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Abstract
Assessing irrigation water quality is one of the most critical challenges in improving water resource management strate-
gies. The objective of this work was to predict the irrigation water quality index of the Bahr El-Baqr, Egypt, based on non-
expensive approaches that requires simple parameters. To achieve this goal, three artificial intelligence (AI) models (Support 
vector machine, SVM; extreme gradient boosting, XGB; Random Forest, RF) and four multiple regression models (Stepwise 
Regression, SW; Principal Components Regression, PCR; Partial least squares regression, PLS; Ordinary least squares 
regression, OLS) were applied and validated for predicting six irrigation water quality criteria (soluble sodium percent-
age, SSP; sodium adsorption ratio, SAR; residual sodium carbonate, RSC; potential of salinity, PS; permeability index, PI; 
Kelly’s ratio, KR). Electrical conductivity (EC), sodium  (Na+), calcium  (Ca2+) and bicarbonate  (HCO3−) were used as input 
exploratory variables for the models. The results indicated the water source is not suitable for irrigation without treatment. 
A good soil drainage system and salinity control measures are required to avoid salt accumulation within the soil. Based on 
the performance statistics of the root mean square error (RMSE) and the scatter index (SI), SW emerged as the best (0.21% 
and 0.03%) followed by PCR and PLS with RMSE 0.22% and 0.21% for SAR, respectively. Based on the classification of 
the SI, all models applied having values less than 0.1 indicate good prediction performance for all the indices except RSC. 
These results highlight potential of using multiple regressions and the developed machine learning methods in predicting 
the index of irrigation water quality, and can be rapid decision tools for modelling irrigation water quality.

Keywords Irrigation water quality index · Machine learning · Support vector machine · Stepwise regression · Bahr El-Baqr 
drain

Introduction

Water resources are critical in the drinking, industrial, and 
agricultural sectors. As a result, improved water resource 
quality significantly reduces the cost of water treatment 
for irrigation and boosts agricultural yield (Kouadri et al., 

2021a, 2021b). Thus, water shortage is a global concern and 
is going to get worse as indicated by climate change projec-
tions (Pleguezuelo et al., 2018). This is particularly so for 
arid and semi-arid areas, like Egypt that depends on irrigated 
agriculture (Elbeltagi et al., 2021a, 2021b, 2020a, 2021c, 
2021d, 2020b; Moharir et al., 2019). Irrigated agriculture 
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needs an adequate supply of usable water. Water quality 
issues were frequently overlooked in the past due to widely 
available high-quality water supplies (Ayers and West-
cot, 1985). Nowadays, water quality is becoming an issue 
because of the intensive and competitive use of water. This 
means that new irrigation projects, as well as the existing 
looking for additional or supplemental supplies, may have 
to rely on low-quality salt-laden water from unfavourable 
sources (Pande and Moharir, 2018). Unless proper strate-
gies are put in place, the use of poor quality irrigation water 
could lead to problems with soil salinity, irritation rate 
decline, plant growth toxicity, and other associated problems 
(Ayers and Westcot, 1985).

The most promising approach for increasing irriga-
tion water availability is agricultural drainage water reuse 
(Assar et al., 2020). Due to Egypt's limited water supplies, 
agricultural drainage water must be reused for irrigation 
(Abdel-Fattah and Helmy, 2015; Abdel-Fattah et al., 2020). 
However, there are some concerns about the quality of the 
reuse water. The reuse of this drainage water without proper 
treatment may have negative impacts on the soil, crop, and 
irrigation system. A variety of metrics are used to assess 
the quality of irrigation water given by several organiza-
tion and agencies (El Bilali and Taleb, 2020). These indices 
include soluble sodium percentage (SSP) (Todd and Mays, 
2004), sodium adsorption ratio (SAR) (Ayers and Westcot, 
1985), residual sodium carbonate (RSC) (Richards, 1954a), 
potential of salinity (PS) (Doneen, 1964), permeability index 
(PI) (Doneen, 1964; Gholami and Srikantaswamy, 2009) and 
Kelley’s ratio (KR) (Kelley, 1963). Therefore, attempts are 
being made to develop a non-physical approach based on 
artificial intelligence (AI) to predict the water quality index 
(Gaya et al., 2020; Lu and Ma, 2020).

