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Abstract
Mercury (Hg) is a toxic heavy metal contaminant and has very harmful effects for human health. In this work, Hg-containing 
wastewater with Hg concentration of 6.36 ppb and 9.4 ppb were recovered with polyethylenimine (PEI) cross-linked graphene 
oxide (GO) layered membrane (c-GO-PEI) by pervaporation. The influence of ionic type, the concentration of Hg and the 
feed temperature were investigated. The c-GO-PEI exhibited not only high rejection for salts (> 99.97%), Hg (77.5–100%) 
and non-purgeable organic carbon (NPOC) (67.3–90.8%) but also high flux (30.30 kg·m−2·h−1) to treat with the wastewater. 
In addition, the flux could be largely recovered after simple washing, indicating the excellent antifouling property of the 
membrane.
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Introduction

With the development of industrialization and urbaniza-
tion, water pollution is a major concern, and the efficient 
treatment of wastewater is becoming a challenge. In car-
bonaceous fuel combustion and petrochemical industry, a 
large amount mercury-containing waste gas and wastewater 
are produced. As a toxic heavy metal, mercury (Hg) can 
accumulate in food chain and has long-term influence on 
human beings, especially the nervous system.(Yu et  al. 
2016) Thus, attentions should be paid to the treatment of 
Hg-containing wastewater. Recently, various Hg removal 
approaches have been developed, such as chemical precipi-
tation, adsorption, ion exchange and membrane separation.
(Azimi et al. 2017; Oehmen et al. 2014; Yu et al. 2016) 
However, chemical precipitation causes second pollution. 

Adsorption faces the problem of ion competition. And ion 
exchange produces reclaimed water. Membrane separation 
is widely used in wastewater treatment with the advantages 
of low energy consumption, no chemical additives and ready 
coupling with other processes.(Pendergast and Hoek 2011; 
Samsami et al. 2020) Ultrafiltration (UF) and nanofiltration 
(NF) are widely employed in wastewater treatment. How-
ever, UF cannot reject small molecules and ions including 
Hg2+ because of the porous nature of UF membranes. As a 
pressure-driven processes, nanofiltration (NF) will face the 
problems of serious membrane fouling and concentration 
polarization when treating complex wastewater. (Kim, 2018) 
Moreover, the evaporation–crystallization process that has 
been widely used for salty water treatment is hard to attain 
Hg-free distillate due to the volatility of Hg. (Bin et al. 2019)

Pervaporation is a membrane-based separation method, 
in which the feed solution flow through the upside of the 
membrane and become vapor in the downside. The mem-
brane structure could be well-tuned to make it be capable of 
rejecting salts(Castro-Munoz 2020; Wang et al. 2016a) and 
volatile components(Cao et al. 2021; Ong et al. 2016; Yang,  
2019). Besides, low membrane fouling could be achieved by 
reducing the roughness and elevating the hydrophilicity of 
the membrane surface. These properties make pervapora-
tion a promising method to treat wastewater with multiple 
components and obtain fresh water. Recently, wastewater 
treatment by pervaporation has been widely studied, aiming 
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to remove or recover organic compounds(Aliabadi et al. 
2011, 2012; Cao et al. 2021; García et al. 2013; Kujawa 
et al. 2015; Li et al. 2018; Mei,  2020; Toth and Mizsey 
2015; Wang et al. 2018; Wu et al. 2016; Yi and Wan 2017; 
Zhang et al. 2016; Zhao and Shi 2009), sulfuric acid(Cui 
et al. 2020; Liu et al. 2021), ammonia(Yang,  2014) and 
heavy metals(Baysak 2021; Nigiz 2019). Baysak (Baysak 
2021) fabricated polyvinyl alcohol/NaY zeolite membranes 
to recover Cr from wastewater by pervaporation, and results 
showed that the membrane could effectively reject Cr(VI). 
Nigiz (Nigiz 2019) prepared poly(vinyl alcohol) membranes 
coated with poly(ether-block-amide) layer and investigated 
pervaporation desalination performance treating seawater 
containing lithium, copper, arsenic and lead. The composite 
membranes exhibited heavy metal rejections > 94%. As far 
as we known, the recovery of Hg by pervaporation has not 
yet been reported.

