Applied Water Science (2022) 12:20
https://doi.org/10.1007/s13201-021-01554-7

REVIEW ARTICLE q

Check for
updates

Valorization of undervalued aluminum-based waterworks sludge
waste for the science of “The 5 Rs’ criteria”

Maha A. Tony'

Received: 3 September 2021 / Accepted: 6 December 2021/ Published online: 28 January 2022
© The Author(s) 2022

Abstract

Alum sludge (AS) is an underrated by-product waste resulted from treating raw water through conventional water treatment
plants. Water is attained from various reservoirs such as rivers and aquifers, and it may contain a wide variety of contaminants
as drinking water processing systems produce “waste” sludge as a residual material that causes significant environmental
issues. Hence, numerous efforts aimed to sustainable reuses of such sludge. This article illustrates the beneficial reuses of
the aluminum-based sludge to close the loop between the sludge waste generation and the sustainable environment with
providing past, current and updated knowledge with the introduced uses with their advantages and challenges. Alum sludge
as a resource not as a “waste” for reuse facilities is considered a value-added alternative for management achieving the
legislation requirements and proposing “end-of-waste” concept. SRs, including “Reduce, Reprocess, Reuse, Recycle and
Recover,” are providing sustainable solution to fulfill present and future aspects for green environment and safe sludge dis-
posal. In this regard, now, it is essential to focus and adopt the 5Rs criteria for the concept of circular economy that replaces
the “end-of-life” principal with restoration.
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Introduction

The undervalued materials that arise as a result of numer-
ous human activities (i.e., domestic agricultural, industrial
etc.) are unwanted solid waste materials. They may cause a
direct deterioration to the environment, and they could be a
reason for a land pollution as well as water contamination
(Tony and Ali 2021). Therefore, in the modern societies, for
managing such unwanted solid wastes, the 5SRs “Reduce,
Reprocess, Reuse, Recycle and Recover” principle is intro-
duced. Such criteria are applied to utilize the waste materi-
als into support sustainable environment, minimize various
environmental pollution types, diminish the consumption of
unnecessary substances and promote the maximal lifetime
utilization of the products. Reduce includes minimizing the
unnecessary use solid waste. To add up, reduce could be
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attained by reclaiming the waste by repressing and reusing
it for different purposes. Thus, it increases the lifetime of
waste and reduces its production. Hence, this preserves the
environmental resources. However, recovering the previ-
ously used waste materials and introducing a new life from
it is termed as recycle. Processing and modifying the waste
into another form is so-called recycling the waste. This could
be applied in such a case that the waste could not possess
the potential of reuse and reduce. Recover is characterized
as processing the waste in a way that saves it from being
destroyed. With the aim to achieve economical savings of
waste disposal for materials and maintain the environment
sustainably option, 5 Rs’ criterion is a suitable alternative for
waste management (Zhao et al. 2021; Zhu et al. 2021). Thus,
alum sludge as a solid waste is introduced to the 5Rs criteria.

Worldwide, potable water is a prerequisite as well as its
quality is cardinal as a result of urbanization and boom-
ing population. Therefore, a water-related technology for
the production of reliable and safe drinking water treat-
ment plants is a must (Ashour et al. 2014; Thabet et al.
2020; Zhang et al. 2021). Therefore, utmost priority has
been attained globally to receive a clean drinking water.
In this regard, integrated numerous methodologies have
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been applied in the typical drinking water treatment plants
(Thomas et al. 2016; Yu et al. 2021). Thus, different unit
operations are used, in which coagulation and floccula-
tion operations chemicals are used as primary coagulants
or as coagulant aids. The result is a proportional amount
of by-product residual sludge is generated that is essen-
tially required to be subjected through a dewatering process
before its final disposal in order to its thickening (Gregory
and Duan 2001; Carty et al. 2002; Ashour and Tony 2017).

In some countries, such as Egypt, the disposal technique
of alum sludge is the direct disposal into nearby drains that
meets the water sources intake (Tony and Tayeb 2016). In
other places, it could be discharged into open lands areas
which is considered a simple and cost-efficient of sludge
disposal technology (Vasudevan; Thabet et al. 2021).
However, this is not considered ideal solutions since such
techniques cause contamination of water streams and soil
from the chemicals disposed off with the sludge. Hence,
efficient alum sludge management in an eco-friendly way
remains an issue for researchers. The answer is the 5 Rs’
“Reduce, Reprocess, Reuse, Recycle and Recover” of the
sludge which could offer a sustainable management solution
of such waste.

In the available literature, abundant research is cited deal-
ing with sewage sludge utilization (Fytili and Zabaniotou
2008; Kelessidis and Stasinakis 2012) although the review
studies regarding waterworks sludge utilization and reuse
and applications are not many and recent (Babatunde and
Zhao 2007; Dassanayake et al. 2015). Therefore, in order to
expand such previous investigations and to generate a com-
prehensive outlines of the alum sludge production and pos-
sible options for end possibilities of reuse, the main target
behind this work is to present a comprehensive review of
sustainable approaches and prospective trends in waterworks
sludge handling and management for its beneficial reuses.
So, this study also deals with highlighting the particular
focus on numerous studies that are dealing with the alum
sludge applications such as land applications (Dassanay-
ake et al. 2015), construction materials enhancement and
wastewater treatment applications. The barriers stands over
the widespread of such reuses will be also explored. Under-
standing and identification of the main gaps and issues sur-
rounding the potential environmental impacts are included.
Likewise, the bibliometric data analysis were performed
through this investigation, via VOSviewer software, the key
terms, title and abstract were incorporated to the software
in order to create a term co-occurrence mapping and density
visualization.

In the line of the 5Rs’ principle for sustainable develop-
ment, alum sludge has been intensively studied in the last
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decades as a value-added material. On that basis, converting
undervalued alum sludge waste into useful product improved
alum sludge into more expansive and improved alum sludge
reuse routes.

Alum sludge production and quantities

Incorporated coagulation along with filtration (Konieczny
et al. 2009; Yin 2010) and sedimentation (De Sena et al.
2009; Amaral Filho et al. 2016) where the water quality is
a superiority (WHO 2011) is applied in the drinking water
treatment facilities. Chemical purification methodology that
is signified as coagulation process is categorized to be an
expensive technology since the costive chemicals applied
(Teh et al. 2016; Yu et al. 2017; Sillanpéi et al. 2018; Tayeb
et al. 2019). In such technique, coagulant aids that is usu-
ally depends on metal-based coagulants, i.e., Al and Fe, are
used to precipitate the soluble metal ions in water (sche-
matic representation of the drinking water treatment steps
is displayed in Fig. 1). But, special concerns have been
gained scientists attention since massive amounts of sludge
including heavy metals residuals are generated from such
processes. Such sludges are categorized as potentially toxic
to the aquatic environment (Tetteh and Rathilal 2019; Thabet
et al., 2021a).

On the other hand, a technical generation of a propor-
tional amount of by-product sludge is produced which is
brought through a dewatering process. It is passed through
treatment steps before the final disposal to reduce its
amounts (Zhao et al. 2018; Tony and Lin 2020a). Such gen-
erated by-product is aluminum-rich-based sludge which is
so-called alum sludge. Alum sludge is generated as a result
of adding aluminum sulfate [A1,(SO,);.14H,0] as a floccu-
lating agent in the drinking water treatment process (Eq. 1)
(Ahmad et al. 2016). The resultant alum sludge is a two-
phase mixture of solids and water, and its water content is
generally in the level between 99% (before thickening) and
95% (after thickening). Such sludges are often referred as
‘difficult-to-dewater’ (Goldman and Watson 1975; Zhao and
Bache 2001; Simpson et al. 2002; Zhao et al. 2018).