AI-based modelling is a useful tool for rapid prediction of 
the water quality indices. Some of the benefits of AI models 
include their nonlinear structure, capacity to anticipate com-
plicated events, handling large datasets at diverse sizes, and 
handling missing data. Furthermore, AI systems have been 
demonstrated to be very capable of forecasting and moni-
toring water quality (Ahmed et al., 2019; Lu and Ma, 2020; 
Abdel-Fattah et al., 2020; Mokhtar et al., 2021b, 2021a). 
Also, AI is an appealing, rapid, and direct computing method 
for water quality modelling (Gaya et al., 2020; Tung and 
Yaseen, 2020; Yasin and Karim, 2020). For instance, sup-
port vector machine (SVM) (Hamzeh Haghibi et al., 2018), 
least square SVM (LSVM) (Leong et al., 2019) and artifi-
cial neural network (ANN) (Sakizadeh, 2016; Hameed et al., 
2017; Machiwal et al., 2018) have successfully been used for 
water quality predictions. ANN was applied for prediction of 
the water quality index of the Langat River Basin, Malaysia 
(Juahir et al., 2004; Gazzaz et al., 2012). Mohammadpour 
et al. (2015) compared SVM, radial basis function neural 
network and backpropagation neural network techniques for 

the forecast of the water quality in a wetland, and ANN was 
applied to predict the water quality index in the Red Sea 
State, Sudan (Ismael et al., 2021).

Currently, a few investigators are developing AI models 
to predict irrigation water quality index (IWQI). The ground-
water quality for drinking purposes was assessed using sta-
tistical index of Akola and Buldhana districts, Maharashtra, 
India (Pande et al., 2020), also by using radial basic func-
tion (RBF) networks (Panneerselvam et al., 2021). ANN was 
used to forecast the suitability of groundwater for irriga-
tion in India with 13 physicochemical parameters (Wagh 
et al., 2016). Interestingly, most of the previous studies have 
found good performance of AI algorithms for predicting 
water quality (Abdel-Fattah et al., 2020; Abba et al., 2020; 
Ahmed et al., 2019). Generally, multiple linear regression 
seeks to discover a link between a large number of independ-
ent or predictor factors (exploratory variables) and a depend-
ent variable (Chenini and Khemiri, 2009). Multiple linear 
regression is regarded as a reliable approach for assessing 
groundwater quality since it creates a minimal dataset of 
indicators based on water's chemical composition (Doran 
et al., 1994). Using structural equation modelling, all of the 
predictor variables are combined in a single model to find 
potential interactions between them (Chenini and Khemiri, 
2009). Many researchers, such as Charulatha et al. (2017); 
Yildiz and Degirmenci (2015) and Noori et al. (2010), have 
used regression analysis for water quality assessment. Multi-
ple linear regression and structural equation modelling were 
used to assess the quality of groundwater by Chenini and 
Khemiri (2009). They found multiple linear regression as 
a useful tool for characterizing groundwater quality. Mul-
tiple linear regression and principal component analysis 
were used by Viswanath et al. (2015) and observed that the 
structural equation modelling allows for the simultaneous 
examination of the complete parameter system. Monitoring 
water quality and quantity of national watersheds in Turkey, 
Odemis and Evrendilek (2007) reported that multiple linear 
regression models provide a valuable assessment of con-
trols that aid in the development of integrated and sustain-
able watershed management strategies. Yıldız and Karakuş 
(2019) explored the estimation of irrigation water quality 
index with the creation of an ideal model utilizing multiple 
regression and an artificial neural network (ANN) model. 
The approaches demonstrated to be effective ways for cal-
culating irrigation water quality indexes by utilizing several 
water qualities measures. Assessment of water quality of 
Brahmani River using correlation and regression analysis 
carried out by Nayak (2020) showed that regression analysis 
might be a valuable approach for monitoring water quality 
and predicting trends in water quality variation.

The primary objective of this research is to employ arti-
ficial intelligence algorithms to predict the irrigation water 
quality index of the Bahr El-Baqr drain based on readily 
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observed and fewer data (EC,  Na+,  Ca2+ and  HCO3
-). The 

Bahr El-Baqr drain, located on the eastern side of the Nile 
Delta area (Fig. 1), is one of Egypt's major drains, stretching 
for 106 kilometres. It is one of Egypt's most contaminated 
drains as stated by (Abdel-Shafy and Aly, 2002). The study's 
findings will assist farmers in arid/semi-arid nations man-
age irrigation water quality to boost agricultural productivity 
and policymakers make feasible water resource management 
decisions.

Materials and methods

Irrigation water samples and chemical composition 
analysis

A total of 105 water samples were collected during July 
2020 from the Bahr El-Baqr drain. Figure 1 shows the loca-
tion of the sampling sites which are uniformly spread out 
along the whole drain. At each location, 1 litre of water was 
collected at 1 m depth. The samples were immediately fil-
tered and prepared for chemical composition analysis based 

on the standard methods described by APHA (1998) and 
(Richards, 1954a).

An EC-meter and a pH-meter (with a combined glass/
reference Ag/AgCl electrode) were used to determine the 
electrical conductivity (EC,  dSm-1) and the pH of the water 
on site. Sodium  (Na+) and potassium  (K+) concentrations 
were determined using a flame photometer, while calcium 
 (Ca2+) and  (Mg2+) were volumetrically determined by titra-
tion with ethylene diamine tetra acetic acid disodium salt 
(EDTA-2Na). Chloride  (Cl-) was determined by titration 
with silver nitrate solution in the presence of potassium 
chromate indicator. The carbonate  (CO3

2-) and bicarbonate 
 (HCO3

-) compositions were determined by titration with a 
standard solution of sulphuric acid using phenolphthalein 
as an indicator for former and methyl-orange for latter. The 
sulphate  (SO4

2-) composition was calculated by the differ-
ence between total cations and anions.

