b WANN, 
c SVM, d WSVM and e MLR 
during the testing phase for 
Adityapur sites
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of the model was evaluated through quantitative indicators 
(RMSE, PCC, and WI) and qualitative indicators (time vari-
ance map, scatter plot, and Taylor diagram) between actual 
and expected SSC (g/l) values. According to our findings, 
the WSVM model was the most reliable model among all 
existing models. Throughout the training and testing opera-
tions at the Adityapur location, PCC, RMSE, NSE, and WI 
values were 0.844 and 0.781, 0.096 g/l and 0.057 g/l, 0.711 
and 0.591, and 0.907 and 0.878, respectively. It was also the 
most precise model on the Ghatshila site. During the training 

and testing stages, the PCC, RMSE, NSE, and WI values 
were 0.928 and 0.751, 0.117 g/l and 0.095 g/l, 0.861 and 
0.541, and 0.962 and 0.859, respectively. The WSVM model 
outperformed the ANN, WANN, SVM, and model MLR 
models. The wavelet hybridized model (WSVM and WANN) 
performed better at both locations than the non-wavelet 
hybridized model. Also, the WSVM and WANN models’ 
best performance can assist researchers’ in the future in 
using extremely variable SSC data for such modeling.

Fig. 9  Scatter plots of devel-
oped models a ANN, b WANN, 
c SVM, d WSVM and e MLR 
during the testing phase for 
Adityapur sites
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Fig. 10  Line diagram of devel-
oped models a ANN, b WANN, 
c SVM, d WSVM and e MLR 
during the testing phase for 
Ghatshila sites



 Applied Water Science (2022) 12:87

1 3

87 Page 18 of 21

Fig. 11  Scatter plots of devel-
oped models a ANN, b WANN, 
c SVM, d WSVM and e MLR 
during testing for Adityapur 
sites

Table 7  Comparative results of models during testing for both sites

Model PCC RMSE (g/l) NSE WI

Adityapur
A-5 0.632 0.097 − 0.252 0.729
W-1 0.718 0.071 0.356 0.812
S-2 0.610 0.086 0.046 0.760
WS-1 0.781 0.057 0.591 0.878
MLR 0.592 0.111 − 0.563 0.675
Ghatshila
A-3 0.580 0.137 0.055 0.746
W-1 0.725 0.103 0.462 0.845
S-1 0.586 0.125 0.206 0.753
WS-1 0.751 0.095 0.543 0.859
MLR 0.592 0.129 0.163 0.752
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