2AP* + 6HCO; — 2AI(OH); + 6CO, 1)

Virtually, alum sludge that is produced from drinking
water treatment plants signifies up to 3% the volume of
the raw water that is subjected for treatment (Hidalgo et al.
2017). However, it is difficulty to attain an exact estima-
tion to the alum sludge produced in a region or a specific
country. Also, for the European union (EU) countries, the
alum sludge is categorized as Code 19’s list of waste, so it
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Fig. 1 Schematic representation flowchart of watercourses treatment plant and sludge stream in water works plant ( adapted from: EPA, 2002;

Gregory and Dillon, 2002; Mazari et al. 2018; Zhao et al. 2021)

is difficult to attain a published data about the waste statis-
tics according to the local authorities (Renou-Wilson et al.
2019). Therefore, it is unsurprisingly that it could not attain
a specific on regional and consequently the global alum
sludge waste data.

Annually, the generated alum sludge in numerous coun-
tries is estimated and illustrated in Fig. 2, which summarizes

the data available in the two decades (Foss and O'Connell
1996; Babatunde et al. 2007; Xiong and Mahmood 2010;
Hu et al. 2012; Dassanayake et al. 2015; Ahmad et al. 2016;
Abd El-Razek et al. 2019).

Fig.2 Estimated alum sludge
production quantities in some
selected countries
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Bibliometric analysis

Recently, bibliometric analyses were emerged as a useful
tool for analyzing and identifying a certain subject and
mapping key aspects. The most cited items related to alum
sludge and their related terms are investigated via bibliomet-
ric mapping. Therefore, to attain a state of the art outline of
the alum sludge, the literature survey was performed on the
Web of Science platform. The search term was “Alum sludge
OR Aluminium sludge OR Waterworks sludge”. Then, the
information revealed from “Web of Science Core Collec-
tion” database was extracted through the period of 2000 to
August 2021.

The relatively limited articles in the last two decades
attained from the Google Scholar search platform are given
in Fig. 3 to illustrate a profile of the current statues of the
studies conducted and published related alum sludge. Over-
all, articles were extracted and displayed as annually cumu-
lative publication numbers jointly with the alum sludge
application profiles. The number of research studies accord-
ing to Fig. 3 is in increase which gives the opportunity of the
research and development (R&D) of the alum sludge to its
maximal level of reuse facilities to reach to a satisfied rea-
sonable sustainable disposal. A brief overview of the studied
research investigations represents popularity of this tech-
nology application as referred in the sub-plotting in Fig. 3.
A wide range of application include wastewater treatments
with varies reuse purpose comprising adsorption (Liu et al.
2021a, b), coagulation and wastewater treatment facilities.
Also, alum sludge could be used as a building material in

cement industry enhancement or brick making. Moreover,
numerous studies as well dealt with the land applications
such as the agriculture uses and as a substrate in constructed
wetland (CW).

Web of Science platform and the VOSviewer software
(version 1.6.16.0, accessed on 15 August 2021) were applied
for this design purpose and to analyze the keywords of the
papers. In brief, the designed attained maps are incorporat-
ing network, and overlay and density visualization mapping
are designed through the software according to the general
procedure incorporating: (1) downloading the search data
attained from “Web of Science” platform; (2) the attained
data from Web of Science are saved in the required format
and inserted to VOSviewer software; (3) analysis is con-
ducting through the required method. In the current arti-
cle, the co-occurrence associated with authors’ keywords
was selected to be the minimum number of occurrences.
Based on the program manual, mapping was subsequently
designed after adjusting the parameters in the software.
Overlay visualization is one of the most common features
of the VOSviewer to display density visualization over time
periods. Alum sludge research is conducted that extracted
from the cited research articles, and the bibliometric map-
ping of clusters can be identified as seen of Fig. 4. The hot-
spots clusters could illustrate the intensive research studies
based on 1509 results obtained through data from “Web of
Science” core collection from the search terms “TI is (alum
sludge OR aluminium sludge OR waterworks sludge)”.

To add up, extra data analysis was conducted via software
(Fig. 5) displaying overlay visualization of the bibliometric
mapping. The big dot areas signify hotspots of analysis. The
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Fig.4 Keyword density visuali-
zation of alum sludge research
work in the last two decades
based on “Web of Science”
platform to signify the research
clusters using 1509 results
obtained through data from
“Web of Science” core collec-
tion from the search terms “TI
(alum sludge OR aluminium
sludge OR waterworks sludge)”

Fig.5 Bibliometric research
mapping through the last two
decades based on overlay den-
sity visualization
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size of clusters is related to the research importance and
significance in the area. As seen in the legend in Fig. 5, in
the 2000s, focus was placed on adsorption studies of phos-
phorus and other elements, while in the 2010s, adsorption
mechanisms and the development of reuse strategies were
the main focus. In the 2020s, reuse in wastewater treatment
technology became more accepted in AS studies.

Composition and physicochemical
characterization

Recent lifestyles are requiring more water consumption per
capita, so fresh water demand is in increase. Further, the
urgent need for clean water is a prerequisite. In such context,
drinking water treatment plants produce massive amounts
of waste by-product, which is so-called waterworks sludge.
Aluminum sulfate is usually used as a primary coagulant in
drinking water treatment plants, the result is that aluminum
ions were hydrolyzed into aluminum hydroxide that is pre-
cipitated, and the so-called alum sludge (AS) is generated
(Basri et al. 2019). Insoluble water impurities and organic
substances are absorbed by aluminum hydroxide through
raw water processing. Typically, the solid content of the
thickened sludge is about 2-4%; however, the solids could
be reached to 17-23% after mechanical dewatering through
centrifugation.

Alum sludge feature is subjected to the raw water quality
and the chemicals grades used specially the alum purity.
Consequently, the physicochemical characteristics and geo-
technical properties of the AS may be widely varied. Based
on the available literature cited, the physicochemical char-
acteristics and geotechnical data range of the alum sludge
are displayed in Table 1. Such data reveal a wide range
in most characteristics this is mainly due to the different
sources of alum sludge waste, which is based on the source
of watercourse water (Babatunde et al. 2007; Ippolito et al.
2011; Ren et al. 2020). Moreover, alum sludge properties
are highly characterized by the variation in the coagulant
applied in the water treatment plant. The solid content in
the alum sludge varies from one water treatment plant to
another, as the type of the raw water treated is varies in the
solid concentration and the turbidity. The solid content of the
sludge from ordinary different waterworks steps are varied.
The sludge outlines the sludge blanket clarifier containing
0.1 to 0.5% solid content. However, in the gravity thickening
tank (within 3 to 4 months) contains 3-4% solid content.
This could be increased to 4 to 6% when polymer is added.
Also, if the sludge dried, the solid reached 45% (Ahmad
et al. 2016; Rebosura Jr et al. 2020; Zhao et al. 2021). In
contrary, the resultant sludge from the sedimentation/coagu-
lation process has a low solids concentration which makes it
difficult to dewater (Tony 2020b).
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Assessment of alum sludge toxicity

According to the available literature cited, there is insuffi-
cient information regarding the potential toxicity of drinking
water plants residual sludge. Also, the available informa-
tion is limited and supplies some conflict. Hence, critical
research studies assess alum sludge toxicity from several
decades. Aluminum is very toxic, both acute and chronic
terms, to aquatic habitat in water, especially in low pH lev-
els. This paper provides a description of ecological risk
assessment that is based on the framework recommended by
United States Environmental Protection Agency (USEPA),
which includes problem formulation, characterization of
exposure and its effects and risk characterization.

George et al. (1995) stated the alum sludges discharged
from the several waterworks plants in North America into
the waters might affect algal growth. In contrary, Skene et al.
(1995) revealed that the Al-toxic effect is not evident since
alum sludges were applied as growth media. Likewise, other
study by Sotero-Santos et al. (2005) did not report an exact
toxicity evidence of alum sludge on short-term exposure;
however, low toxicity is attained through the long-term
contact, while the wide range of sludge characteristics is
not related to the degree of toxicity. Further research was
conducted by Dayton and Basta (2001) concluded that
heavy metal levels in the waste alum sludge are less than
the regulatory limits. Similar data are highlighted by Elliot
and Dempsey (1991). However, Forstner and Haase (1998)
investigation reported that the metals from alum sludge
are a pH-dependent process. According to the ecological
risk assessment provided by United States Environmental
Protection Agency (USEPA), aluminum is very toxic to the
aquatic habitats in ecological system (Mortula et al. 2009).
Wang and He 2010 reported that aluminum concentration
in the Zaohe River in USA and Canada and could do harm
to human health.

