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Abstract
In reverse osmosis seawater treatment process, membrane fouling can be mitigated by degrading organic pollutants present 
in the feed seawater. The present study evaluates the effectiveness of employing solar photocatalysis using  TiO2/ZnO/H2O2 
to pretreat reverse osmosis (RO) feed seawater under solar irradiation. Process optimisation and performance evaluation were 
undertaken using response surface methodology-desirability function and RSM integrated with genetic algorithm (RSM-GA). 
Statistical analysis was performed to determine the interactive relationships and main effects of input factors such as  TiO2 
dosage,  H2O2 dosage, pH, reaction time and ZnO dosage. The performance evaluation was determined in terms of percentage 
removal of total organic carbon (TOC) and chemical oxygen demand (COD). The obtained optimum values using RSM-GA 
evaluation for TOC and COD removal were found to be 76.5% and 63.9%, respectively. The predicted RSM-GA results cor-
respond well with the experimental results (TOC removal = 73.3%, COD removal = 61.2%). Utilization of renewable solar 
energy coupled with optimum utilisation of nanophotocatalysts enables this technique to be a unique treatment process for 
RO pretreatment of seawater and membrane fouling mitigation.

Keywords Seawater pretreatment · Reverse osmosis (RO) membrane fouling · Solar nanophotocatalysis · Central composite 
design

Introduction

Seawater is becoming an increasingly significant water 
source globally due to high stress on freshwater availability 
and contamination issues. Based on lower installed capac-
ity, seawater reverse osmosis (SWRO) surpasses all other 
thermal technologies like multi-stage flash (MSF) and multi-
effect distillation (MED) and dominates the global desalina-
tion scenario. However, the performance of reverse osmosis 
(RO) membrane desalination systems majorly depends on 
fouling control and pretreatment processes to reduce con-
taminant loading (Amy et al. 2017). Fouling due to presence 

of organics detrimentally affect the desalination systems by 
decreasing permeate flux, reducing energy efficiency due to 
high pressure drop and causing serious damage to the RO 
membranes (Weinrich et al. 2016). Many experimental stud-
ies revealed that the biofilm that affects membrane consists 
of around 50% organic matters, out of which about 40% are 
organic acids. RO membrane biofouling results in higher 
operating pressure, repeated chemical cleaning and reduces 
the life of the membrane (Matin et al. 2011).

Biofouling problem is very crucial in the Middle East 
region, where around 75% of RO membrane facilities are 
affected. Moreover, this is the region where the most con-
siderable amount of desalted water is produced in the world 
(Khedr 2011). As per the literature survey, in most of the 
SWRO plants, humic substances (organic contaminants) 
are the main contributor of fouling to the RO membranes. 
If TOC of the seawater is less than 0.5 mg/L, the presence 
of microbial foulants is minimal, and the feed seawater has 
very low biofouling potential. For TOC values in the range 
of 0.5–2.0 mg/L, the RO feed seawater has moderate foul-
ing potential. However, if the TOC exceeds 2.0 mg/L, the 
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biofouling potential is very high (Voutchkov 2017). There-
fore, the deterioration of these contaminants from the RO 
feed seawater is a significant concern to improve the per-
formance and cost-efficacy of SWRO systems. Advanced 
oxidation process with suitable photocatalysts can degrade 
persistent pollutants from the feed water. Remediation of 
recalcitrant pollutants is directly linked to the development 
of hydroxyl radicals  (OH·) as it can degrade organic con-
taminants in the aquatic environment (Malato et al. 2016). 
Previous seawater decontamination studies revealed the 
advanced oxidation of recalcitrant pollutants by UV/photo-
catalysts methodology, where the processes either oxidised 
or entirely mineralised the model organic compounds. Rubio 
et al. (2013) evaluated the feasibility of disinfecting sea-
water by UV∕TiO2 immobilized process. The study proved 
that TiO2 photocatalysis has faster disinfection kinetics than 
UV alone for different bacterial disinfections. Jiménez et al. 
(2017) reported that the addition of TiO2 accelerated the 
photo-Fenton process in treating cleaning waters from sea-
water desalination reverse osmosis membranes for recycling 
purposes.