Irrigation water quality’s criteria

The three principal problems that can arise from poor qual-
ity irrigation water are salinity hazard, sodicity hazard and 
toxicity hazard (Ayers and Westcot, 1985). The water from 

Fig. 1  Location of the Bahr El-Baqr drain and sampling locations in green along the drain
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Bahr El-Baqr drain is used for agricultural irrigation. Thus, 
it is urgent to monitor and predict the chemical composition 
of this irrigation water source. The chemical composition 
of water (i.e., pH, EC,  Ca2+,  Mg2+,  Na+,  K+,  CO3

2-,  HCO3
-, 

 Cl- and  SO4
2-) from the drain was used to calculate the water 

quality Criteria indicated in Table 1. Water with SSP less 
than 60 is safe with little sodium accumulations that will 
cause a breakdown of the soil’s physical properties (Fipps, 
2003). SAR places the irrigation water into four categories; 
low (<10), medium (10–18), high (18–26), and very high 
(>26) (Richards, 1954a). Based on RSC criterion, the irriga-
tion water is classified into three; no-hazard (<1.25 mmolc 
 l-1), medium hazard (1.25–2.5 mmolc  l-1) and extreme haz-
ard (>2.5 mmolc l-1). The water quality criteria of PI have 
three classes; excellent (>75%), good (25–75%) and unsuit-
able (<25%) (Al-Amry, 2008). The PS criterion divides the 
water quality into three classes; safely used in fine, medium 
and coarse textured soils (1-3 mmolc  l-1), safely used in 
medium and coarse textured soils (3–15 mmolc  l-1), and 
safely used only in coarse textured soils (15–20 mmolc  l-1). 
The irrigation water quality criteria based on KR have two 
classes; safe (< 1 mmolc  l-1) and unsuitable (>1 mmolc  l-1).

Multiple regression and machine learning models 
applied

In this study, we used seven models (machine learning and 
multiple regressions) to predict irrigation water quality cri-
teria defined in Figure 2. The water quality criteria of SSP, 
SAR, RSC, PS, PI and KR were considered as the depend-
ant variables and EC,  Na+,  Ca2+ and  HCO3

- were used as 
input variables in Table 1. To facilitate the regression task, 
the input data were normalized to the range from 0 to 1 as:

where  Xn is the normalized data,  X0 is the original data, 
while  Xmin and  Xmax are the minimum and maximum values 

(1)Xn =
X0 − Xmin

Xmax − Xmin

of the original data. The datasets were divided into 75% for 
training and 25% for testing. Scikit-learn 0.22.1, a Python 
computer language package, was used to create the machine 
learning models. The computations were performed on 
Google Cloud Platform virtual software. For each model, 
the hyper-parameter tuning was carried out using a grid 
search strategy in order to obtain the best score as well as 
the optimum parameter settings that gave the lowest predic-
tion errors in the testing stages. Below is a brief description 
of the models.

Machine learning models

Support vector machine (SVM) SVM algorithm was devel-
oped by Vapnik (Vapnik, 2013). SMV is a supervised 
learning algorithm that can be used for both regression and 
classification. SVR uses a similar theory as SVM for classi-
fication, with a few minor changes. The main aim is to mini-
mize the errors by individualizing the hyperplane which 
increases the limit of tolerance. In contrast to an ANN 
model, which typically has several local minima, the SVM 
provides a unique solution due to the convex nature of the 
optimality issue (Chen et al., 2013; Kouadri et al., 2021b). 
The estimated function in the SVM method is shown as fol-
lows:

where φ(x) refers to the higher-dimensional feature space 
translated from input vector x. ω and b correspond the 
weights vector and a threshold, respectively, which may be 
determined by minimizing the following regularized risk 
function: 

where C represents the error's penalty parameter,  di repre-
sents the intended value, n is the observations number, and 

(2)f (x) = ��(x) + b

(3)R(C) = C
1

n

n∑

i=1

L(di, yi) +
1

2
∥ � ∥2

Table 1  The equation applied to calculate the water quality Criteria

Criterion Equation Unit References

Soluble sodium percentage SSP =
Na+

Ca2++Mg2++Na++K+
× 100 % Richards, (1954a, b)

Sodium adsorption ratio SAR =
Na+√

Ca2++Mg2+

2

– Ayers and Westcot, (1985)

Residual sodium carbonate RSC =
(
CO=

3
+ HCO−

3

)
−
(
Ca2+ +Mg2+

)
mmolc  l−1 Richards, (1954a, b)

Permeability index
PI =

Na++
√
HCO−

3

Ca2++Mg2++Na+
× 100

% Doneen, (1964) and Siamak 
and Srikantaswamy, 
(2009)