Hence, lack of reasonable qualitative and quantitative
assessment available and the magnitude of the potential tox-
icity effect of alum sludge is alarming to do more research
to investigate a rational data.

Evaluating the sludge dewaterability

CST: Capillary suction time, CST, and specific resistance for
filtration, SRF, are the most known methods to evaluate the
sludge dewaterability as quantitative indexes for the evalua-
tion of the dewatering performance. CST test has been used
since the 1970's as a reliable, inexpensive, easy and a rapid
method for characterizing filterability and dewaterability of
a given sludge; hence, it is considered a pragmatic index.
CST stands for the time required for sludge to complete its
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Table 1 Physicochemical characteristics and geotechnical properties of alum sludge*

Parameter Unit Range References

pH - 5.12-8.4 Ippolito et al. (2011), Oliver et al. (2011), Putra and Tanaka (2011), Ulén et al. (2012), (Cast-
aldi et al. 2014) Castaldi et al. (2014)(Rebosura Jr et al. 2020) (Razali et al. 2007) Rebosura
et al. 2020; Ahmad et al. 2016; Tony et al. 2008; Yang et al. 2006; Razali et al. 2007

TSS mg/L 1450-52,354 Rebosura et al. 2020; Ahmad et al. 2016; Yang et al. 2006; Razali et al. 2007

VSS % of TS 29 Nabarlatz et al. 2010; (Anbazhagan and Palani 2018)

COD mg-cop/L 216-226 Dassanayake et al. 2015; Tony et al. 2008

BOD; mg-gop/L 45-104 Castaldi et al. 2014; Rebosura et al. 2020; Rebosura et al. 2020

CST s 67.5 Tony et al. 2008

SRF m/kg 19.8x 10" Tony et al. 2008; Sun et al. 2015; Tony et al. 2016

-2.24x10"8

DS % 3 Tony et al. 2016

cP (mV) -22.0--10.8 Pan et al. 2003; Mazari et al. 2018; Tony 2020a, b

Conductivity Ms/cm 600 -650 Mazari et al. 2018

SG — 0.95-2.34 Foroughi et al. 2018; Breesem et al. 2014

Chemical analysis

Aluminum  g-,/kg 7-142 Rebosura et al. 2020; Agyin-Birikorang and O’ Connor (2009), Hovsepyan and Bonzongo
(2009), Makris et al. (2006), Ippolito et al. (2011); Babatunde and Zhao (2007); Ippolito
etal. (2011), Ren et al. (2020)

Iron gr kg 4.87-37 Ippolito et al. 2011, Razali et al. 2007, Rebosura et al. 2020

Calcium g-c.’kg  1.825 Ren et al. 2020

Magnesium  g-y, kg 1.751-2.979 Babatunde and Zhao 2007, Ippolito et al. 2011, Rebosura et al. 2020, Ren et al. 2020

Manganese  g-y, kg 1.977 Ren et al. 2020

Sodium g-na kg 0.212-1.541 Chiang et al. 2009, Rebosura et al. 2020, Ren et al. 2020

Potassium g-¢ ’kg 1.751 -7.149 Sales et al. 2011, Rebosura et al. 2020

Sulfur g-5/g 2.24-9.72 Rebosura et al. 2020 Rebosura et al. 2020, Ren et al. 2020

Silicon g-si ’kg 134.041 Ren et al. 2020

Cobalt g-c, kg 0.001 Sales et al. 2011, Rebosura et al. 2020

Phosphorus  g-p /kg 0.059-0.062 Castaldi et al. (2014); Rebosura et al. 2020; Ahmad et al. 2016; Yang et al. 2006; Razali et al.
2007; Rebosura et al. 2020; Rebosura et al. 2020, Ren et al. 2020

Nickel g-ni’kg  0.061-0.082 Rebosura et al. 2020 Rebosura et al. 2020, Ren et al. 2020 Razali et al. 2007 Rebosura et al.
2020 Rebosura et al. 2020

Cupper g-c. kg 0.001-0.07 Rebosura et al. 2020 Rebosura et al. 2020, Ren et al. 2020 Razali et al. 2007; Rebosura et al.
2020

Lead g-pp kg 0.0059-0.082 Rebosura et al. 2020 Rebosura et al. 2020, Ren et al. 2020 Rebosura et al. 2020

Chromium  g-o, /kg  0.015-0.045 Rebosura et al. 2020 Rebosura et al. 2020, Ren et al. 2020 Rebosura et al. 2020

*TSS Total Suspended Solids; VSS Volatile Suspended Solids; SG Specific Gravity; ¢ P Zeta potential; SRF specific resistance to filtration; CST
capillary suction time; DS dry solid

filtration (Yin et al. 2004; Scholz 2005). Although the CST
is a good index for the solid concentration of the sludge, it
cannot estimate directly the bound water for the sludge (Yin
et al. 2004). However, CST can be used as an index for eval-
uating of the average SRF of the evaluated sludge (Ma et al.
2007). Investigators results reported that alum sludge from
the water works is slightly more difficult to dewater than
some wastewater sludge since waterworks sludge ranged
CST value ranged from 57.3 to 84 s (Zhao and Bache 2001;

Zhao 2004); however, biological sludge showed about 30 s
for CST (Mikkelsen 2001).

SRF: Also, specific resentence for filtration, SRF, is a
sludge dewaterability index through evaluating the extent of
water yield via filtration procedure. SRF is a useful method
to evaluate the dewaterability of the sludge and to opti-
mize the coagulant dose. SRF is established on the relation
between sludge viscosity and the decrease of pressure over
a certain distance. The standard SRF test was performed
using simple lab test technique. Generally, the sludge type
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governs the SRF values since numerous studies recorded
various sludge values according to the sludge type used. For
instance, Zhao and Bache, (2001) represented that the raw
alum sludge from the drinking water treatment plant ranges
from 63.2 to 133.4x10'? m/kg. Ma et al., (2007) recorded it
as 7.3 10'2 m/kg. Lu et al. 2001 reported that the original
activated sludge is 1.17 x 10'® m/kg, while (Buyukkamaci
2004) Buyukkamaci, (2004) reported 9.162 x 10'° m/kg is
the SRF value of the sludge used through such study.

Christensen et al. (1993) correlated a relation between
CST and SRF (Eq. 2):

CST=SRFXc; Xu+wXcy, X 2)

where ¢, and c, are coefficients related to CST, p is the vis-
cosity of the filtrate, and w is the solid content in unit vol-
ume of the filtrate.

Although CST and SRF are the most widely reliable used
techniques to evaluate sludge dewaterability, there are other
methods available for measuring sludge dewaterability.

DS: dry solids (DS) content (Pan et al. 2004; Dewil et al.
2005): DS technology evaluates and measures the DS con-
tent in the sludge cake after evaporation (at 105 °C).

Bound Water: Generally, the aqueous phase in the sludge
is classified into two main categories, free water and bound
water, whereas according to (Yin et al. 2004), the water in
sludge is classified according to their bonding to the solids
in the sludge. The classification falls into free water and
bound water (Yin et al. 2004). Free water is not attached to
sludge solids and could be separated by simple gravitational
settling or mechanical dewatering. However, bound water
can be broken down into: (i) interstitial water, water that
is trapped inside the floc structure by capillary forces or
within a cell; (ii) surface water, water held onto the surface
of solid particles by adsorption and adhesive forces; and (iii)
chemically bound water (intracellular water): water that is
chemically bound to the particles and it cannot be released
easily by mechanical means; and it can be released only by
applying heat to help in the thermal chemical destruction of
the particles. Centrifugation method, dilatometric measure-
ment and differential scanning calorimetry could measure
the bound water concentration in sludge (Yin et al. 2004).

Zeta Potential: this is a physical measure technique of
the charge on a colloidal particle and presents the surface
characters of sludge (Yin et al. 2004). Such measurement is
dependent on the repulsive force between sludge particles
and the distance over the particles that may repel each other
and thus prevent coagulation. The high positive or negative
values of zeta potential mean that the particles are stable
and hard to coagulate. In contrary, the low positive or nega-
tive zeta potential means that the particles are unstable and
easy to coagulate (Yin et al. 2004). — 17.44 to — 37.4 mV is
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reported to be the possible zeta potential of the alum sludge
(Guan et al. 2005).