Recently, various materials were developed to construct 
pervaporation membranes, in which graphene oxide (GO) 
has promising prospects. GO was composed of two-dimen-
sional hexagonal skeleton of carbon atom structure and oxy-
gen groups, which has the properties of high strength, hydro-
philicity and easy to modify. By means of filtration, coating 
or layer-by-layer deposition(Wei et  al. 2018), GO nano 
flakes could be self-assembled on the substrate, forming an 
ultrathin dense membrane of layered structure. However, 
pure GO membranes are prone to swell and collapse in water 
condition. To strengthen the structural stability of GO mem-
branes, a large amount of cross-linking agents were applied, 
including polymers(Chen et al. 2014; Cheng et al. 2017; Pan,  
2020; Park et al. 2009; Suri et al. 2019; Tian et al. 2013), 
small molecules(An et al. 2011; Feng et al. 2016; Hung,  
2014; Jia et al. 2016; Liu et al. 2020; Qian et al. 2018; Wang,  
2016b; Zhang et al. 2020, 2015), ions(Chen,  2017; Gao 
et al. 2019; Lin and Chen 2021; Park et al. 2008; Yu et al. 
2017) and nano materials(Cho,  2019; Dong et al. 2020; Shi,  
2019; Xi et al. 2016). Polyethylenimine (PEI) is a kind of 
hydrophilic and flexible polymer, and abundant amino group 
endows PEI molecules with positive charge. GO was nega-
tively charged by carboxyl group, which could react with 
amino group, resulting in a favorable cross-linking structure 
based on both electrostatic attraction and covalent bonding. 
The structure is hoped to improve the mechanical strength of 
the GO layered membrane. Besides, with PEI intercalation, 
the zeta potential of GO-PEI membranes could be converted 
to positive, and the membranes are able to reject cations 
(e.g., Hg2+) by electrostatic repulsion.

Herein, PEI intercalated GO layered membrane was fab-
ricated with pressure-assisted self-assembly method and 
cross-linked in acid environment. The morphology, chemi-
cal composition and hydrophilicity were investigated. The 
prepared membrane was applied to treat Hg-containing 
wastewater by pervaporation. This work enlightens a new 

way to develop membranes for complex wastewater treat-
ment, especially removal or recovery of volatile components.

Experimental

Materials

Graphite was purchased from Tianjin No. 1 Chemical Rea-
gent Factory, China. Potassium permanganate (KMnO4), 
sodium nitrate (NaNO3), sulfuric acid (H2SO4) and hydro-
chloric acid (HCl) were purchased from Xi Long Chemical 
Co., Ltd., China. Hydrogen peroxide (H2O2) and sodium 
chloride (NaCl) were supplied by Sinopharm Chemical 
Reagent Co., Ltd., China. Polyethylenimine (PEI) with 
molecular weight of 70 000 was purchased from Shanghai 
Aladdin Biochemical Technology Co., Ltd. All materials 
and reagents were used without further treatment. Deion-
ized (DI) water was self-made in laboratory. Mixed cellulose 
ester (MCE) microfiltration membranes (diameter of 80 mm 
and pore size of 0.22 μm) were purchased from Chuangwei 
Filter Equipment. Hg-containing wastewater was provided 
by Shaanxi Beiyuan Chemical Group Co., Ltd, China.

Preparation of GO

GO was synthesized by Hummers method. First, 6 g graph-
ite powder, 3 g NaNO3 and 138 mL H2SO4 were mixed 
together under continuous stirring and 30 g KMnO4 was 
slowly added. The reaction was kept at 0 °C for 2 h and 
for another 5 h at 35 °C. Then, 276 mL DI water was pro-
gressively added into the mixture and the temperature was 
raised to 95 °C and kept for 30 min. After the mixture was 
cooled to room temperature, 840 mL DI water and 60 mL 
H2O2 were added. The mixture was repeatedly washed with 
3% HCl and DI water till neutral pH was achieved and then 
centrifuged at 8000 rpm to remove the supernatant. Finally, 
the sediment was dried at 50 °C in a vacuum oven and the 
GO was obtained.

Preparation of c‑GO‑PEI membranes

Pressure-assisted self-assembly method was used to fabri-
cate GO membranes. First, GO was dispersed in DI water 
by sonication to form an aqueous dispersion of 0.5 g/L. PEI 
was dissolved in DI water at 0.5 g/L. Then, 2 mL GO disper-
sion and 10 mL PEI solution were added into 200 mL DI 
water under stirring. The mixture was filtrated through nylon 
microfiltration substrate membrane and after filtration, the 
membrane was dried in a hot air oven at 50 °C for 4 h. Sub-
sequently, the GO-PEI membrane was soaked in DI water at 
room temperature for 12 h and then in a mixture of 200 mL 
DI water and 2 mL HCl for reaction at 50 °C for 4 h. After 
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that, the membranes were dried in a hot air oven at 50 °C 
for 4 h. The prepared membrane was denoted as c-GO-PEI.