Kelly ratio KR =
Na+

Ca2++Mg2+
mmolc  l−1 Kelley, (1963)

Potential of salinity PS = Cl− +
1

2
SO=

4
mmolc  l−1 Doneen, (1964)
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C
1

n

n∑
i=1

L
�
di, yi

�
 is the empirical error, in which the function 

 Lε is determined as:

where 1
2
‖�‖2 refers to the so-called regularization term and ɛ 

presents the tube size. Finally, the estimated function in Eq. 
(1) is represented explicitly by using Lagrange multipliers 
and exploiting the optimality constraints as:

where k(x,  xi) corresponds the kernel function. (Vapnik, 
2013; Fan et al., 2018) provided detailed information and 
SVM algorithm computation techniques. We applied two 
different kernels (radial basis function and linear) and regu-
larization parameter C from the set (1, 2, 3, 4, 5) and main-
tained the remaining hyper-parameters default values. The 
best score was achieved by setting C=5 and kernel='linear').

Extreme gradient boosting (XGB) Chen and Guestrin, 
(2016) developed the XGB algorithm as a unique imple-
mentation approach for the gradient boosting machine 
based on regression trees. The method is built on the con-

(4)L�(d, y) = |d − y| − �|d − y| ≥ � or 0 otherwise

(5)f
(
x, �i, �

∗
i

)
=

n∑

i=1

(
�i − �∗

i

)
K
(
x, xi

)
+ b

cept of "boosting," which combines all of the predictions 
of a group of "weak" learners to create a "strong" learner 
using additive training procedures. XGB reduces over-
fitting and under-fitting issues and can reduce computing 
expenses (Mokhtar et al., 2021a, b). The general function 
for predicting at step t is as follows:

where ft (xi) denotes the learner at each step t, fi (t) and fi (t−1) 
denote the predictions at steps t and t−1, and xi represents 
the input variable.To prevent the over-fitting problem while 
maintaining the model's computing speed, the XGB uses 
the analytic formula below to evaluate the "goodness" of the 
model from the original function:

where l denotes the loss function, n refers to the observations 
number and Ω represents the regularization term described 
as:

(6)f
(t)

i
=

t∑

k=1

fk
(
xi
)
= f

(t−1)

i
+ ft

(
xi
)

(7)Obj(t) =

n∑

k=1

l
(
yi, yi

)
+

t∑

k=1

Ω
(
fi
)

Fig. 2  Flow chart of the meth-
odology of IWQI prediction
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where ω denotes the leaves scores vector, λ is the regulariza-
tion parameter, and γ is the lowest loss required to further 
divide the leaf node. More details regarding the XGB algo-
rithm's computing techniques may be found in Chen and 
Guestrin (Chen and Guestrin, 2016). We used the XGB with 
400 trees, 10 maximum depths, a learning rate of 0.1, with 
the other hyper-parameters set to their default levels. The 
following hyper-parameter settings were used: n estimators 
(number of trees) (100, 200, 300, 400, and 500); max depth 
(1, 2, 5, 10, and 12); and learning rate (0.05, 0.1 and 0.5).

Random forest (RF) Breiman, (2001) created the RF model, 
which is a set of decision trees with controlled variation. 
It is commonly used to solve regression and classification 
issues. A random forest regression is a subset of a bootstrap 
assembly. It is concerned with random binary trees, which 
use a portion of the observations using the bootstrapping 
approach, in which a random subset of the training data-
set is picked from the raw dataset and used to create the 
model. This inquiry gave a full explanation of the RF model 
as well as the computing procedure (Breiman, 2001; Fer-
reira and da Cunha, 2020; Mokhtar et al., 2021a). To get the 
highest possible score, an RF was trained with 400 trees, a 
maximum depth of ten, and the other hyper-parameters set 
to their default levels. During the hyper-parameter tuning 
phase, the following hyper-parameter sets and values were 
evaluated: number of trees (100, 200, 300, 400, and 500), 
and max depth (1, 2, 5, 10, 12).

Multiple regressions

Stepwise regression The predictive variables are selected 
automatically in the stepwise regression method (Hock-
ing, 1975; Draper and Smith, 1981). Stepwise regression 
involves three main techniques: forward selection, backward 
elimination, and bidirectional elimination (Jia et al., 2016). 
The commonly utilized method was initially proposed by 
(Efroymson, 1960). It is an automated approach for sta-
tistical model selection where there are a large number of 
potential explanatory variables and no underlying theory on 
which to base the model selection. The stepwise process is 
most commonly employed in regression analysis; however, 
the basic idea is adaptable to many types of model selection. 
A test is run to see if any variables can be removed without 
significantly raising the residual sum of squares (RSS). The 
technique ends when the measure is (locally) maximized or 
when the available improvement falls below a crucial value. 
The selection procedure begins by including the variable 
that makes the greatest contribution to the model (the cri-
teria employed is the student’s t statistic). If the probability 

(8)Ω(f ) = �T +
1

2
�‖�‖2 associated with the t statistic of a second variable is smaller 

than the "probability for entrance," it is added to the model. 
The procedure is repeated with the third and remaining 
variables, analysing the impact of deleting each component 
from the model (still using the t statistic). The variable is 
eliminated if the likelihood is larger than the "probability of 
removal." The technique is repeated until there are no more 
variables that can be added or deleted.

