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Abstract
Increased consumption of water resource due to rapid growth of population has certainly reduced the groundwater stor-
age beneath the earth which leads certain challenges to human being in recent time. For optimal management of this vital 
resource, exploration of groundwater potential zone (GWPZ) has become essential. We have applied Analytical Hierarchy 
Process (AHP), Frequency Ratio (FR) and two machine learning techniques specifically Random Forest (RF) and Naïve 
Bayes (NB) here to delineate GWPZ in Gandheswari River Basin in Chota Nagpur Plateau, India. To achieve the goal of 
the study, twelve factors that determine occurrence of groundwater have been selected for inter-thematic correlations and 
overlaid with location of wells. These factors include elevation, drainage density, slope, lithology, geomorphology, topo-
graphical wetness index (TWI), distance from the river, rainfall, lineament density, Normalized Difference Vegetation Index 
(NDVI), soil, and Land use and Land cover (LULC). A total 170 points including 85 in well site and 85 in non-well site have 
been selected randomly and allocated into two parts: training and testing at the share of 70:30. The implemented methods 
have significantly provided five GWPZs specifically Very Good (VG), Good (G), Moderate (M), Poor (P) and Very Poor 
(VP) with high and acceptable accuracy. The study also finds that geomorphology, slope, rainfall and elevation have greater 
importance in shaping GWPZs than LULC, NDVI, etc. Model performance has been tested with receiver operator charac-
teristics (ROC), Accuracy (ACC), Kappa Coefficient, MAE, RMSE, etc., methods. Area under curve (AUC) in ROC curve 
has revealed that accuracy level of AHP, FR, RF and NB is 78.8%, 81%, 85.3% and 85.5, respectively. The machine learning 
techniques coupled with AHP and FR unveil effective delineation of groundwater potential area in said river basin which 
by genetically offers low primary porosity due to lithological constrains. Therefore, the study can be helpful in watershed 
management and identifying appropriate location wells in future.
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Introduction

Groundwater is among the most indispensable resources of the 
earth that takes place below the surface of the earth (Naghibi 
et al. 2015) on which near about 2.5 billion human beings 
depend on these fresh water resources in daily basis (Alcaide 
and Santos 2019). Groundwater varies spatially in both quality 
and quantity; however, it is very important for socio-economic 
development because groundwater meets certain demands of 
mankind, namely water for drinking, for irrigation, for forestry, 
for industrial purpose and to support livestock (Naghibi et al. 
2016). Utilization of groundwater is hygienic and more reli-
able than surface water because groundwater is less exposed to 
environmental degradation (Kim et al. 2019; Lee et al. 2020). 
In most part of the globe, uncontrolled use of groundwater has 
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depleted this resource. Since the last few decades, the avail-
ability of freshwater resource has become challenging issue 
because of its high demand for domestic, agricultural, industrial 
purposes (Chakraborty et al. 2021; Shit et al. 2019, Chen et al. 
2019), insufficient rainfall, surface water scarcity and popula-
tion growth (Panahi et al. 2020) which can lead the shortage 
of groundwater globally by 2025 (Nguyen et al. 2020). Being 
world's leading groundwater consumer, the consumption rate of 
India has been stated 230 cubic km per year (Fienen and Arshad 
2016). Thus, mapping the GWPZ has become an essential and 
central part in the management system of watershed (Verma 
et al. 2018; Bhunia et al. 2018; Kulkarni et al. 2018).

Groundwater mapping has been carried out with direct 
filed surveys in recent past in expensive and time-consum-
ing manner (Prasad et al. 2020). But now the integration of 
remote sensing and GIS is capable of accumulating, maneu-
vering and demonstrating various forms of data which result 
into the construction of thematic maps (Band et al. 2020; 
Rukhsana 2020; Karimi-Rizvandi et al. 2021). Besides, this 
platform is time as well as cost-effective and also applicable 
in large area (Prasad et al. 2020). The occurrence of ground-
water varies over place to place in accordance with hydrol-
ogy, climate, topography, geology, ecology, soil, slope, etc., 
of the region (Karimi-Rizvandi et al. 2021). Therefore, such 
factors are used in GIS to prepare the GWPZs.

Review of the literature suggests that researchers across 
the globe have used various methods to delineate GWPZs. 
Among them Analytical Hierarchy Process (Maity and Man-
dal 2019), Logistic regression (Park et al. 2017), Frequency 
Ratio (Ozdemir 2011), Weights of evidence (Madani and 
Niyazi, 2015) are very commonly used for this purpose. 
Besides, various techniques under machine learning are now 
broadly accepted in order to delimit GWPZs. These include 
Random Forest (Naghibi et al. 2016), SVM (Support vector 
machine) (Lee et al. 2018), BRT (boosted regression trees) 
(Naghibi and Pourghasemi 2015), linear discriminant analy-
sis (Naghibi et al 2017), Naïve Bayes (Miraki et al. 2018), 
classification and regression tree (Naghibi et al. 2016) and 
artificial neural network (Lee et al. 2018). Despite being 
used in different parts of the planet all these techniques have 
some drawbacks. Identification of groundwater potential 
zones based on one single method is now not justifying the 
study.