Characterizations

Chemical composition of membranes was analyzed by 
Fourier transform infrared spectroscopy with attenuated 
total reflectance mode (ATR-FTIR, Thermo Fisher Scien-
tific, Nicolet iS50) and X-ray photoelectron spectroscopy 
(XPS, Thermo Fisher Scientific, ESCALAB Xi +). Surface 
hydrophilicity was measured by water contact angle (WCA, 
KRÜSS, DSA100). Surface morphology was obtained 
with scanning electronic microscope (SEM, TESCAN, 
MAIA3LMH). Element distribution of membranes was 
analyzed by energy dispersive X-ray spectrometry (EDS, 
Aztec X-maxN50) on SEM. Electrokinetic analyzer (Anton 
Paar, SurPASS) was used to measure the zeta potential of 
membrane surface.

Pervaporation performance of GO‑PEI membranes

The pervaporation performance of c-GO-PEI membranes 
was tested with a home-made instrument, as illustrated in 
Fig. 1. The effective membrane area is 15.9 cm2. During 
the test, feed solution was heated by water bath and circu-
lated from feed tank to the membrane surface and back to 
the feed tank with a peristaltic pump at flow rate of 18 L/h. 
The permeate was condensed with liquid nitrogen and col-
lected with a cold trap at vacuum of 0.096 MPa. The flux 
(J, kg·m−2·h−1) and rejection (R, %) were calculated with 
following equations.

 where W (kg) is the weight loss of feed solution during the 
test, A (m2) is the effective membrane area, and t (h) is the 
time of the pervaporation test.

 where cf and cp are the concentration of feed and permeate 
solutions, respectively.

Characterization

The surface images of GO and c-GO-PEI membranes were 
shown in Fig. 2a and b. The top layer on the MCE support is 
dense and demonstrates typical wrinkles of GO nanosheets. 
With intercalation of PEI, the wrinkles of c-GO-PEI became 
flatter and broader. This should be related to the interaction 
of the long PEI chains with GO nanosheets that could induce 
the spreading and flattening of GO sheets in the assembly of 
laminated structure. In cross-sectional view (Fig. 2c, d), it 
is observed that GO layers closely stacked on the substrate 
with a thickness of 100 nm and 270 nm for GO and c-GO-
PEI membranes, respectively. The increased thickness is 
resultant from enlarged interlayer spacing of GO nanosheet 
by the intercalation of PEI. The thicker layer could also 
diminish the effect of coarse structure of MCE support on 
the morphology of the thin GO layer. The smoothed mem-
brane surface is expected to be favorable in reducing mem-
brane fouling.

Figure  3a shows the ATR-FTIR spectra of GO and 
c-GO-PEI membranes. The peaks at 3390, 1737, 1459 and 
1274 cm−1 represent − OH, C = O, C − O and C − O − C, 
respectively, indicating characteristic absorption bands of 

(1)J =
W

A⋅t

(2)R =
cf−cp

cf
× 100%

Fig. 1   Schematic diagram of 
pervaporation experiment setup
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GO. For the spectrum of c-GO-PEI, characteristic peaks of 
N − H can be seen at 1586 cm−1, and C − H can be seen at 
2842 and 2963 cm−1, confirming the existence of PEI and 
the formation of cross-linking structure in the membrane. 
(Guo et al. 2021; Halakoo and Feng 2020; Qian et al. 2018) 
In XPS N1s spectrum (Fig. 3b), the fitted peaks represent 
C − N at 399.0 eV, N − C = O at 400.1 eV and tertiary N at 
401.3 eV, which confirms the successful intercalation of PEI 
in the GO membrane. The characteristic N − C = O peak is 
assigned to the amide bond formed by GO and PEI in cross-
linking.(Pan et al. 2020).

The water flux and antifouling performance are affected 
by membrane surface hydrophilicity. Figure 3c depicts the 

water contact angles of GO and c-GO-PEI membranes. 
The pristine GO membrane exhibits a hydrophilic surface, 
owing to the existence of abundant oxygen-containing 
groups on GO. After PEI intercalation and cross-linking, 
the c-GO-PEI membrane still shows good hydrophilicity 
with water contact angle slightly increased to 58.8°, which 
is because of the consumption of oxygen groups in cross-
linking.(Sun et al. 2020) In addition, it is measured that 
the surface zeta potential of GO membrane and c-GO-PEI 
membrane are − 28.7 mV and + 31.7 mV, respectively. 
The conversion of zeta potential from negative to positive 
value further indicates the successful hybrid of PEI in GO 
membrane.