Ordinary least squares regression (OLS) The most com-
monly used statistical method in regression is the OLS. A 
distinction is made between simple linear regression and 
multiple linear regression, the first one contains only one 
explanatory variable while the second contains several 
explanatory variables (Addinsoft, 2019). OLS is used to 
predict an outcome (Y, a quantitative dependent variable) 
through predictor variables  (X1,  X2,…,  Xp, the quantita-
tive explanatory variables) (Addinsoft, 2019). The model 
with p explanatory variables is written as:

where  yi denotes the dependent variable value for observa-
tion i,  xij refers to the value assigned to variable j for obser-
vation i, and ϵi is the random error with mean 0 and variance 
 s2 of the model for observation i, βj being the parameters of 
the model.

Principal component regression (PCR) Multicollinearity 
is a big problem with multiple linear regression analy-
sis due to the presence of a strong correlation between 
the explanatory variables, resulting in an increase in the 
regression parameter estimators. This makes the results of 
OLS unreliable since it is based on the assumption of no 
multicollinearity between the explanatory variables. PCR, 
first suggested by (Pearson, 1901), is used to address the 
multicollinearity problem, and it is based on principal 
component analysis (PCA) (Addinsoft, 2019). PCR appli-
cation has three steps: (1) runs a PCA to address multicol-
linearity problem, (2) performs an OLS regression on the 
selected components, and (3) computes the model param-
eters that denotes the input variables.

Partial least squares regression (PLS) PLS is a regres-
sion method that combines principal component analy-
sis (PCA) and multiple linear regression theories (Wold, 
1995). PLS overcomes multicollinearity and over-fitting 
problems through variable transformation to new orthog-
onal factors (Huang et  al., 2004). The PLS approach is 
rapid, efficient, and optimum for a covariance-based cri-
teria. It is advised when the number of variables is large 
and the explanatory factors are likely to be associated. The 

(9)yi = �0 +

p∑

j=1

�jxij + �i
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PLS regression model with components has the following 
equation:

where Y denotes the matrix of the dependent variables and 
X denotes the matrix of the explanatory variables. Th, Ch, 
Wh

* and Ph are the matrices produced by the PLS method 
while Eh is the matrix of the residuals. The regression coef-
ficients of Y on X are represented by the matrix B, which 
has h components created by the PLS regression process as 
follows:

Performance statistics for model evaluation

The mean absolute error (MAE), root mean square error 
(RMSE), and scatter index (SI) were used to evaluate the 
models in this work which are presented as follows:

where O represents the average values of the observed 
IWQI, Oi and Pi are the actual and foreseen IWQI, respec-
tively, and i represents the observations number. SD denotes 
the standard deviation between the anticipated and observed 
IWQI values.

(10)

Y = TcC
�
h
+ Eh

Y = XW∗
k
Ch + Eh

Y = XW∗
k

(
P�
h
Wh

)−1
C�
h
+ Eh

(11)B = Wh

(
P�
h
Wh

)−1
C�
h

(12)MAE =
1

n

n∑

i=1

||Ot − Pi
||

(13)RMSE =

√
i

n

∑(
Pi − Oi

)2

(14)SI =
RMSE

O−

Results and discussions

Chemical composition of the Bahr El‑Baqr drain 
water

The chemical composition of the Bahr El-Baqr Drain 
is summarized in Table 2. The chemical composition 
of the Bahr El-Baqr Drain clearly varies substantially. 
The values ranged from 6.9 to 8.31 with an average of 
7.64 ± 0.03 for pH, 1.25–2.70  dSm−1 with an average of 
1.59 ± 0.02 for EC, 1.62–3.42 mmolc  l−1 with an average 
of 2.52 ± 0.04 for  Ca2+, 0.77–2.09 mmolc  l−1 with an aver-
age of 1.46 ± 0.02 for  Mg2+, 7.04–14.25 mmolc  l−1 with 
an average of 10.31 ± 0.13 for  Na+, 0.09–8.30 mmolc  l−1 
with an average of 1.59 ± 0.17 for  K+, 1.52–4.77 mmolc 
 l−1 with an average 3.36 ± 0.05 for  HCO3

−, 5.45–12.65 
mmolc  l−1 with an average of 9.07 ± 0.13 for  Cl− and 
0.01–12.23  dSm−1 with an average of 3.43 ± 0.22 for 
 SO4