AHP reduces the mathematical complexity in decision 
making (Abhijit 2020), thereby widely used. Frequency 
Ratio has been also successfully used with very high and 
precise accuracy by Ozdemirin 2011. Moreover, hypothesis 
or postulation is not obligatory in the allocation of revealing 
factors in RF model and enables mixed use of categorical 
data and numeric data (Aertsen et al. 2010). Even NB model 
is very simple and does not necessitate for estimation of 
parameter (Wu et al. 2008). Both RF (Naghibi et al. 2016) 
and NB (Miraki et al. 2018) models have been successfully 

implemented by several researchers across the globe with 
high accuracy. Among the machine learning model, Ran-
dom Forest (RF) and Naïve Bayes (NB) are the most accept-
able and high accuracy models depicted in previous studies' 
results (Naghibi et al., 2017; Pham et al., 2021; Miraki et al., 
2018). It helps the model selection for GWPZs. Therefore, 
present study tries to map the probable groundwater sites 
by using with AHP, Frequency Ratio (FR), Random Forest 
(RF) and Naïve Bayes (NB) in Gandheswari River Basin of 
Bankura District, West Bengal. Gandheswari Watershed is 
composed with hard crystalline rock mainly granite gneiss 
which is not preamble; therefore, occurrence groundwater is 
not widely spread over the region. Thus, the main objective 
of the current work is to compare among multi-criteria deci-
sion approach, bivariate statistic method and machine learn-
ing algorithms for the delineation of groundwater potential 
zone (GWPZ) of the study area.

Description of study area

Gandheswari Watershed has been selected to delineate the 
GWPZs. Gandheswari River is the 32-km-long tributary 
of Dwarakeshwar River and flows through the four CD 
Blocks of Bankura district of West Bengal after originating 
from Santuri CD Block of Purulia district of West Bengal. 
The study area extends between 86° 53′ 20.526″ E and 87° 
08′ 20.681″ E longitudes and 23° 13′ 43.376″ N and 23° 
31′ 15.417″ N latitudes. The watershed occupies nearly 
394.96  km2 (Fig. 1). This watershed is mainly situated in 
the peripheral region of Chota Nagpur Plateau; thereby, the 
studied region consists with undulating plane (below 120 m), 
an eroding plateau (120–220 m) and the Susunia Hill Zone 
(220–437 m) (Sinha 2016). Thick layer of ‘mottled clay’ is 
very abundant in Gandheswari basin, and most part of the 
study area consist granitic gneissic of Pre-Cambrian which 
results into moderate to low storage of groundwater (Ghosh 
et al. 2020).

Material and methods

Data from different sources are used for spatial modeling 
and GWPZ analysis (Table 1). After converted the data into 
spatial database in accordance with our requirements AHP, 
FR, RF and NB methods have been applied to conduct the 
study. Figure 2 represents overall framework of the study.

Preparation of inventory map

Researchers, across the globe, have prepared inventory 
dataset for groundwater mapping by using location of 
springs, wells and quant. However, present study selects 
85 well points and 85 non-well points (where occurrence 
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of groundwater is minimum) to construct the inventory 
map. SOI toposheets (73I/15, 73 M/3 and 73 M/4) and 
Central Ground Water Board (CGWB) data have been used 
here. Of the 170 sites, 70% (119) have been randomly used 
for modeling and 30% (51) have been randomly used for 
validation purpose.

Factors affecting groundwater potential zone

Selection of effective parameters of GWPZ is crucial task for 
researchers (Naghibi et al. 2016). Literature review (Table 2) 
has helped to identify twelve such parameters. The thematic 
maps (Fig. 3a–i) based on the selected parameters have been 

Fig. 1  Location of the study area: a India, b West Bengal, and c Gandheswari Watershed
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prepared by using ArcGIS software. Details of these factors 
are as follows:

Elevation has tremendous impact on groundwater poten-
tial mapping (Naghibi et  al. 2016) as it is contrariwise 
related to the reserve of groundwater (Karimi-Rizvandi 
et al. 2021). Figure 3a reveals that elevation of Gandheswari 
Watershed varies from 13 to 383 m.