Sludge conditioning/dewatering for disposal
practices

The whole sludge management trained is commonly com-
prising of a series of generally divided into successive five
treatment steps. Such successive steps, namely thickening,
stabilization, conditioning/dewatering and the final dis-
posal or reuse facilities. Among them, water is removed
from sludge solids through thickening and dewatering pro-
cedures in which the volume of water is deduced and hence
the sludge volume is reduced to be ready for treatment in the
further processes. Conditioning is subjected for the object
of improving the sludge dewaterability. Conditioning could
be achieved through chemical aids such as flocculants, acid,
ferric chloride and lime addition or through physical dis-
ruption. Finally, before the sludge disposal it is subjected
to mechanical dewatering in which press filter, centrifuges
or dryers are applied to reduce the water content in the final
sludge to about 80% including a range of (20-25%) of dry
solids, DS in the dewatered sludge cake (Yin et al. 2004).

Conditioning and dewatering techniques gained scien-
tists and researchers great attention due to the challenges of
the massive sludge produced. Extensive research has been
conducted that are dealing with sludge conditioning and
dewatering to satisfy the more stringent rules and restric-
tions appeared by the authorities and legitimations. Thus,
reasonable conditioning and dewatering performances to
attain higher sludge disposal and reuse facilities in order to
reach to a minimal environmental impacts are ever-increas-
ing (Tony et al. 2008; Zhou et al. 2014).

Numerous methodologies incorporating both physi-
cal, i.e., heat, freezing and mechanical treatments, and/or
chemical treatment amenities are extensively applied to such
sludge handling and conditioning to improve its dewater-
ability. However, chemical treatments still more pronounced
effect and involve energy-saving advantages which include
adding the flocculating agents, acids and alkaline (Zhou
et al. 2014). In the recent decades, advanced oxidization
conditioning technologies comprising Fenton’s reagent have
been applied as a non-polymer conditioning techniques. Not
only energy-saving of the chemical conditioning in compas-
sion to the physical conditioning its merits, but also, the
oxidization processes are potentially removing recalcitrant
compounds in such sludge. Thus, the final sludge disposal to
the environment is more environmentally benign (Ma et al.
2007).

Chemical conditioners that are based on advanced oxida-
tion processes are gaining a great scientist’ attention. Fen-
ton’s oxidation is a promising superior dewatering technique
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possessing numerous advantages (Tony et al. 2008).
Although the Fenton oxidation is a superior conditioning
process compared to the other chemical conditioners, a few
research cited are dealing with such investigation (Zhao et al.
2009). Therefore, there are still significant research gaps at
present and more research is required to examine the rela-
tionship between the needed sludge oxidants and dewater-
ability and optimization of the operational parameters.

The data tabulated in Table 2 reveal that the scattered
limited studies dealt with alum sludge collected from differ-
ent regions of water treatment plants (WTP) as a by-product
residual from waterworks. Sludge dewatering showed that
polymer dewatering displayed higher treatment efficien-
cies than other conditioners. However, it is noteworthy to
mention that, the toxicity related to polymers stands as a
problem. Therefore, scientists are dealing with searching for
alternatives. Generally, low toxicity is attained for the nor-
mally applied anionic and non-ionic polymers. But, cationic
polymers types found to be more hazards to the eco-system
and aquatic organisms. Hence, there are strict limits on their
use in the drinking water treatment plants for preventing
their existence over the permissible limits to stop the envi-
ronmental damage. Notably, monomers used in the polymer
production showed toxicity more than the polymer itself;
nonetheless, severe quantities on their levels are sustained,
especially with regard to acrylamide. In this regard of rigor-
ous regulations on the polymer uses, polymer toxicity could
not seem to be a big problem (Bolto and Gregory 2007).

Additionally, it is significant to mention that not only the
environmental aspects are stands behind searching for poly-
mer alternatives, but also the economic prospective. Even
the most cost-efficient polymer types are not considered
from the industrial potential of a lowest cost (Tony et al.
2008). Notably, it is recorded by Ghebremichael and Hultm
(2004), 65% of dewatering is achieved through SRF and CST
reduction recording via using Moringa oleifera (MO). It is
a significant research which concluded that MO could be
effectively used and replaced alum or polyelectrolytes for
chemical conditioning of water works sludge to prepare it
for dewatering. It is recommended as a green alternative
option. Moreover, the study introduced by Pan et al. (2004)
explored that minimal effect could be attained when sur-
factant is applied as conditioner in comparison to polymer;
however, no effective distinguish is achieved with types of
the surfactant charge.

Moreover, it is significant to illustrate that dual polymer
conditioning does not demonstrate a considerable improve-
ment and further reduction in the sludge dewaterability
and filterability assessed via CST and SRF comparing it
with the solo polymer conditioning as seen the results in
Table 2 by Ma et al. (2007). Hence, considering dual condi-
tioning achievement should notably consider both cost and

administration, which is not a recommended strategy for the
real industrial scale applications.

As a further bonus, the oxidation conditioners (i.e., Fen-
ton reaction) are less aggressive to the environment since
their reactions are environmental benign than organic
polymers, resulting in a green and sustainable ecosystem.
Although alum sludge conditioning by advanced oxidation
process specially Fenton’s oxidation is not superior as poly-
mer conditioning for improvement of sludge dewaterability,
its environmentally benign compared to polymeric addi-
tion should be considered. Moreover, till now, most of the
researches conducted are mainly focused on the application
of classical Fenton peroxidation reaction according to the
data displayed in Table 2. Additionally, only limited pilot-
scale tests had been introduced. Hence, data are still lack-
ing for large-scale applications results, in which optimiza-
tion and pilot-scale tests are required. Also, there is limited
research conducted on alternative oxidization processes such
as different iron sources or other transition metals oxidi-
zation process and ozonation process. Furthermore, basic
mechanisms of alternative advanced oxidation processes
should be clarified and studied in more detailed. The influ-
ence of more effective or enhancing the catalytic oxidation
conditioners performance still requires more study. Moreo-
ver, detailed research is needed dealing with the mechanism
on their chemical performance that has as yet only been
investigated superficially.

Sustainable reuse of waterworks sludge
residues

Research into a sustainable disposal opportunity is the scien-
tists and researchers job to reach a green ecosystem. Hence,
alternative waterworks sludge disposal option to maximize
their value and improve their benefits and reach these mas-
sive amounts from underrated material to a value added
product is crucial research work to satisfy the restrictions
and limitations. In this regard, alum sludge is practiced to
numerous applications according to the following trails: (1)
building material; (2) agriculture applications; (3) adsorbent
material; (4) coagulant material; (5) co-conditioner and (6)
constructed wetland applications. Figure 6 summarizes var-
ies beneficial reusing and reprocessing applications of AS
for sustainable endpoint solution.

Building materials
Soil stabilization before road infrastructure
Ever though the aforementioned difficulties associated with

alum sludge handling as a waterworks residue, just limited
research articles have tried to valorize it as a building and
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Fig.6 Summary of the sustainable AS applications

construction substance. However, utilization of alum sludge
residues as a building material in the large scale cannot only
work as raw material for soil stabilizer, brick manufacturing
and cement production, but also could help in its associated
waste management problems. For infrastructure and con-
struction, soil stabilization is a vital stage for development.

Traditionally, cement is the most comment material used
for such job as an additive in a ration of generally used of
12% (Owaid et al. 2014). However, searching for a sustain-
able environment and waste management opportunities is the
scientists continued role. Since the pozzolanic properties of
alum are suitable to be a builder material, it could be used
as a soil stabilizer as cement or lime (Lin et al. 2005; Bray
2014). In addition, its production is in bulk amounts from
the waterworks plants introduces them for such opportunity.
Thus, recent literature (Aamir et al. 2019; Henry et al. 2020)
is cited dealing with the application of alum sludge as the
waterworks residue for soil stabilization as a novel technol-
ogy. Such application could attain environmentally benign,
cost-efficient and sustainable stabilization chance. The data
recorded by Aamir et al. (2019) showed an enhancement and
improvement in the soil strength—bearing ratio from 6.53 to
16.86% with an optimal alum sludge addition of 8%. How-
ever, more research is still required since there is a lack in
the literature in such studies. Hence, in the future to studies,
it is required to illustrate compaction properties and energy
needed to improve soil strength with the merely utilization
of the alum sludge waste material.