2−. These results agree with those of Abdel-Fattah and 
Helmy (2015) and Abdel-Fattah et al. (2020). The accept-
able level of irrigation water pH ranges between 6.5 and 
8.4 (Ayers and Westcot, 1985). Therefore, the pH values 
of the Bahr El-Baqr drain are within the acceptable limits 
for irrigation purposes. According to Richards (1954a), 
the water of Bahr El-Baqr drain is of high salinity and in 
agreement with the findings of Abdel-Fattah and Helmy 
(2015) and Abdel-Fattah et al. (2020). Accordingly, the 
water should not be used for irrigation process unless the 
soil has good drainage and a special management strategy 
for salinity control is put in place, or salt tolerant plants 
are being irrigated (Richards, 1954a). It is observed from 
the results that the dominant cation in the water is sodium 
and the concentration of the cations are in the following 
order;  Na+  >  Ca2+  >  Mg2+  >  K+. According to Ayers and 
Westcot (1985), the cations  (Na+,  K+,  Ca2+, and  Mg2+) 
are within the acceptable limits of irrigation water. Con-
cerning the anions, the dominant is chloride followed by 
sulphate and then bicarbonate. Also, the concentration 
of the anions is within the acceptable limits (Ayers and 
Westcot, 1985).

Table 3 shows that the water quality criteria of the Bahr 
El-Baqr drain vary greatly. The values ranged from 41.49 to 

Table 2  Chemical composition 
of the Bahr El-Baqr drain water

pH EC dS/m Cations, mmolc  l−1 Anions, mmolc  l−1

Ca2+ Mg2+ Na+ K+ HCO3
− Cl− SO4

2−

Min 6.90 1.25 1.62 0.77 7.04 0.09 1.52 5.45 0.01
Max 8.31 2.70 3.42 2.09 14.25 8.30 4.77 12.65 12.23
Mean 7.64 1.59 2.52 1.46 10.31 1.58 3.36 9.07 3.43
SD 0.27 0.24 0.39 0.25 1.33 1.74 0.51 1.31 2.25
SE 0.03 0.02 0.04 0.02 0.13 0.17 0.05 0.13 0.22



 Applied Water Science (2022) 12:76

1 3

76 Page 8 of 14

74.35 with an average of 65.51±0.67 for SSP, 4.63 to 9.95 
with an average of 7.34±0.09 for SAR, −2.99 to 1.07 with 
an average of −0.62±0.07 for RSC, 72.52–93.06 with an 
average of 84.93±0.32 for PI, 1.40–3.66 with an average 
of 2.62±0.04 for KR and 7.84–16.32 with an average of 
10.79±0.14 for PS. According to the SSP average (>60%), 
use of Bahr El-Baqr drain water may result in sodium accu-
mulation that could cause a breakdown of the soil’s physical 
properties (Todd and Mays, 2004; Fipps, 2003). The use of 
this polluted water for irrigation should be restricted to a 
reasonable degree. Regarding SAR, the Bahr El-Baqr drain 
water has low values. Gupta and Gupta (1997) and Richards 
(1954a) reported that low SAR water (low sodicity) can be 
utilized for irrigation on most soils with little chance of haz-
ardous amounts of exchangeable salt developing. The low 
RSC values (<1.25) indicate that the Bahr El-Baqr drain 
water is safe for irrigation process without alkalinity hazard 
development. With PI values greater than 75% (with an aver-
age 84.9), the water can be used for irrigation without soil 
permeability impairment (Al-Amry, 2008; Doneen, 1964; 
Raghunath, 1987). Long-time use of irrigation water con-
taining high levels of  Na+ could affect the physical proper-
ties of soil and impair soil permeability (Doneen, 1964). 
Meanwhile, KR values greater than one indicate that the 
water is unsuitable for irrigation (Kelley, 1963). The aver-
age PS value of 10.79 is an indication that the water can be 
safely used in medium and coarse textured soils. Doneen 
(1964) outlined possible salinity difficulties with irrigation 
water and pointed out that the appropriateness of irrigation 
water is reliant on more than just the percentage of solu-
ble salts. It has been observed that following consecutive 
irrigation whereas the concentration of highly soluble salts 
increases the salinity of the soil (Gholami and Srikantas-
wamy, 2009). The Bahr El-Baqr Drain water is characterized 
as high salinity-medium sodicity based on SAR and salin-
ity measurements, and is considered acceptable (usable) for 
irrigation purposes (Richards, 1954b).

Abdel-Fattah et al. (2020) reported that the chemical 
composition of irrigation water plays a crucial role in its 
quality. For identifying the basic criteria for evaluating the 
water quality, i.e., salinity hazard, sodicity hazard, alkalinity 
hazard and toxicity hazard), there is a need to determine the 
chemical composition of irrigation water (i.e., ECw, soluble 
cations and anions) (Zaman et al. 2018; Abdel-Fattah and 