Slope is another important factor that controls rate of 
infiltration and run-off in any part of the globe. Higher 
slope adversely effects on groundwater storage; thereby, 
groundwater potential zones are generally associated with 
lower slope region (Maskooni et al. 2020). Highest slope 
in the study area is recorded as 43.24 degree, and lowest 
is recorded as zero degree (Fig. 3b). Drainage density is 
directly related to run-off and inversely related to ground-
water storage (Magesh et al. 2012). In this area, drainage 
density extends from 0 to 0.75  km2 (Fig. 3c). TWI value 
ranges from 26.21 to 2.66 in the study area (Fig. 3d). TWI 
uncovers the saturated portions in said watershed. The index 
indicates effects of topography on accumulation of water in 
a region (Biswas et al. 2020), and hence, steep slope and 
higher elevation have greater run-off and thus reduce the 
capacity of water accumulation; on contrary, low-lying area 
has greater potential of topographical wetness or accumula-
tion of water in the study area. The formula, given by Moore 
et al. (1991), is used to compute the TWI in present research. 
Distance from the river can be a vital controlling factor of 
groundwater storage. In this specific research, the distance 
from river ranges from 0 to 1511.67 m (Fig. 3e). Lineament 
density is among the most influential variables as it is posi-
tively related to groundwater storage. Lineaments act as the 
place of secondary porosity (Ghosh et al. 2020) and thereby 

very important in this study because most parts of the Gan-
dheswari River Basin are composed with granite gneiss 
whose primary porosity is assumed to be low. The lineament 
density varies 0–0.59  km2 (Fig. 3f) in the studied watershed. 
Rainfall acts as natural sources of groundwater which helps 
the amount of infiltration (Karimi-Rizvandi et al. 2021). The 
mean annual rainfall in mentioned area fluctuates between 
97.5 and 114.83 cm (Fig. 3i). Nature of soil also determines 
the storage of groundwater because soil properties deter-
mine the permeability of the region (Karimi-Rizvandi et al. 
2021). Figure 3h unveils that current study area consists of 
four types of soil group, namely coarse loamy, clayey loamy, 
fine loamy and fine silt. Among those groups, coarse loamy 
soil can recharge the groundwater more efficiently than the 
others. Storage of groundwater is also shaped by geomor-
phology of any region (Biswas et al. 2020). Figure 3k uncov-
ers five distinct features explicitly residual hill, pediment, 
pediplain, valley fill and water bodies. These features may 
be advantageous (valley fill, pediplain) for groundwater stor-
age and residual hill and pediment may retard groundwa-
ter storage. Water bodies in the selected region act as the 
direct source of GWPZs. Lithological configuration of the 
studied watershed can be considered as primary controlling 
factor that determines the permeability and porosity of the 
region. Figure 3j reveals that most part of the watershed is 
composed with granite gneiss. This lithological constrain 
reduces the primary infiltration here, and thereby, ground-
water storage is heavily depended on either secondary infil-
tration (through the cracks and joints) or the area having 
recent deposits (Ghosh et al. 2020). NDVI also significantly 
affects the groundwater storage capacity. Higher value of 
NDVI suggests thick coverage of vegetation coverage, 

Table 1  Data sources and type of data required in the research

Factor Resolution Data out type Data source

SRTM DEM (elevation) 30 m Raster https:// earth explo rer. usgs. gov
Slope 30 m Raster Extracted from DEM
Drainage density (DD) 30 m Raster Extracted from DEM
Topographic weightiness index 

(TWI)
30 m Raster Extracted from DEM

Distance from the river (DFR) 30 m Raster Extracted from DEM
Lineament 30 m Raster Extracted from DEM
NDVI 30 m Raster https:// earth explo rer. usgs. gov(Landsat 8)
Soil 30 m Raster Soil map of the Soil Survey and Land Use Planning 

(NBSS&LUP)
Rainfall 885.37 × 885.37 Raster WorldClim website
Lithology 30 m Raster Geological survey of India, (R.F.1:250,000)
Geomorphology 30 m Raster Geological survey of India, (R.F.1:250,000)
Land Use and Land Cover (LULC) 30 m Raster Extracted from satellite image (Landsat 8)
Groundwater Point Randomly Vector The Survey of India (Toposheet 73I/15, 73 M/3 and 73 M/4 of 

1:50,000), Central Ground Water Board (CGWB)

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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and vegetation reduces run-off and helps in recharging the 
groundwater. In our area of interest, the NDVI value ranges 
from 0.47 to  − 0.19 (Fig. 3g). LULC of any region controls 
the groundwater movements. Evapotranspiration, surface 
runoff and groundwater recharge are largely controlled by 
LULC (Karimi-Rizvandi et al. 2021). Our study (Fig. 3i) 
has divided entire basin into six prominent LULC classes, 
namely water bodies, forests, agricultural lands, built-up 
area, sandy lands and other lands.

Accuracy assessment of groundwater‑influencing 
factors

The important part of the research work is selection of the 
groundwater-influencing factors. The current work has 
used two methods for the selection of factors that influences 
groundwater storage. Firstly, variance inflation factors (VIF) 
(Dormann et al. 2013) method uncovers the multicollinearity 
among the selected parameters. In the current research, mul-
ticollinearity validates the possibility of association among 
the twelve parameters. Multicollinearity between parameters 

specifies that variables which are linked can be estimated 
by other factors. Therefore, the multicollinearity affected 
variable is needed to be removed from the model. The VIF 
values of > 10 and < 0.1 denote such problems (Khosravi 
et al. 2019).