Cement-based materials

Alum sludge, generally comprised of clay minerals, could be
dehydroxylated if heated in the range of 700-850 °C (Tony
2020b). Moreover, the raw waterworks sludge is primar-
ily aluminum-based material with an amorphous aluminum
hydroxide precipitate with minimal quantities of crystal-
line quartz and montmorillonite (Shamaki et al. 2021). The
resultant materials are a reactive alumina and silica. There-
fore, such materials enhance the pozzolanic reactions when
it is supplied to cement improving it characteristics that are
related to strength and durability (Fernandez et al. 2011).
Thus, calcined alum sludge samples might be signified as a
pozzolan since the temperature of calcination has a major
influence on the pozzolanic activity (Shamaki et al. 2021).
Thus, in cement industry such sludge comprised in past a
resultant alite hydration is enhanced since the undersulfated
C;A reactions are prevented; hence, the cement performance
is superior.

Sludge recycle is an incinerator in that the cement kiln
as a fuel in cement manufacturing is not the only merit and
practical alternative, but also it could be as a raw material for
cement (Pan et al. 2004). Rodriguez et al. (2010) studied the
replacement of 30% of cement with dried alum sludge result-
ing in a promising reduction in the compressive strength
reached 70% in 28 days. Moreover, they reported in their
study that dehydration is deduced that is affecting also the
setting times of standard mortars. Pan et al. (2004) replaced
the clay in cement with clay from fresh alum sludge, which
revealed reasonable setting times and the addition did
not alter the f-CaO content of the cement. The compres-
sive strength increased with the alum sludge increase and
met the standard of the Chinese National Standard of first
degree Portland cement. The ternary blends from silica
fume, ground-granulated blast furnace slag besides palm
oil fuel ash were applied by Owaid and co-workers (2014)
with the calcined water works alum sludge at 800 °C. Higher
compressive strength was recorded. To add up, Gastaldini
et al. (2015) investigated the optimal alum sludge addition
in cement industry and their investigation is mainly focused
on the optimal calcination temperature which is revealed at
700 °C for one hour of calcination time. In Shamaki and his
group (2021) the UK waterworks alum sludge could be uti-
lized with a performance improvement through the addition
of gypsum and limestone powder which accelerator effect of
calcined sludge dehydration on cement specimen. Thus, the
potential use of alum sludge in cement industry has a clear
economic driver. Its use as a building material reduces the
cost of production.
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Brick manufacturing

To meet the bricks demand as building material, clay could
be substituted by alum sludge in brick manufacturing. Water
works sludge residues based on aluminum waste are mature
enough that could be used as a partial replacement of clay
in clay brick manufacturing.

Several researchers in many countries used alum sludge
in different types of brick making and the compressive
strength and shrinkage of the new made brick are explored.
For instance, Patricia et al. used waterworks sludge to pre-
pare ceramic brick (Li et al. 2018). Elangovan and Subrama-
nian (2011) introduced the alum sludge with the commercial
local clay that is blended in various quantities and sintered
at different calcined temperatures to produce clay sludge
brick. Also, Tony and Ashour (2014) and Zhao et al. (2016)
revealed alum sludge a suitable candidate in clay brick mak-
ing. Other researchers used water treatment residues as a
clay replacement and colorant in facing bricks manufactur-
ing as both colorant material and clay replacement (Andrew
and Evaggelia 2007).

Thus, it is supposed from numerous studies that varies
types of bricks can be introduced from different countries
of studies that meets the regulations of each country by con-
trolling the quantities of incorporated and the sintering tem-
perature. Such research introduces underrated dumped waste
alum sludge material in those cases that offer a favorable
future for a cost-efficient, economic and environmentally
sustainable green options as a promising building materials
additive. However, it is notably that the research conducted
in using the underrated aluminum-based sludge by-product
in construction materials is limited in comparison to other
potential applications. This may be related to its organic
and water content which makes its chemical composition
variable. However, as aforementioned some supplement
and treatments to such sludge reveal a suitable geotechnical
characteristics and thus geo-environmental applications due
to the alteration on its shear strength, mechanical stability
and permeability.

Table 3 summarizes the various application of alum
sludge (AS) as a building material amendment reported in
the previous literature cited. Multiple trials have explored
incorporating AS into clay brick (Pan et al. 2004; Ramadan
et al. 2008; Santos et al. 2015; Zhao et al. 2016). Initial
investigations revealed numerous additions into the brick
as well as “AS” such as a combined addition of explored
an enhancement in the attained clay brick incinerated sew-
age sludge ash (Anderson et al. 2003), excavation waste soil
(Huang et al. 2005), silica fume and rice husk ash (Hegazy
etal. 2012). AS added to Portland cement (Shamsudin et al.
2017) to produce ecological cement brick. Moreover, incor-
porated limestone (Tony and Ashour 2014) or sand and soil
(Shamsudin et al. 2017) with AS into cement to generate
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sustainable cement brick showed good compressive strength
results.

Preliminary results (displayed in Table 3) of research
studies reported the suggested the optimum addition of
sludge varied from 5 to 75% to comply the regulations and
standard test limits including those in the places of study in
UK, India, Egypt, Malaysia, Portugal, Taiwan and Ireland.
Investigated outcomes and experimental results from those
studies could facilitate the rollout of full-scale factory trials
for producing a sustainable brick from AS waste to introduce
a green environment opportunity.

It is noteworthy to mention in order to manufacture bricks
containing higher amounts of alum sludge, more energy is
required. More sintering temperature of the bricks is needed,
and the sintering temperature is increased must be increased
to~1050-1100 °C. This could be due to the lower silica
content and higher water content of alum sludge, which
makes the need for more heat. Thus, more intensive energy
is required and the process in such case became less eco-
nomic environmentally appealing (Turner et al. 2019).

Agricultural applications

The applicability of the waterworks sludge containing alu-
minum is previously applied to the agricultural soils for
fertilizing purposes (Dassanayake et al. 2015). Although, it
could be applied as a fertilizer in agriculture, the sludge and
soil to fertilize must meet some necessities. The aluminum
presence in alum sludge could be a source of toxic aluminum
and contaminate the environment.

As demonstrated by previous research cited, aluminum
and other heavy metals in the sludge could pose a danger
to the environment. However, some other researches (Kluc-
zka et al. 2012); (Central Statistical Office Bochenek 2014;
Kluczka et al. 2017) contradict this and concluded the soil
are not contaminated with heavy metals. Thus, this gets an
optimistic vision through the problem and more research
could be done for the use of alum sludge in agriculture
purposes.