Heterogeneous photocatalysis is an advanced oxidation 
technology capable of degrading a wide range of organic 
compounds present in the aquatic medium. Photocatalytic 
oxidation reactions have the potential to degrade the organic 
compounds to water and carbon dioxide and can provide 
clean and energy-saving technology for treating contami-
nated water. Due to solar irradiation, the photon having 
energy equal or greater than the semiconductor bandgap hits 
the catalyst to excite an electron from the valence band to the 
conduction band, resulting in the formation of electron–hole 
pair. These two entities are highly reactive and are involved 
in continuous oxidative and reductive reactions on semicon-
ductor surface (Ab Aziz et al. 2016). As a result, hydroxyl 
radicals  (OH·) are generated by the oxidation of  H2O or 
 OH− on the surface. The OH radicals are highly powerful 
oxidants which can degrade recalcitrant organic pollutants 
from the medium. A typical semiconductor photocatalyst 
should be able to absorb near UV or visible light, chemically 
inert, photostable and inexpensive (Azevedo et al. 2009). 
Titanium dioxide (TiO2) is a widely used semiconductor 
catalyst which shows promising characteristics even though 
in pure form, it gets activated only in UV region.

Although organic degradation of seawater by photoca-
talysis is comparatively lower due to electron scavenging 
issues, some of the past research studies showed very posi-
tive results in improving overall organic removal efficiency. 
Kaneva et al. (2015) studied the photocatalytic degrada-
tion of model organic in distiled and seawater by employ-
ing lanthanide modified ZnO under UV-light irradiation. It 
was observed that the photocatalyst achieves contaminant 
mineralization in minimum irradiation time. Ji et al. (2017) 
conducted a research study about photocatalytic removal 

of diesel pollutants from seawater using  ZrO2/TiO2 under 
visible light. In their work, photocatalyst effectiveness was 
investigated under the influence of various factors like dop-
ing ratio of catalyst, pH value, catalyst dosage, initial con-
centration of diesel and illumination time. They achieved 
87.74% degradation of diesel pollutants from seawater 
under visible light photocatalysis. Many research studies 
enhanced the production rate of powerful oxidants by chemi-
cal addition, excitation energy (sunlight/UV), photocatalysts 
 (TiO2, ZnO,  Fe2O3, CdS, ZnS) and combining two or more 
advanced oxidation process such as  (TiO2/Fenton-UV), 
ozonation-TiO2 and  TiO2-Fenton-sunlight (Aljuboury et al. 
2015). Yang et al. (2018) applied ZnO modified  TiO2 nano-
composites for organic pollutant removal from feedwater 
and reported enhanced degradation performance compared 
to pure  TiO2. In the present study of seawater photocatalyst 
oxidation treatment, membrane fouling organic contami-
nants are degraded using  TiO2–ZnO catalysts under solar 
irradiation.

Even though the semiconductor photocatalytic process 
is extensively employed in the treatment of effluents and 
other wastewater, little research studies were attempted in 
the field of pretreatment of RO desalination feed seawater. 
Several previous researchers applied photocatalytic technol-
ogy for organics treatment from air, soil and wastewater, but 
very little work has been reported on seawater treatment, 
which may be due to the complexity of seawater composi-
tion. Optimization of  TiO2–ZnO–H2O2 solar photocatalytic 
degradation of organics from seawater through DOE-based 
RSM-GA is still not available as per the knowledge of pre-
sent research group concerned. This research paper presents 
for the first time, the application of RSM-GA optimization 
and solar nano ZnO–TiO2–H2O2 photocatalysis for the deg-
radation of organics from seawater. The goal of this research 
study is to design and optimize a renewable energy-based 
photocatalytic process to mitigate RO membrane fouling in 
desalination plants.

The present study attempts to mitigate the fouling issues 
by photocatalytic degradation of organics and microor-
ganism, using real seawater samples collected nearby a 
SWRO plant in Muscat, Oman. The current study evalu-
ates the effectiveness of employing solar photocatalysis of 
TiO2∕ZnO∕H2O2 process to pretreat RO feed seawater under 
solar irradiation. Process optimization and performance 
evaluation were undertaken using response surface method-
ology-desirability function (RSM-DF) and RSM integrated 
with genetic algorithm (RSM-GA) approach. Statistical 
analysis was performed to determine the interactive relation-
ships and main effects of input factors such as TiO2 dosage, 
H2O2 dosage, pH, reaction time (RT) and ZnO dosage. The 
performance evaluation was determined in terms of percent-
age removal of total organic carbon (TOC) and chemical 
oxygen demand (COD). Finally, the prediction accuracies of 
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optimum conditions by RSM-DF and RSM-GA techniques 
were compared, and the best solution is suggested for the 
overall process improvement in RO desalination seawater 
pretreatment.