Secondly, Information Gain Ratio (IGR) method unveils 
the relative importance of every influencing parameter (Chen 
et al. 2017). The Average Merit is computed through this 
method which quantifies the pattern of influence. Greater 
Average Merit signifies greater effect on the groundwater 
availability and vice versa.

Methods for GWPZ

AHP method

Analytical Hierarchical Process (AHP), invented by Saaty 
(1971), is the hierarchical additive weighting approaches for 
multi-criteria decision problems, and it is broadly used by 
researchers across the globe. This method analyzes param-
eters based on their relative relevance when compared to 

Fig. 2  Methodological design of the study: starting from criteria selection to model validation
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one another. Moreover, it is able to determine the subject, 
along with their rank and precedence, which is computed 
by pairwise comparison matrix to arrange the criteria in 
hierarchical order. Each parameter is given a set of weights 
(Table 3). Next step is to normalize the data. The consist-
ency index (CI) coupled with consistency ratio (CR) is then 
computed to test the constancy of these weights. This AHP 
method has been gone through several steps. First of all, for-
mation of a hierarchy is necessary from the problems. AHP 
begins with identifying the criteria to be used in evaluating 
several options, which are arranged in a treelike hierarchy. 
After that, data have been collected by comparing criteria 
at each level of the hierarchy and alternatives in pairs. Then 
estimation of the relative importance of selected criteria and 
alternatives is taken places, which is followed by validating 
the constancy in the pairwise comparisons (Table 4). The 
weights of each criterion were then normalized, and their 
average weights were determined (Table 5). The consistency 
vector has been calculated by multiplying the average weight 
of each criterion. The following equations have widely been 
used to check the CI and CR from the pairwise comparison 
matrix of all the parameters.

Here, n is the total number of criteria and �ma x (lambda) 
is simply the average value of consistency vector.

Here, RI is the random index from Table 3
The present research finds the followings: maximum eigen 

value (λmax) = 13.673, consistency index (CI) = (λmax − n)/
(n − 1) = 0.15209, random index (RI) = 1.54 (for n = 12), con-
sistency ratio (CR) = (CI/RI) = 0.0987 or 9.9 (acceptable).

The weighted overlay analysis is very much useful tools 
for any suitable area analysis. This method has the ability to 
assigning and combining the multilayers to create an inte-
grated analysis. The weighted values calculated by AHP 
method are used in weighted overlay tools to identify promi-
nent factor through this process (Parimala and Lopez 2012).

(1)CI =

(
�max − n

)

(n − 1)

(2)CR =
CI

RI

(3)S =

n∑

i=1

Wi ∗ Xi

Table 2  Literature review of factors used to delineate groundwater potential zones (GWPZ)

1. Elv (elevation) 2. Slope 3. Drainage density (DD) 4.Topological Wetness Index (TWI) 5. Distance from river(DFR) 6. Rainfall 7. Geomor-
phology (GM) 8. Geology 9. Lineament density (LD) 10. Soil 11. NDVI 12. Land use and Land cover (LULC)

Literature review Elv Slope DD TWI DFR RF GM Geology LD Soil NDVI LULC

Abijith et al (2020) √ √ √ √ √ √ √ √
Allafta et al. (2020) √ √ √ √ √ √ √ √ √
Arabameri et al. (2019) √ √ √ √ √ √ √ √ √
Arulbalaj et al. (2019) √ √ √ √ √ √ √ √ √
Chakrabortty et al. (2018) √ √ √ √ √ √ √ √
Das et al. (2018) √ √ √ √ √ √
Haghizadeh et al. (2017) √ √ √ √ √ √ √ √
Hazra, Mondal, Sanjib (2018) √ √ √ √ √ √ √ √
(Karimi-Rizvandi, et al. 2021) √ √ √ √ √ √ √ √
Kolli et al. (2020) √ √ √ √ √ √ √
Lee, Hyun, Lee, Lee (2020) √ √ √ √ √
Mir, Bhat, Rather, and Mattoo (2021) √ √ √ √ √ √ √
Naghibi, et al. (2016) √ √ √ √ √ √
Owolabi et al. (2020) √ √ √ √ √ √
Pal, Ghosh, and Chowdhuri (2020) √ √ √ √
Pothiraj and Rajagopalan (2013) √ √ √ √ √ √ √
Pourghasemi et al. (2020) √ √ √ √ √ √ √ √
Prasad et al. (2020) √ √ √ √ √ √ √ √ √ √ √ √
Rao et al. (2021) √ √ √ √ √ √ √
Sinha et al. (2018) √ √ √ √ √
Thapa et al. (2017) √ √ √ √ √ √ √ √ √
Tolche (2021) √ √ √ √ √ √ √
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Fig. 3  Distribution of six causative factors used in this study: a elevation, b slope,c drainage density, d TWI, e distance from the river, f linea-
ment, g NDVI, h soil, i rainfall, j lithology, k geomorphology and l LULC
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where S is the suitability index for each pixel map.  Wi is the 
weight of the ith layer and  Xi score of the ith criteria layer. 
n is the number of suitability layer.