By applying such sludge for agricultural purposes, this
introduces the phytotoxic aluminum material into the soil.
Such properties are well recognized as harmful to the trees
(Ulrich et al. 1980). Other investigator (Smolinski et al.
2009; Yang et al. 2012; Kluczka et al. 2017) reported that
the ever increase in aluminum concentrations in soil is sig-
nified as one of the main reasons of forests death in North
America and Europe. Aluminum not only affects the trees,
but also it does cause a certain damage to the crops such as
tomatoes, lettuce and beetroot (Brunner and Sperisen 2013).
It noteworthy to mention that the elevation in soil acidity
notably raises aluminum and heavy metals mobility in the
soil (Kluczka et al. 2012). Therefore, the regulations lim-
ited the sludge use in the soil to not more than the pH 5.6
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Table 4 Summarized results of alum sludge application in agriculture sector*

AS, Country of study Plant case study

Other additives

Potential Outcomes References

WTP Illinois, USA Corn and soybean

WTP, Pennsylvania, USA  Tomato (Lycopersicon

esculentum)

Okla-
homa
Okla-
homa
Okla-
homa
WTP municipalities across
Okla-Homa, USA

Tomato (Lycopersicon
esculentum)

Ilsan water purification Indian mustard

plant near Seoul, Korea

WTP, UK Turf grass

N/A

Clayey, mixed, mesic typic
Ochraquul

Other water treatment
residuals based polymer
(polyaluminum chloride)
based

Sand Silt Clay

Ferric-based sledges, sub-
soil or clay, fertilizers

_No notable effect is reor-  Lin and Green 1987
dered for the plant nutri-

ents and heavy metals

levels in the whole plant

parts; thus, AS addition

has no detrimental effects

on the plants

-2-10% addition of AS
have efficient effect on
tomato growth

-Increased liming effect,

-Reduce Al and Mn toxic-
ity

-Reduce heavy metal
uptake

-alkaline conditions should
be avoided

Elliott and Singer 1988

Tomato vegetative yield Dayton and Basta 2001
and tissue P
were poor either because
of phytotoxic nitrite-
nitrogen (NO2-N) (.10
mg/kg) generated during
the bioassay or because
of WTR P deficiency
Limited data suggest that
WTRs with NO2-N less
than 10 mg/kg and
Olsen P greater than
50 mg/kg, water soluble
P greater than 580 mg/L,
or Mehlich III P greater
than 54 mg/kg support
growth but still produce
inadequate tissue P in
tomatoes

-Increase phosphate Kim et al. 2002
adsorption

-Reduced leaching of Al,
Mg, K, Na & Mn

-Increase leaching of Ca

-Increase biomass amount
and root elongation

-Application acid soil is
safe & beneficial to plant
growth

-Require supplemental P
fertilization

-The growing of turf is Owen 2002
environmentally sustain-
able and economically
attractive using AS

-The root action of the
grass helping to min-
eralize the active metal
hydroxide

-The grass grows well,
the root structure is well
formed, and the sludge
reduces the need for
topsoil
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Table 4 (continued)

AS, Country of study Plant case study

Other additives

Potential Outcomes References

Howick, WTP, South
Africa

Soil improvement

South Africa South Afric
South A WTP, South
Africa fricaa

WTP, South Africa

Stornoway WT, UK

Soil enhancements

Soil improvement

WTP, Poland Garden plants

Clay, fine slit

Sand, silt, clay

Sewage sludge

Wastewater sludge

-Increases in hydraulic
conductivity and water
retention

Moodley et al. 2004

-Increases in hydraulic
conductivity, water
retention and soil water
conservation

Moodley and Hughes 2006

-Requires evidence of
‘agricultural or ecologi-
cal improvement

-Addition of N, P and K is
required

-Allowable limit of EU
and Polish Government
Regulation are consid-
ered and 10% of the total
aluminum content of the
tested sediments are bio-
available that is danger to
the environment

Hastings and Dawson 2012

Kluczka et al. 2017

(Kluczka et al. 2017). However, with the ever increasing of
the environmental pollution, situation and widespread of the
acid rain in the industrial locations recommend monitoring
of the bioavailable Al-content is essential (Yang et al. 2012;
Kluczka et al. 2017). The summarized results of applying
alum sludge as a soil amendment are displayed in Table 4.
Dual valuable application of AS into agriculture amelio-
rant is improving crop production as well as it is an effec-
tive sludge management technique. AS can improve soil
structure, hydraulic conductivity and nutrient levels. This
is related to the presence of organic matter and nutrients in
alum sludge. Consequently, alum sludge can be used as a
safe soil amendment material to manage and improve soil.
However, aluminum toxicity which is present in alum sludge
still requires further research to accept AS application in
agriculture sector.

Adsorption of pollutants

Due to the chemical nature and amorphous structure of
the AS from waterworks residuals impart it with a porous
and high surface area material, all of such characteristics
introduce it to be a superior adsorbent material (Ippolito
et al. 2011; Babatunde and Zhao 2007; Ashour and Tony
2020; Li et al. 2021). Aluminum-based metals could be
applied in wastewater treatment sector for numerous con-
taminants elimination. Various studies (Turner et al. 2019;
Tony 2020b) have been investigated the application of alum
sludge as a low-cost adsorbent material for contaminants
removal from aqueous media. Such contaminants including
boron, fluorides, pesticides, perchlorate, glyphosate, dyes

and lead are listed in Table 5. However, detailed and more
published studies are related to phosphorus removal from
various wastewater effluents and types, their equilibrium
isotherm, kinetic analysis and the effect of system param-
eters have been studied. The presence of amorphous alu-
minum nature in the Al-based sludge maximizes its affinity
to adsorb phosphorous anions from contaminated streams
(Babatunde and Zhao 2007; Tony 2021a). AS sorption capa-
bilities are related to the particle size, surface area and sur-
face charge of the AS particles.

Research studies conducted the fully characterization of
alum sludge via a complete textural characterization and
surface chemistry assessment to signify the surface func-
tional groups and to conduct the adsorption kinetics and
equilibrium to explain the adsorption mechanisms (Zhao
et al. 2021). The entire adsorption mechanisms include sur-
face precipitation, ligand exchange, electrostatic attraction
and ion exchange. It should be noted that although a chemi-
cal reaction between pollutants and dissolved aluminum has
been demonstrated, it is assumed that the chemical reaction
plays only a marginal role in the contaminants removal pro-
cess (Turner et al. 2019; Liu et al. 2021a, b). The adsorption
system could be categorized as physisorption or chemisorp-
tion process. In physisorption adsorption, the interaction
exists between the solid surface and the adsorbed species has
a physical nature in which the interaction forces are depend-
ing on the weak van der Waal interaction forces, thus making
the process irreversible and requiring low energy barrier.
However, chemisorption is signified by the formation of
chemical bonds between adsorbed molecules and the solid
adsorbent surface via electron transfer or pairing. In contrary
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Table 5 (continued)

Uptake capacity (mg/g) References

Operating conditions

Adsorbate

AS (modification/treatment) adsor-

bent

AS, Country of study

Zhao and Yang 2010

20.1 mg/g

Air-dried, grounded, sieved pH4.3

Leixlip WTW (located in west
Dublin

to the physisorption, chemisorption requires high activation
energies and always exists as a monolayer (Tony 2021a, b).

Table 5 summarizes the previous cited studies conducted
in the literature using AS as a water works residual mate-
rial in its nature or modified/treated form for eliminating
numerous elements and compounds. As tabulated in the
table, the waterworks residuals based on Al-sludge waste
could be used and applied for eliminating a wide range of
pollutants from wastewater. AS showed a superior effect in
phosphorous uptake with high adsorption capabilities is sug-
gested (Gibbons et al. 2009; Gibbons and Gagnon 2010;
Wu et al. 2019; Zhao et al. 2021). Their tests with synthetic
phosphorous solutions explored that an adsorption capabili-
ties differ according to the operating variables and the initial
phosphorous concentration. Additionally, pH has been dis-
covered to have a significant role on the adsorption uptake.
The isotherm time could be reached after 24 h (Wu et al.
2019) or 12 days (Gibbons et al. 2009; Gibbons and Gag-
non 2011). It could be also applied to remove arsenics from
wastewater effluents in a process which is characterized by
an increase in the adsorption rate with the increase in the
isotherm time which could be reached to 2 days (Makris
et al. 2004) at a pH ranged from 3 to 7 according to the type
of aqueous effluent (Nagar et al. 2010) (Makris et al. 2009;
Gibbons and Gagnon 2010; Nagar et al. 2010). Potentially
toxic dye adsorption by AS is well likewise documented in
the literature (Tony 2020a, b) for a thermally treated AS
samples worked at neutral pH for Procion Blue textile loaded
effluents. Scattered studies also showed various pollutants
removal from aqueous stream, phenol removal using treated
AS has also been investigated (Tony 2019) and Cheng et al.
2016 studied ammonium removal.