Materials and methods

Materials and solar radiant flux measurement

Seawater sample, 2 km away from the shore, was collected in 
sterile bags and kept in the freezer (5 °C) until it was taken 
for solar photocatalytic treatment. The samples were char-
acterized before the treatment to determine COD and TOC. 
The catalysts used were nano zinc oxide (ZnO, 99.9% Pure, 
APS: 20 nm), obtained from mkNANO, Canada and tita-
nium dioxide  (TiO2) Aeroxide P-25 manufactured by Evonik 
Industries, Germany and 0.1 N of NaOH and HCl of 0.1 N 
were used for adjusting pH. COD test was done by using 
COD HR+ (0–15,000 mL/L) reagent vial from CHEMetrics, 
COD digester and COD HR photometer. TOC of each sam-
ple was determined by using TOC analyser (LCSH/CSN) 
supplied by SHIMADZU, Japan. Before analyzing TOC 
and COD, each sample was filtered using 0.22 μm Millipore 
Durapore membrane (150 mm-diameter and ashless-40).

The silt density index (SDI) of the seawater sample before 
and after photocatalytic treatment was calculated using 
SDI kit (SDI-2000,directSDI, 115–120 v, 60 Hz, USA). 
The average solar radiant flux was measured using KIPP 
& ZONEN-CMP 21 Pyranometer and found to be approxi-
mately 670W/m2 . All experimental runs were carried out 
from 11 a.m. to 2 p.m. so that maximum UV radiation was 
received for photocatalytic treatment. The UVS-E-T radi-
ometer supplied by KIPP & ZONEN was used to measure 
UV irradiance as per ISO 17166:1999, CIE S 007/E-1998 
procedure. UV irradiance was determined by using Eq. 1.

where Cs is the radiometer sensitivity constant 
(

(μV/W)∕m2
)

 , 
E (μV) is the voltage output, and Isolar

(

W/m2
)

 is the solar 
irradiance.

Experimental procedure

The experimental setup of TiO2∕ZnO∕H2O2/solar nano-
photocatalytic reactor system is shown in Fig. 1. Five boro-
silicate glass tubes (650 mm length × 22 mm inner diameter 
and 2 mm thickness) were used for seawater recirculation 
exposed to solar irradiation. The setup consists of a glass 
recirculation tank (2.5 L) subjected to stirring with magnetic 
stirrers. Seawater solution was run through the tubular pho-
tocatalytic reactor by means of a peristaltic pump (PERCOM 

(1)Isolar = E∕Cs

N-M-II Peristaltic pump, 0.5–350 rpm, 0–2100 mL/min, 48 
Watts) at a flow rate of 1.8 L per minute. The flow rate was 
fixed constant for all experimental runs. The pH of the solu-
tion was varied from 2 to 8 as per the factor settings of each 
run, prescribed by one-factor-at-a-time (OFAT) study and 
the central composite design (CCD) matrix. Samples were 
taken for TOC and COD analysis at respective reaction time 
interval settings, which was varied from 30 to 210 min. The 
tilt of the reactor was fabricated (19°–24° angle with hori-
zontal) to make it align with solar angle and was conform-
able to the location latitude (23° 40′ 12.97″ N). Parabolic 
reflectors were installed beneath the reactor tubes to make 
the solar irradiation to be reflected and diffused to the tubes 
at optimum intensity. The magnetic stirring, aeration using 
an air pump (4.29 L/min) and recirculation using peristaltic 
pump ensured proper mixing and enough supply of oxygen 
required for photocatalytic reaction. The aeration process 
and the resulting air bubbles acted as a source of oxygen to 
enhance the overall photocatalytic degradation rate (Tony 
et al. 2009). The post-separation of the catalysts is accom-
plished by overnight settling process in a sedimentation tank. 
Since the pH of the seawater reaches near to the point of zero 
charge  (pHPZC) after the photocatalytic treatment, the cata-
lyst surface charge neutralisation improves the sedimentation 
and aggregation process.