Frequency Ratio (FR)

The Frequency Ratio (FR) is a statistic-based bivariate 
approach and has been developed to discover the ground-
water potential area by evaluating the relationships among 
the controlling factors (Oh et al. 2011; Naghibi et al. 2016). 
The model has been applied here to uncover the quantitative 
link between distribution of well occurrence and predictor 
factors. Frequency Ratio has been calculated based on the 
following equation:

where W represents the number of pixels having linked with 
well from each thematic map, whereas TW represents the 
total number of pixels across the area under concern. CP and 
TP represent number of pixels in each thematic map and in 
area under concern, respectively.

(4)FR =
W∕TW

CP∕TP

Random Forest (RF)

Random Forest (RF) is a very popular and accurate machine 
learning algorithm (Wang et al. 2021). RF is basically a tree-
based method, which has an authentic and great expectation 
execution by joining an enormous number of decision trees 
to determine the relationship between the factors affecting 
groundwater and dug well occurrence (Kim et al. 2018). 
Random forest creates many trees for making a ‘forest,’ 
where trees are created by bootstrapped data (Rahmati et al. 
2017). The data are produced by the aid of classification and 
regression tree methods followed by Rahmati et al. (2017). 
RF method is further carried out by following the works 
of Naghibi et al. (2016), Lee et al. (2017) and Wang et al. 
(2021). The advantage of this method in comparison with 
other methods is as follows: (i) the overfitting problems of 
the datasets, (ii) manage big datasets with various dimen-
sionality in nature, (iii) it does not need any hypotheses 
within the response variable and explanatory variables, (iv) 
it does not require any previous data to rescale and trans-
form the datasets (Arabameri et al. 2019). The RF classifica-
tion adopted resampling methods by randomly transferring 
the predictive factors to enhance the diversity in every tree 
(Naghibi et al. 2017). The notation of the predictive variable 

Table 3  Random inconsistency 
indices for n = 15

Saaty (1980)

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R.I 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 1.52 1.54 1.56 1.58 1.59
First order 

differ-
ence

0 0.52 0.37 0.22 0.14 0.1 0.05 0.05 0.04 0.03 0.02 0.02 0.02 0.01

Table 4  Pairwise comparison matrix

1. Elevation 2. Slope 3. Drainage density (DD) 4. Topological Wetness Index (TWI) 5.Distance from river (DFR) 6. Rainfall 7. Geomorphology 
(GM) 8. Geology 9. Lineament density (LD) 10. Soil 11. NDVI 12. Land use and Land cover (LULC)

Rainfall GM Elevation DD Soil Lithology LD TWI NDVI DFR LULC Slope

Rainfall 1 3 7 1 5 4 5 4 5 7 6 5
GM 0.33 1 5 1 1 2 3 4 3 4 4 6
Elevation 0.14 0.2 1 3 0.5 1 3 5 5 3 3 7
DD 1 1 0.33 1 2 3 3 5 4 6 5 3
Soil 0.2 1 2 0.5 1 2 2 2 3 3 3 5
Lithology 0.25 0.5 1 0.33 0.5 1 2 2 1 3 4 3
LD 0.2 0.33 0.33 0.33 0.5 0.5 1 5 2 2 3 3
TWI 0.25 0.25 0.2 0.2 0.5 0.5 0.2 1 0.5 2 1 1
NDVI 0.2 0.33 0.2 0.25 0.33 1 0.5 2 1 2 1 1
DFR 0.14 0.25 0.33 0.17 0.33 0.33 0.5 0.5 0.5 1 1 3
LULC 0.17 0.25 0.33 0.2 0.33 0.25 0.33 1 1 1 1 1
Slope 0.2 0.17 0.14 0.33 0.2 0.33 0.33 1 1 0.33 1 1
Sum 4.08 8.28 17.86 8.31 12.19 15.91 20.86 32.5 27 34.33 33 39
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is defined as log 2 (M+1), where M is the total input number 
within the algorithm. The RF model determines the split 
at each node with the help of predictive variables and the 
number of trees (Kim et al. 2018). The average prediction 
of the tree is computed as:

where Gp is any groundwater prediction and k represents the 
separate trees in the method.