Ayman, 2015). EC, SAR, KAR, RSC, SSP, and PI criteria 
were used to assess the appropriateness of water for agricul-
tural irrigation purposes by Kumar et al. (2016). Prunty et al. 
(1991) reported that SAR of irrigation water correlated with 
crop yield and quality. SSP is a key parameter for assessing 
agricultural water quality (Sarker et al., 2000). It reflects 
the possibility of degradation of the soil physical properties 
that influence plant growth. Salts build up in the soil (Lon-
genecker et al. 1969), causing soil structure dispersion that 
decreases the infiltration rate, (Agassi et al., 1981). Abouka-
rima et al. (2018) demonstrated that the rate of infiltration 
is sensitive to the SAR of the applied water. Sadick et al. 
(2017) observed a negative correlation between SAR, as well 
as KR, with Ca, Mg,  HCO3 and  CO3 which implies that high 
values of SAR are associated with decrease in these chemi-
cal parameters and vice versa. Aboukarima et al. (2018) and 
Aggag (2016) mentioned a positive correlation between EC 
and SAR of water. Raiham and Alam (2008) reported that 
there is negative correlation between RSC and Ca+Mg con-
centration a positive one with  CO3+HCO3. Xu et al. (2019) 
reported that high values of PI were correlated with high Na 
and  HCO3 ions in water. Agarwal et al. (1982) demonstrated 
a highly significant positive correlation between EC and the 
concentration of salts that may have an impact on irrigation 
water quality due to the salinity hazard.

Evaluation of the machine learning and regression 
models

The chemical composition 105 samples were used for the 
training and test stage. Table 4 presents the regression 
equations established for the different regression models 
(i.e., OLS, PCR and SW, PLS), and Fig. 3 displays the per-
formance statistics for all models. As judged by all of the 
performance statistics, SW emerged as the best model for 
predicting the water quality criteria followed by PCR. The 
highest RMSE was recorded by RF for SSP as 3.27%.

Moreover, the highest MAE was found in PI and SSP 
as 2.62% and 2.13%, respectively, for RF model. The  R2 
ranged from 0.53 to 0.98 (Fig. 2). SW recorded the highest 
 R2 values (0.87–0.98), followed by PCR, and the lowest by 
RF that ranged from 0.53 to 0.78. With the regression mod-
els, the highest  R2 values were similarly recorded for SSP 
by all regression models applied; this is also true among the 

Table 3  Summary of the water 
quality criteria

SSP % SAR RSC mmolc  l−1 PI % KR mmolc  l−1 PS mmolc  l−1

Min 41.49 4.63 −2.99 72.52 1.40 7.84
Max 74.35 9.95 1.07 93.06 3.66 16.23
Mean 65.51 7.34 −0.62 84.93 2.62 10.79
SD 6.82 0.96 0.68 3.27 0.41 1.45
SE 0.67 0.09 0.07 0.32 0.04 0.14
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machine learning models. Based on the classification of the 
SI index, the SVR, XGB and RF values were less than 0.1 
which suggest excellent models for all water quality indices 
except RSC. XGB and RF having an SI value of 0.52 for 
RSC, indicate poor models. This may be related to the sig-
nificant correlation between the input and output variables. 
Therefore, one of the most significant aspects of machine 
learning models for improving performance is the selection 
of input variables. Significantly, the SVR model emerged as 
the best model for predicting water quality index followed 
by XGB and then RF.

This finding is consistent with Leong et al. (2019) who 
used SVR model in forecasting the index of water quality at 
Perak state Malaysia. Furthermore, our results are similar to 
those reported by El Bilali and Taleb (2020) who used the 
RF method in the prediction of the irrigation water quality 
index in Nfifikh watershed in Morocco. Their RMSE and  R2 
values were 1.88 and 0.5 for KR, and 6 (mmolc l-1) and 0.6 
for SAR. Based on Figs. 4 and 5 and Table 4, which confirm 
the results from Fig. 2, the SW model is superior for predic-
tion of IWQI. SW model reported the lowest RMSE, MAE 
and SI values as 0.21%, 0.17 and 0.03, respectively, and the 
highest  R2 value of 0.98 for SAR equation, and this sup-
ports the findings of (Li et al., 2013). Finally, boxplot was 

developed to compare the performance of the AI models for 
PS and PI IWQI (Fig. 6).

Positive and negative estimate errors denote under-esti-
mation and over-estimation, respectively. Some parameters 
of the boxplot are the first quartile (Q1), third quartile (Q3), 
and inter-quartile range (IQR), and the median shown as a 
vertical line in the box. The SVR model having the lowest 
median error is selected as the best model. In error analysis, 
Q3 is more relevant than Q1 since it contains 75% of the 
error. It was observed that the SW model, with a Q3 differ-
ence of 0.2 compared to SVR’s value of 0.11 and XGB value 
has the highest accuracy. Moreover, SW has a lower IQR 
than the other two models, indicating that the error distribu-
tion is close to zero. In addition, the median line in the centre 
of the rectangle indicates the error distribution's normalcy.