Hence, such level of achieved treatment validates the
great potential of applying alum sludge (AS) and its environ-
mental benefits, which might be attained through its appli-
cation especially in developing countries where massive
amounts of wastewater from various industries are produced
which required to be treated in limited treatment options
(Tony and Lin 2021). Such limitations are always related
to technical access and cost issues. Otherwise, this AS
application is limited to be applied in treating hydrophilic
substances. Moreover, the other limitation to AS practical
use is the final use of AS after adsorption where they are
unsuitable for reuse options and thus need to be landfilled
(Wu et al. 2019; Nagar et al. 2010; Turner et al. 2019). It is
also noteworthy to mention that the feasibility, cost impli-
cations and long-term performances of transforming AS to
nanosized particles through milling AS for proper applica-
tions could be a reliable option to be a valuable commer-
cially adsorbent for practical applications and reuse facilities
(Turner et al. 2019).
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Coagulant

Commonly, aluminum coagulants are widely applicable as
appropriate coagulant materials to eliminate colloids and
phosphorus combinations from water and wastewater sys-
tems. In this regard, the most widely applied aluminum
coagulant derivatives are aluminum sulfate, sodium tet-
rahydroxyaluminate, aluminum chloride and pre-hydrolyzed
aluminum (Tony 2021a, b). While they are not cost-efficient
in comparison to ferric coagulants, they are widely applied
exclusively in drinking water treatment plants since they
have no effect on water quality; thus, this gives its publicity.
According to the literature cited, there are published data
investigating the impact of the composition and structure of
such coagulants to residual aluminum content.

However, such work has only referred to the total Al con-
tent and research studies do not introduce the analysis of alu-
minum fractions (Wolborska et al. 1999; Gregory and Duan
2001; Rak and Swiderska-Bréi, 2001; Yang et al. 2012;
Tony and Lin 2020b). In 2010, the regulation of the Minis-
ter of Health of Poland regularized 0.2 mg/L as the limited
total Al concentration that could be present in the drinking
water. Few research studies related to the Al coagulant with
its toxic forms could effect in agricultural applications and
may cause a danger to soil or not. Results revealed that a
larger solubility of aluminum could be achieved when acidi-
fication of alum sludge-treated soils to an unamend control
soil. Not only acidification could pose a danger, but also,
phytotoxicity of soil is related to the pH of the soil (Cod-
ling 2008). However, another results found that a negative
effect is appeared to the soil plants as a result of alkalinity
(Brautigan et al. 2012). For this purpose, the elevation of
alum sludge applicability as a coagulant material requires
more studies to examine the post-coagulation of the sludge
collected from the water treatment plants. Although such use
of alum sludge as a coagulant material make it an ideal reuse
option, further study is needed. More data are required for
full-scale possibilities. However, the viable is still limited,
and its future potential use of technology advance can be
streamlined.

The combination of alum sludge with ultrafiltration mem-
brane processes has been explored as a promising approach
for tertiary wastewater treatment in industrial applications
reuses or as a prior treatment technology before the reverse
osmosis membrane (Mazari et al. 2018).

Co-conditioner

Nowadays, a considerable attention is gained toward trans-
forming AS waste into a valuable material, rather than an
underrated matter for disposal. In this concept, research
academia and engineers attain a superior overwhelming
research in the last years since AS is most majority by

Pielase clla)l auan .
KACST 3.015lq rogle Ll @ Springer

product from water works plants. Though, actually, limited
studies have revealed the use of “AS” as a co-conditioner
for sewage sludge dewatering. For example, Lai and Liu
(2004) reported that AS acted as a skeleton builder for mixed
sludge samples and hence enhanced sludge dewaterabil-
ity. Yang et al. (2007) and Yang et al. (2009) reported AS
application role in condition for improving sewerage sludge
dewaterability. Their results demonstrated that polymer dose
could be minimized from 120 to 15 mg/L for mixed sludge
and thus showed a cost efficient technique. Li et al. (2016)
investigated the alum sludge as a drinking water treatment
residual which containing polyaluminum chloride and large
amount inorganic matters. Chemical conditioner and physi-
cal conditioner for improved the sewage sludge dewatering
(Tony 2020a). Their results explored that the supplement of
AS could reduce the polyacrylamide dosage addition and
reduced the moisture content of sewage sludge Ren et al.
(2020) demonstrated that alum sludge and sewage sludge
mixing in a ratio of 1:1 showed a beneficial AS use as a
co-conditioner of sewage sludge and resulted in a good and
dewatering results. Realistic economics application of alum
sludge co-conditioning opportunity could achieve sustain-
able reuse development as a conditioner from a waste.

Constructed Wetlands, reed beds and filter beds
applications for wastewater treatment

Worldwide, considerable attention has been received in
according to the literature published regarding the applica-
tion of the dewatered AS as a reactive media in constructed
wetlands or filter beds. AS is used in the form of AS-cake as
the main substrate in constructed wetlands, CW for end of
waste lifespan as shown in Fig. 7 (Zhao et al. 2011).
Indeed, substrate is an essential constituent in CW;
therefore, the best substrate is chosen that possesses multi-
functions, i.e., (i) supporter of biofilm formation; (ii) plants
growth media; and (iii) adsorbent for pollutants. From the
practical point of view, alum sludge is drinking water treat-
ment plants by-product; hence, it is non-toxic not harmful
substance in most cases (Zhao et al. 2013; Turner et al.
2019). Further crucially, aluminum is the predominant
constituent in alum sludge which posses’ high adsorption
affinity to adsorb phosphorus from polluted aqueous streams
(Babatunde et al. 2007; Tony 2020b). Hence, aluminum-
based sludge cake, as dewatered drinking water treatment
plants residuals own a good potential for reuse as raw envi-
ronmental engineered material as the main substrate in CW
for double benefits of reed beds and wastewater treatment.
Extensive studies were explored to assess the capacity
and tendency of alum sludge as a low-cost adsorbent mate-
rial for dyes (Tony 2020a, b), phosphorous (Babatunde et al.
2007; Wu et al. 2019), arsenic (Nagar et al. 2010) and some
of heavy metals adsorption (Zhou and Haynes 201 1; Castaldi
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Fig.7 Lifespan of alum sludge
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et al. 2014; Silvetti et al. 2015). Hence, it is introduced as
a filter bed or constructed wetland medium (Fig. 7). More
research is dealing with its advances only in the last decades,
and a focus on the research and development is conducted
(Babatunde et al. 2007; Zhao et al. 2008; Hu et al. 2012).
The major concern that could face the constructed wetland
medium over the long-term applications is clogging. Some
studies reported that this issue could be partially alleviated
by using anti-sized gravel bed ranged from small at the base
of the bed and larger at the top (Zhao et al. 2015). However,
Oliver et al. (2011) reported low risk to human health could
be attained from organic matter release under anaerobic con-
ditions. Not only using AS as a CW is the solo benefit, but
also the final sludge cake after the working lifespan end life
could Al and P be recovered. Simple precipitation through
pH adjustment is achieved by (Zhao et al. 2013) resulted in
97% and 99% for P and Al, respectively. Hence, practical
use of Al-sludge as CW substrate is promising; although
the presence of Al for instance still needs further research.
Moreover, in the long-term life cycle the clogging issues
may still require further development for higher performance
yield.

Here, it is important to signify that excellent pollutant
removal efficiencies have been cited and well accepted by
global constructed wetland research studies. Use of dewa-
tered alum sludge as the main constructed wetland substrate
to expand its scope for enhanced wastewater treatment espe-
cially phosphorous removal displayed a beneficial reuse of

alum sludge. Developing new materials as substrates in con-
structed wetland with high adsorption ability and capacity of
P or other contaminants is the attaining a priority in wetland
advancement.

Al-recovery from AS, impacts and concerns

Viable alternative for end-of-life AS waste is another addi-
tional profit besides AS use to reduce the waste produced as
well as limiting its final disposal cost. The safe and sustain-
able alum sludge utilization option in various applications,
aluminum recovery could be the reply. Aluminum presence
in AS stands is an obstacle from widening its applications.
Another potential environmental concern is the probability
of elevated level of Al to release to the environment and
ecosystem.

Hence, once aluminum is recovered from such sludge,
commercial potential of alum sludge utilization in different
sectors could be further increased. Al present in AS is about
less than 40% by weight. Scattered studies have been previ-
ously investigated to remove and recover aluminum from
Al-sludge (Dayton and Basta 2001; Vaezi and Batebi 2001;
Stendahl et al. 2006).