Naïve Bayes (NB)

Naïve Bayes (NB) model is based on postulation that there are 
no dependent attributes to capitalize on the subsequent pos-
sibility in determination of the class for categorization (Soni 
et al. 2011). NB classification scheme is a term in Bayes-
ian statistics which supervises an easy probabilistic classi-
fier determined by Bayes' hypothesis (Bhargavi and Jyothi, 
2009). The major benefit of the NB classifier is that it is simple 
to build and iterative parameter estimation schemes are not 
needed in it (Wu et al. 2008).

xI is the vector of the 12 controlling factors of groundwa-
ter potential zone, and yi is the vector of classifier variable 
(potential zone or non-potential zone). The NB is based on 
following equations.

where P(yi) is the prior probability of  yi that can be esti-
mated based on the proportion of the observed cases with 

(5)Gp =
1

k

∑
kthvresponse

(6)�NB =

argmax p(yi)∏

[yi=potential_zone_or_non_potential_zone]

12
i=1

p

[
xi

yi

]

output class  yi in the training dataset. P(xi/yi) is the condi-
tional probability that can be calculated by the following 
equation:

where η is the mean and � is the standard deviation of xi.

Model validation

Validation of any model is fundamental steps for scientific 
research (Naghibi et al 2016). The performance of GWPM 
by four methods has been evaluated by ROC curve and the 
statistical measures of accuracy (ACC), mean absolute error 
(MAE), root-mean-square error (RMSE), Kappa index (K) 
and coefficient of determination  (R2). The formulas that are 
used here are as follows:

where Pc indicates numeral of pixels to be matched accu-
rately as well or non-well pixels;Pcxp denotes estimated 

(7)p

�
xi

yi

�

=
1

√
2��

e
−(xi−n)2

2�2

(8)Accuracy =
TP + TN

TP + TN + FP + FN

(9)RMSE =

√√√
√1

n

i=n∑

i=1

(Xei − Xoi)
2

(10)MAE =
1

n

i=n∑

i=1

||Xei − Xoi
||

(11)Kappa(k) =
Pc − Pcxp

1 − Pcxp

Table 5  Normalized pairwise comparison matrix

Rainfall GM Elevation DD Soil Lithology LD TWI NDVI DFR LULC Slope Sum Weight

Rainfall 0.245 0.362 0.392 0.120 0.410 0.251 0.240 0.123 0.185 0.204 0.182 0.128 2.843 0.237
GM 0.081 0.121 0.280 0.120 0.082 0.126 0.144 0.123 0.111 0.117 0.121 0.154 1.579 0.132
Elevation 0.034 0.024 0.056 0.361 0.041 0.063 0.144 0.154 0.185 0.087 0.091 0.179 1.420 0.118
DD 0.245 0.121 0.018 0.120 0.164 0.189 0.144 0.154 0.148 0.175 0.152 0.077 1.706 0.142
Soil 0.049 0.121 0.112 0.060 0.082 0.126 0.096 0.062 0.111 0.087 0.091 0.128 1.125 0.094
Lithology 0.061 0.060 0.056 0.040 0.041 0.063 0.096 0.062 0.037 0.087 0.121 0.077 0.801 0.067
LD 0.049 0.040 0.018 0.040 0.041 0.031 0.048 0.154 0.074 0.058 0.091 0.077 0.721 0.060
TWI 0.061 0.030 0.011 0.024 0.041 0.031 0.010 0.031 0.019 0.058 0.030 0.026 0.372 0.031
NDVI 0.049 0.040 0.011 0.030 0.027 0.063 0.024 0.062 0.037 0.058 0.030 0.026 0.457 0.038
DFR 0.034 0.030 0.018 0.020 0.027 0.021 0.024 0.015 0.019 0.029 0.030 0.077 0.345 0.029
LULC 0.042 0.030 0.018 0.024 0.027 0.016 0.016 0.031 0.037 0.029 0.030 0.026 0.326 0.027
Slope 0.049 0.021 0.008 0.040 0.016 0.021 0.016 0.031 0.037 0.010 0.030 0.026 0.303 0.025
∑ 1
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results. Xoi and Xei are the ith observed and model predicted 
values, respectively, and n is the amount of data point (Khos-
ravi et al. 2019).

The present study also uses ROC curve to unveil over-
all validity of the models applied here. The ROC curve 
significantly predicts the occurrence or non-occurrence 
of wells by sensitivity on Y-axis and specificity on X-axis 
(Prasad et al. 2020). The region below the curve is called 
area under curve. AUC is very much essential for model 
efficiency (Karimi-Rizvandi et al. 2021). The value of AUC 
ranges from 0 to 1and near to 1 represents higher accuracy 
of the models (Naghibiet al.2016; Chen et al. 2018; Prasad 
et al.2020).

Results

Importance of factors

IGR and VIF technique have been employed to identify the 
influence of selected parameters in groundwater potential 
map (GPM) and to unveil the multicollinearity issues in the 
selected parameters, respectively. The results of IGR and 
VIF are portrayed below (Table 6). The table discloses that 
VIF values of all factors are smaller than 10; therefore, no 
multicollinearity problem is existed among the selected 
parameters. Apart from VIF, IGR values also uncover the 
factorwise influence upon GWPZ.