In general, the model’s prediction accuracy varies over 
the AI models and also with the IWQI. This may be related 
to the models’ structure, and the inputs applied for each 
model. Our findings agreed with the results of El Bilali and 
Taleb (2020). In contrast, our results disagree with Wang 
et al. (2020) who used only 17 samples in predicting anaero-
bic digestion performance. Although, increasing the data 
size of the model and applying the ensemble models play a 
critical role in improving the prediction accuracy of SVM 
(Chen et al., 2020; Zhou and Feng, 2019). Moreover, our 

Table 4  The regression 
equations established between 
the water quality indices and the 
chemical composition variables

Model Parameter Equation

OLS SSP SSP = 63.73–34.87*EC + 5.64*Na-0.53*Ca + 0.063*HCO3

SAR SAR = 2.70–0.199*EC + 0.73*Na-0.95*Ca-0.046*HCO3

RSC RSC = -1.11–0.34*EC + 0.048*Na-1.06*Ca + 0.95*HCO3

PI PI = 85.22–2.61*EC + 1.39*Na-6.24*Ca + 1.57*HCO3

KR KR = 1.91–0.12*EC + 0.26*Na-0.67*Ca-0.032*HCO3

PS PS = 4.19 + 6.05*EC-0.044*Na + 0.15*Ca + 2–0.85*HCO3

SW SSP SSP = 63.41–36.03*EC + 5.74*Na
SAR SAR = 2.67–0.40*EC + 0.76*Na-0.98*Ca
RSC RSC = -0.71–1.17*Ca + 0.91*HCO3
PI PI = 85.42–4.37*EC + 1.73*Na-6.46*Ca + 1.47*HCO3
KR KR = 1.899–0.27*EC + 0.28*Na-0.67*Ca
PS PS = 4.27 + 6.23*EC-0.99*HCO3

PCR SSP SSP = 62.19–35.15*EC + 5.73*Na-0.44*Ca + 0.31*HCO3

SAR SAR = 2.70–0.24*EC + 0.75*Na-0.99*Ca-0.047*HCO3

RSC RSC = -1.08–0.39*EC + 0.074*Na-1.16*Ca + 0.96*HCO3

PI PI = 84.71*EC + 1.63*Na-6.83*Ca + 1.69*HCO3

KR KR = 1.90–0.15*EC + 0.27*Na-0.70*Ca-0.034*HCO3

PS PS = 4.46 + 6.68*EC-0.09*Na-0.011*Ca-0.98*HCO3

PLS SSP SSP = 62.01–34.12*EC + 5.62*Na-0.32*Ca + 0.157*HCO3

SAR SAR = 2.95–0.041*EC + 0.70*Na-1.02*Ca-0.051*HCO3

RSC RSC = -0.86–0.12*EC + 0.0075*Na-1.13*Ca + 0.95*HCO3

PI PI = 85.83–1.35*EC + 1.169*Na-6.53*Ca + 1.67*HCO3

KR KR = 2.08–0.016*EC + 0.24*Na-0.72*Ca-0.036*HCO3

PS PS = 3.73 + 5.68*EC + 0.019*Na + 0.29*Ca-0.85*HCO3
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findings show a better predict of the PI index compared with 
El Bilali and Taleb (2020). Furthermore, it is discovered 
that stronger correlation between input and output variables 
reflects better model performance.

Conclusions

The study explored the capabilities of three machine learn-
ing algorithms (SVR, XGB and RF) and four multiple 
regressions (SW, PCR), PLS and OLS) for predicting six 

Fig. 3  R2 (a, b), RMSE (c, d), MAE (e, f) and SI (j, h) values for the seven applied models
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Fig. 4  Scatterplots of the estimated and calculated values of the IWQIs for the applied models (SW, OLS, PCR and PLS)

Fig. 5  Scatterplots of the estimated and calculated values of the IWQIs for the applied models (XGB, SVR and RF)
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different IQWI (KR, PI, PS, RSC, SAR and SSP) of the 
Bahr El-Baqr drain irrigation water source. Chemical com-
position of 105 water samples, collected during July 2020 
at locations uniformly spread along the Bahr El-Baqr drain, 
was determined in the laboratory. The main conclusions are 
as follows:

• The pH of the Bahr El-Baqr drain water is within the 
acceptable limits for irrigation. The EC values were high 
rendering the water unsuitable for irrigation process 
unless the soil has good drainage, a special management 
plan for salinity control is put in place, and/or salt toler-
ant plants are used.

• According to the SSP and SAR, the water can be used 
for irrigation on most soils with little risk of dangerous 
amounts of exchangeable salt developing (low sodicity). 
Furthermore, the water from the Bahr El-Baqr Drain is 
suitable for agriculture without alkalinity hazard devel-
opment and impairment of soil permeability.

• SW emerged as the optimal regression model for pre-
dicting the IWQI. For the AI models, SVR was the best, 
although SW marginally performed better.

• The outcome of this study that modelled the IWQI in 
Bahr El-Baqr drain, Egypt, using SW is satisfactory. 
Hence, the SW model is a useful decision tool for agri-
cultural policy decision-makers to help improve irriga-
tion water quality.
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