Numerous progressive procedures are employed to
recover aluminum from the aluminum based drinking water
residue for converting this environmental issue into a sus-
tainable and economically comprehensive solution. For
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instance, some researchers found that Al can be recovered
via acid treatments through the pH ranged 1.0-3.0 could
acquire Al recovery could achieve Al recovery which could
reach to 90% (Abdo et al. 1993; Vaezi and Batebi 2001).
Otherwise other researchers reported alkaline treatments at
the pH around 11 sodium hydroxide and calcium hydroxide
gave a reasonable recovery (Masschelein et al. 1985). Fur-
thermore, membrane separation technology (Sengupta and
Shi 1992) and liquid ion exchange methodologies (Cornwell
1982) were also recorded in literature for Al recovery from
alum sludge.

Recovery of Al from alum sludge for the option of recy-
cle, reprocess and reuse in order to reduce waste still needs
further work data for the full-scale possibilities of coagulant
reuse. It is noteworthy to mention that, presently, potential
future technologies are required for recovery technolo-
gies (Keeley et al. 2014). Till now, according to the cur-
rent arrangement of recovery data, alum sludge could be
recovered and applied in wastewater treatment in less severe
regulations regions. No doubt, alum recovering from water
treatment residues is minimizing the environmental impacts
that could be caused by Al-sludge and also minimize the cost
through purchasing alum since the recovered alum may be
applied for numerous times (Sanga et al. 2018).

Merits/demerits of sustainable reuse
opportunities of 5Rs

Despite the multiple options of alum sludge utilization, still
there are unexplored concerns and potential limitations.
For instance, in constructed wetland applications, even the
disposal route is viable still the lack of the anti-clogging
techniques is lack in the literature. The adsorption capabili-
ties of alum sludge are also associated with the pH of the
medium. The applicability of AS in soil is also related to the
nature of soil, which requires a careful evaluation. Overall,
there is still a disconnection between the business enterprise
regarding AS applications and the research conducted and
academia. Such a lack in connections could be answered
through communication of policy makers and scientific sup-
port. Otherwise, disposal route such as landfilling of the
sludge will be the routine option. Moreover, it is noteworthy
to mention that chemical and physical nature of AS differs
from one drinking water works plant to another in different
countries and regions; thus, further investigation is required
before the specific application for definitive conclusion. The
merits, demerits and limitations of the diverse alternative
AS disposal choices assessed in this article are summarized
in Table 6.

Through the 5 Rs’ criteria, significant chemical invest-
ments and savings are achieved as well as the sludge vol-
ume is deduced. Resource recovery and reuse enhance the
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treatment efficiency and attain a sustainable environment.
But, close distance should be the alum sludge application
and handling place and the waterworks plants that produce
alum sludge as a sustainable option in order to overcome
shipping distances and charges. Some conservation of natu-
ral resources could be attained through the utilization of
such AS in various applications such as the use in various
civil engineering applications in construction industry as a
raw material for brick making, concrete and soil amendment.
Moreover, heavy metals recovery from sludge and reuse it as
coagulant materials or reuse the AS sludge as co-conditioner
are also saving the natural resources and sustain our planet.
Additionally, agriculture and land sector application of AS
is a simple and inexpensive opportunity as a low-grade fer-
tilizer or to attain excess nutrients. Wastewater treatment
sector showed diverse pollutants remediation via various AS
from different WTPs in different regions.

Generally, controlled application of waterworks residuals
“AS” in these abovementioned varies application and feasi-
bly many extra unexplored techniques would valorize alum
sludge from “underrated” into “value added” material, in
order to maximizing benefits with minimal impact in tandem
with the theme of ecological environment.

Concluding glance of development, barriers
and future perspectives

More economic alternative for the high disposal costs espe-
cially of sludge landfilling is that AS sludge beneficial uses
are discussed. Happily, as noted in the above-mentioned
applications AS showed various commercial and applica-
tions in different regions in the world including UK, Ireland,
Europe, the USA, Middle East, Asia and Australia. Particu-
lar relevance is given to the reuse in soil applications, build-
ing materials, constructed wetland and wastewater treatment.
However, still further research is required especially for
the field of Al recovery and reuse of alum sludge as a co-
conditioner. Cost estimations of alum sludge handling from
waterworks plants to the numerous applications require a
study and regional regulations tend to the increase of heavy
metals recovery options for reuse in agricultural, ecological
and industrial purposes.

An updated database in most countries especially in the
developing regions is required on quantity and quality of
alum sludge by-product to conclude a significant assembly
in the present and future AS disposal budgets and controls.
Moreover, resource recovery such as heavy metals from
alum sludge is considered chemical savings and reduction
in sludge volume, but still suffers from operational problems
that should be overcome. Further research is still required to
prevail long-term constructed wetland drawbacks from any
toxic release and long life cycle of anti-clogging systems.
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Table 6 Summarized disposal AS alternative of reusing options with their associated merits and impacts*

Application of AS Merits

Demerits

eNonhazardous
eReduced shrinkage in clay bricks
eRich color of the final product

Building materials

eReduction in compressive strength at higher
sludge percentage
eHigh water absorption

oOrganic content may present some energy savings temperature eRequires high sintering temperature

eSubstitute to sand and cementations material

eBest suitable for non-structural concrete

oOrganic content in final product may affect
mechanical properties

eMetal hydroxide content forms low-porosity brick with accept- eRisk of hydrogen generation, inclusion of deleteri-

able structure
eNonhazardous

o AS forms calcium aluminum hydrates that helps to prevent

chloride corrosion

Agricultural applications eImproved soil aggregation

eIncreased moisture holding capacity and water permeability

eEffective P reduction at low cost

ous components

e Aluminum expansion

eRetardation of settling

oOrganic content may affect the stability perfor-
mance

eHigh water content

oRisk of metal accumulation

oL ittle fertilizer value

ePotential fixation of available P

Adsorbent eSuitable for P removal, heavy metal, Textile dye, organic eExtent of adsorption is under
contaminants Research such as organic contaminants remediation
and pollutants adsorption ePossible release of substances
oCost effective eRisk of clogging
ePossible method for emerging pollutant removals eDoes not work well for hydrophilic dyes
Ccw eConstructed wetlands substitute wetland media eTransportation distances

eImproved P and N removals

Co-conditioner eSludge settling is enhanced
eSludge dewaterability is improved

oP removal from wastewater

Coagulant
oCheap
eReduction in sludge volume and
eDisposal cost

eExcellent removal efficiency of turbidity COD and TSS

oStill need further research

oShipping is costive
eDisposal of mixed sludge

eRestricted use due to possibility of contamination
eShipping cost

eRecovery process

eLimited purity

eComplicated and laborious

COD Chemical Oxygen Demand; 7SS Total Suspended Solids

But, for now particular current situation and the probable
future trend, there are required attempts for global beneficial
reuses of drinking water residues with a critical evaluation
for its negative issues from such applications and reuses.
Moreover, with increasing attention worldwide to the sus-
tainable and green ecosystem, arising reuse opportunities
may be explored.

It is notable that the common use of alum sludge is intro-
duced in adsorption in a powder form after dried and used
in grounded and sieved processes. Thus, such powder form
of alum sludge stands in the widening of the applications.
Moreover, it hinders alum sludge to be attractive adsorbent
material since it is difficult to recover after the adsorption
process (Zhao et al. 2021). Therefore, in the line of convert-
ing alum sludge from a waste into a useful material it is
important to granulate it which needs further study.

It is noteworthy to mention that although various reuse
applications are present, more work is still needed in the
future since the alum sludge material is undervalued mate-
rial since landfilling is remaining the general final dis-
posal route. Furthermore, regulations concerning the final

discharging of alum sludge and beneficial reuse should be
updated. Finally, it is noteworthy to mention that civic belief
toward alum sludge applications and reuses and the public
anxiety from recycling need urgent believable public educa-
tion for real applications. Further studies are required for the
type of alum sludge introduced for reuse for widening and
wiser applications. Hence, a complimentary effort may be
necessary for commercial applications in the fields of water,
environmental and civil engineering.
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