Table 6 also demonstrates that for the river basin, geo-
morphology has the highest (0.94) importance in GWPZ, 
followed by slope (0.88) and rainfall (0.87). Besides, dis-
tance from the river (0.69), elevation (0.67) has moderate 
influence in the storage of groundwater. Moreover, LULC 
(0.08) has the least effect on groundwater storage and 
followed by soil (0.22) and topographical wetness index 
(0.23). So, the results unveil that all the selected factors 
have some impact on GWPZ; therefore, all these factors 
have been included in model development.

Groundwater potential zone mapping

Based on four different models GWPZ has been prepared for 
the Gandheswari Watershed (Fig. 5 a-d). ArcGIS has helped 
to classify GWPZ into five different classes such as Very 
good (VG), Good (G), Moderate (M), Poor (P) and Very 
Poor (VP). Based on expertise thoughts, pairwise compari-
son matrix and normalized pairwise comparison matrix are 
computed in Tables 4 and 5, respectively, to make decisions 
via AHP model. Weight overlay analysis techniques have 
been performed based on the result in ArcGIS, and GWPM 
has been created by AHP model (Fig. 4a).

Table 7 demonstrates percentagewise area of each class 
in each GWPM. According to the AHP model (Table 7), 
the percentages for the class VP, P, M, G and VG potential 
zones are 12.76, 27.88, 26.33, 26.81 and 6.21%, respec-
tively. In case of the FR technique 9.66, 29.07, 28.41, 
27.55 and 5.31% area falls into the class of VP, P, M, 
G and VG, respectively. RF model depicts (Table 7) that 
12.66, 29.09, 28.87, 25.59 and 3.68 percentages area falls 
under the class of VP, P, M, G and VG potential categories, 
respectively. Finally, NB technique uncovers that percent-
ages for the class VP, P, M, G and VG potential categories 
are 14.16, 29.52, 27.21, 25.98 and 3.02%, respectively.

Based on the very good potential and very poor poten-
tial zone a final overlay map has been created in ArcGIS 
platform to show the common area across the four model 
under the category of very good and very poor category. 
This overlay map (Fig. 5) presents the location where 
water can be easily accessible in near future. This map 
depicted that 10.41   km2 areas are under the very good 
and 20.77  km2 areas is under the very poor category of 
groundwater probability. This result may help in watershed 
management as the result provides the sites where wells 
are to be drilled and sites where well should not be drilled.

Model validation

The analytical performance of four GWPZ models has been 
measured by several measures, namely accuracy, Kappa 
coefficient, RMSE, MAE and  R2 (Table 8). The results 
clearly unveil that proposed machine learning-based Naïve 
Bayes model has the highest value of accuracy (87.36%), 
Kappa coefficient (0.85), coefficient of determination (0.86) 

Table 6  The evolution of the influencing factors using VIF and IGR 
test (Average Merit)

Sl. No Influencing factors VIF Average 
merit 
(AM)

1 Elevation 1.84 0.67
2 Slope 1.47 0.88
3 Drainage Density 1.95 0.46
4 TWI 1.08 0.23
5 Distance from the river 2.95 0.69
6 Lineament 1.98 0.36
7 NDVI 1.29 0.41
8 Soil 1.03 0.22
9 Rainfall 3.11 0.87
10 Lithology 1.21 0.28
11 Geomorphology 3.15 0.94
12 LULC 2.10 0.08
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and lowest value of MAE and RMSE as 0.16 and 0.19, 
respectively, in the validation phase. This result significantly 
represents a very high level of satisfaction in mapping of 
GWPZ through this model. The performance analysis of the 
four models in the validation stage follows the descending 
order: NB > RF > FR > AHP.

The ROC curve (Fig.  4) unveils that NB model has 
(AUC = 85.5%) outperformed the RF (AUC = 85.3%), FR 
(AUC = 0.81.0%) and AHP (AUC = 78.8%) models in the 
validation phase (Fig. 6). The prediction percentage depicts 
that all the models have performed well, but machine learn-
ing-based RF and NB models show highest prediction effec-
tiveness over statistical-based FR and MCDM-based AHP 
models.