Fig. 2   SEM images of 
pristine GO and c-GO-PEI 
membranes

Fig. 3   a FTIR spectra of GO and c-GO-PEI membranes, b XPS N1s fitting curve of c-GO-PEI membrane and c water contact angles of GO and 
c-GO-PEI membranes
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Pervaporation performance

Desalination test

NaCl and MgSO4 were used as feed solutes to test the PV 
performance of membrane in treating with different salt ions. 
As shown in Fig. 4, the salt rejection for NaCl and mixed 
ion solution were both 99.99%. Besides the non-volatility of 
salts, the electrostatic repulsion of positively charged mem-
brane to salt cations should also contribute to the perfect 
salt rejection. Due to the high salt concentration, the partial 
vapor pressure of feed reduced; and thus the water flux of 
salt solutions slightly decreased by 9.4% and 11.1% than 
pure water. Nevertheless, the flux of mixed ion solution is 
near to that of NaCl solution, indicating the good desalina-
tion performance of the membrane for complex salt solution.

Hg‑containing wastewater test

In chemical industry, Hg-containing wastewater is gener-
ally produced due to the employment of Hg-containing 
catalysts such as for the synthesis of polyvinyl chloride. 
The traditional evaporation method is limited due to the 
natural volatility of Hg. Pervaporation could be an effective 
way to remove trace Hg because of its potential of reject-
ing volatile components. The wastewater with two levels of 
Hg content, 6.36 ppb and 9.4 ppb, was used to test the PV 
performance of membrane for the remove of Hg and NPOC. 
The components of the wastewater are listed in Table 1. Hg 
exists in the form of HgCl2 molecules and Hg ions such as 
Hg2+, HgCl+, HgCl3

− and HgCl4
2−(Wang et al. 2016c).The 

PV performance was shown in Fig. 5. It can be seen that 
35vol% solution was collected in the permeate after 6 h of 
the concentration process, during which the flux gradually 
decreased because of the decline of water vapor pressure 

and the inevitably increased concentration polarization while 
remaining a considerably high level of above 26 kg∙m−2∙h−1 
in the end (Fig. 5a). Salt rejection always maintained over 
99.97% (Fig. 5b). The removal rate of Hg is higher than 90% 
in most cases (Fig. 5c). The membrane exhibited good rejec-
tion for NOPC component (Fig. 5d) due to the hydrophilic-
ity of membrane which facilitates water permeation while 
hinders the transport of organic molecules.

Figure 6 shows the effects of feed temperature on the flux 
and rejection with c-GO-PEI. The flux increases rapidly as 
temperature increases from 55 to 75 °C, which is because 
of the rise of water vapor pressure and intensified motion of 
PEI chains with temperature. The flux with wastewater con-
taining 6.36 ppb Hg was lower than that containing 9.4 ppb 
Hg, which is related to the higher salt concentration of the 
former solution. At the same time, the rejections to salt, Hg 
and NPOC remained at high levels, which means c-GO-PEI 
could perform well at a wide range of temperature. Figure 7 
shows that, by the one-step PV process, the clear permeate 
was obtained from the yellow wastewater samples. All the 
results indicate the good efficiency of the PV process with 
c-GO-PEI membrane in the wastewater treatment.

Antifouling test

To study the fouling and Hg adsorption of the membranes, 
after the PV experiment (Fig. 6), the morphology and ele-
ment distribution of membrane surface was analyzed by 
SEM and EDS. By EDS analysis, it is found that Hg mass 
fraction on membrane are 2.53% and 2.84% for c-GO-PEI 
membranes tested with 6.36 ppb and 9.4 ppb wastewater, 
respectively, which are lower than 3.84% for the pristine GO 
membrane. This should be related to the repulsion capability 
of positively charged PEI-modified membrane to Hg in the 
wastewater. The SEM images (Fig. 8) show less pollutant 
that adsorbed on the top surface of c-GO-PEI membranes 
compared to that on the pristine membrane, which confirms 
the improved antifouling property of the PEI-modified 
membrane.