Discussion

The groundwater potentiality mapping is expected to 
very useful for water resource management in the studied 
Gandheswari river basin because most parts of the basin 
consist of hard rock and thereby exhibit very low primary 
porosity. Methodological approach for the study having 
high accuracy is based on logical consideration among 
twelve commonly used groundwater contributing factors. 
The elevation and slope were very low in the southeast-
ern portion of this Gandheswari watershed. Groundwater 
recharge is negatively related to the elevation (Pham et al. 
2021). Thus, locations that are located in low-elevation 

Fig. 4  Result of AHP (a), FR 
(b), NB (c) and RF (d) model 
for GWPZ
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areas represent high groundwater potential in particular 
regions of the study area rather than the overall study area. 
Since the Gandheswari watershed is situated on the Pre-
Cambrian granitic and gneissic rocks, the movement and 
occurrence of groundwater are found to be moderate to 
low (Etikala et al. 2019). In the current study area, shallow 

aquifers are of great importance as source of water (Cen-
tral Ground Water Board 2017). Groundwater supports 
various sectors, namely agriculture, industry and many 
more to the human society. But recently irrational exploi-
tation of this resource has led water shortage (Miraki et al. 
2018). Reduction of surface water along with the mis-
use of existing groundwater has brought some key chal-
lenges to planet earth. Thus, managing the groundwater 
has become necessary. The current study has aimed at 
the exploration of GPZ in Gandheswari Watershed with 
the help of widely used AHP, statistical-based method 
FR and two machine learning algorithms, namely RF and 
NB. During model building for the study, the VIF has 
showed there is no multicollinearity problem and thus 
all the selected twelve parameters have been used during 
model building. Furthermore, InGR method has revealed 
that geomorphology followed by slope have the highest 
impact in the mapping of GWPZ.

Table 7  Area under groundwater potential zones of different models

Categories Weight base Machine learning base

AHP  (km2) FR  (km2) RF  (km2) NB  (km2)

Very poor 49.1 37.19 48.74 54.51
Poor 107.24 111.45 111.96 113.61
Moderate 101.26 109.35 111.09 104.71
Good 103.15 106.01 98.47 99.98
Very good 23.70 20.43 14.19 11.64
Total 384.45 384.45 384.45 384.45

Fig. 5  Final very good and very 
poor groundwater potential map
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The study unveils that the selected techniques have made 
a substantial contribution to map the potential groundwater 
sites into following categories: VP, P, M, G and VG with 
high accuracy. The result reveals that less than 2.71% area 
of Gandheswari Watershed is very good potential zone for 
easy access to groundwater across all models and nearly 50 
to 55% area indicate moderate to good potential zone. The 
watershed is mostly composed of granite gneiss of Archean 
era; therefore, porosity and permeability are assumed to 
be low, besides geomorphology of the area also suggests 
existence of residual hill (for example Susunia Hill) which 
may negatively affect groundwater storage. The ROC curve 
uncovers that the accuracy level for AHP, FR, RF and NB 
is 78.8, 81.0, 85.3 and 85.5%, respectively. That definitely 
depicts that NB method has more accurately identified the 
potential groundwater sites followed by RF method. Fur-
thermore, the research can be used by engineers and deci-
sion-makers to the refill of world’s most vital and precious 
resources.

Conclusions

Groundwater potential mapping using various factors is one 
of the significant aspects in groundwater studies. In the cur-
rent research, the performance of four relatively new data 
mining models such as AHP, Frequency Ratio (FR), Ran-
dom Forest (RF) and Naïve Bayes (NB) models has been 
assessed. Therefore, multi-criteria decision approach, bivari-
ate statistic method and machine learning algorithms were 
employed and investigated in groundwater potential map-
ping. Accordingly, area under curve for prediction dataset 
was computed as 78.8, 81.0, 85.3 and 85.5% for AHP, FR, 
RF and NB models, respectively. Therefore, it can be con-
cluded that NB had the best performance. Also, it can be 
suggested that data mining models performed generally well 
and could be considered in this field of study. This research 
showed that among the various approaches of the delineation 
of groundwater potential zone, machine learning algorithms 
are the most accurate and acceptable method. Moreover, it 
was seen that geomorphology, slope and rainfall had high 
importance in groundwater potential mapping, while LULC 
had the lowest importance. The output of the study showed 
that less than 2.71% area of Gandheswari Watershed is very 
good potential zone for easy access to groundwater across all 
models and nearly 50–55% area indicate moderate to good 
potential zone. Moreover, this work may lead appropriate 
selection of drilling wells and augmentation of available 
water resource by sustainable aquifer management. Apart 
from this, the present research may be further modified with 
the integration of some factors, i.e., the rate of abstraction 
of groundwater, amount of groundwater used by domestic 
purpose, quality of groundwater, etc., in order to find out the 
future potential sites for collecting water resource. There-
fore, this approach can be applied in other parts of fringe 
area of Chota Nagpur Plateau having similar type of litho-
logical features with or without necessary modifications.
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Table 8  The accuracy assessment of AHP, FR, NB and RF model for 
training and testing data using error measures

Methods AHP FR NB RF

Accuracy (%) 76.21 81.32 87.36 86.24
Kappa index (K) 0.78 0.80 0.85 0.83
MAE 0.41 0.29 0.16 0.18
RMSE 0.36 0.27 0.19 0.21
R2 0.79 0.81 0.86 0.84

Fig. 6  ROC for models’ validation
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