Moreover, Hg adsorption content was estimated by 
mass balance calculation and illustrated in Table. 2. The 

Fig. 4   PV performance of c-GO-PEI membranes

Table 1   Contents in Hg-containing wastewater

Hg/ppb 6.36 9.4

pH 8.17 8.21
Conductivity/mS·cm−1 107.1 102.6
NaCl/mg·L−1 7567 7248
Na2SO4/mg·L−1 1282 1228
NPOC/mg·L−1 71.74 74.56
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Fig. 5   Pervaporation perfor-
mance of c-GO-PEI: a Flux, b 
Salt rejection, c Hg rejection, d 
NPOC removal rate(Operating 
temperature: 65 °C)

Fig. 6   Pervaporation perfor-
mance of c-GO-PEI at different 
temperatures: a Flux and salt 
rejection; b Hg and NPOC 
removal rates

Fig. 7   Photographs of Hg-
containing wastewater samples 
before and after PV treatment. 
a 6.36 ppb feed solution, PV 
retentate solution and PV per-
meate; b 9.4 ppb feed solution, 
PV retentate solution and PV 
permeate (from left to right)
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Hg content ratios are very closed to one, indicating the Hg 
adsorption is slight on the membrane during the PV test.

The antifouling property of membrane was further 
investigated in terms of flux recovery ratio and fouling 
ratio. After the PV concentration test with Hg-containing 
wastewater for 6 h (Fig. 5), the membranes were rinsed 
with 500 mL DI water for 10 min, which was repeated for 
three times. After washing, the PV performance of mem-
brane were tested for one hour at 65 °C, after which four 
parameters are calculated by Eqs. 4-7: FRR (flux recov-
ery ratio), Rt (total fouling ratio), Rr (reversible fouling 
ratio) and Rir (irreversible fouling ratio), where jw,1 and jp 
are the fluxes of the first and the last hour in PV concen-
trating test, and jw,2 is the flux of the cleaned membrane. 

(3)
Hg content ratio =

Hg content in concentrated feed+Hg content in permeate

Hg content in feed

As shown in Fig. 9a, the fluxes were largely recovered 
after the simply washing, and the retention to the solutes 
remained high (Fig. 9b). The results of FRR, Rr and Rir are 
listed in Table. 3, which indicate good antifouling prop-
erty of the membrane. The membrane remained an intact 
and clear surface after the long-term usage and washing 
(Fig. 10). The results indicate the reliability of membrane 
in treating with the wastewater.

Fig. 8   Surface morphology of membranes after PV test. a c-GO-PEI (6.36 ppb Hg wastewater); b c-GO-PEI (9.4 ppb Hg wastewater); c pristine 
GO membrane (9.4 ppb Hg wastewater)

Table. 2   Mass balance calculation of Hg-containing wastewater test

Hg concentration 
in feed /ppb

Mass of feed /g Hg concentration in con-
centrated feed /ppb

Mass of concen-
trated feed /g

Hg concentration in 
permeate /ppb

Mass of 
permeate /g

Hg content ratio

6.36 850.9 10.46 547.7 0.54 303.2 1.09
9.4 832.2 15.84 539.2 0.73 293 1.12

Fig. 9   Antifouling performance 
of c-GO-PEI membrane in 
treating with Hg-containing 
wastewaters. (a) Flux; (b) Salt 
rejection and removal rates 
of NPOC and Hg (Operating 
temperature: 65 °C)

Table 3   Antifouling parameters of c-GO-PEI treating Hg-containing 
wastewater

Hg concentration 
in feed

FRR (%) Rt (%) Rr (%) Rir (%)

6.36 ppb 96.69 7.45 4.14 3.31
9.4 ppb 85.72 16.81 2.53 14.28
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Conclusion

In this study, c-GO-PEI membrane was prepared to recover 
Hg-containing wastewater by pervaporation. The membrane 
shows high flux and almost all salts and Hg were rejected by 
c-GO-PEI attributed to the electrostatic repulsion between 
ions and the membrane surface. Due to the positively 
charged, hydrophilic and smooth membrane surface, the 
flux could be well recovered by simple washing. This work 
provides a new approach for treating wastewater with salts, 
heavy metals and organic components.
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(4)FRR =
jw,2

jw,1
× 100%

(5)Rt =
jw,1−jp

jw,1
× 100%

(6)Rr =
jw,2−jp

jw,1
× 100%

(7)Rir =
jw,1−jw,2

jw,1
× 100% = Rt − Rr
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