Effect of operating variables on TOC and COD 
removal

The initial concentration of TOC of seawater samples used 
in this experimental study is found to be less than 3.89 mg/L. 
In seawater reverse osmosis (SWRO) plants, an increase in 
initial TOC value beyond a threshold value (2.0–2.5 mg/L) 
is found to elevate enhanced biofouling of RO membranes. 
Hence, the main objective of this research study is to reduce 
the biofouling potential of seawater by degrading the TOC 
level well below the critical value of 2.0 mg/L. To evaluate 
the effect of input variables on the percentage removal of 
TOC and COD, variables such as TiO2 dosage (0.1−0.8 g/L) , 
ZnO dosage (0.1−0.8 g/L) , H2O2 dosage (0.2−1.0mL/L) , 
solar irradiation time (30−210min) and pH (2−8) were 
varied sensibly during the photocatalytic reactions. For the 
initial range finding and screening, one-factor-at-a-time 
(OFAT) experimental design was followed. OFAT enables to 
detect more quickly if a factor has any effect on the response 
variable of interest and is, therefore, a sequential learning 
methodology (Sen et al. 2017). Among the five input factors, 
at first, the effect of TiO2 dosage was investigated. ZnO dos-
age, H2O2 dosage, solar irradiation time and pH were kept 
constant at 0.5 g/L , 0.5mL/L , 180 min and 8, respectively. 
In the second stage, to identify the effect of ZnO dosage on 
percentage removal of TOC and COD, it was varied from 
0.1 to 0.8 g/L , keeping v dosage, solar irradiation time and 
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pH at 0.5mL/L , 180 min and 8, respectively. However, the 
TiO2 dosage which gave the best result in the initial OFAT 
experiments was selected for the current set of experiments. 
Similarly, H2O2 dosage, irradiation time and pH were varied 
in the range of 0.2−1.0mL/L , 30−210min and 2–8, respec-
tively, keeping other input factors constant at the values in 
which they gave best TOC and COD removal. The results 
from OFAT study were used to find the levels of input 
variables.

TOC and COD removal (%) were calculated by using 
Eqs. 2 and 3, respectively.

(2)TOCremoval (%) =
T0 − Tt

T0
× 100

where T0 is the initial TOC of seawater before treatment 
and Tt represents the total organic carbon content after “t” 
minutes of solar irradiation.

where C0 is the initial COD of seawater before photocatalytic 
treatment and Ct represents the chemical oxygen demand 
after “t” minutes of solar irradiation.

Design of experiments and statistical analysis

DOE-based response surface methodology (RSM) was 
used for experimental design and process optimization 

(3)CODremoval (%) =
C0 − Ct

C0

× 100

Fig. 1  Experimental setup of Solar∕TiO2∕ZnO∕H2O2 photocatalytic reactor system
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with Design-Expert (version 11, Stat-Ease, USA) software. 
Response surface methodology is a statistical tool utilising 
experimental data generated from the respective design to 
optimize and model any system in which the response vari-
able under study is affected by crucial input factors (Chat-
terjee et al. 2012). RSM is a competent technique for process 
optimization, strategically computing optimum condition 
for a multivariate process. This technique helps to establish 
relationships between response variables and controllable 
input variables or process factor, but the main limitation of 
this technique is that it can assume only nonlinear quadratic 
correlation and therefore requires a narrow search window 
(Desai et al. 2008), finding which requires either new OFAT 
experiments or good prior knowledge of the system. Cen-
tral composite design (CCD) is a typical RSM technique 
well suited for fitting a second-order curve and optimizing 
significant process parameters that influence the dependent 
variables.

The efficiency of the photocatalytic treatment is ana-
lysed in term of percentage removal of COD and TOC 
by conducting experimental runs through a CCD matrix. 
Each independent process factor is varied between coded 
− 1 (low), 0 (centre) and + 1 (high) levels at predetermined 
ranges calculated from the preliminary OFAT experimenta-
tion. CCD-RSM model was generated using data from 48 
experimental runs (= 2n + 2n + nc , where n is the number 
of factors which is equal to 5). Thus, CCD in this research 
work consists of 2n factorial runs augmented with 2n axial 
experiments, and nc is the number of central runs. The cen-
tral runs are used as replications to evaluate the reproduc-
ibility of the data and experimental errors. The sequence of 
experimental runs is randomized to avoid random process 
variations. The outcome from each run was tabulated into 
the Design-Expert software to correlate the responses with 
input factors. The second-degree polynomial equation for a 
response that explains its behaviour is shown in Eq. 4. Since 
each input factor is set at three levels, the appropriate model 
for the response follows a quadratic model.

where Y  is the response forecasted, �0 is the regression coef-
ficient, �j is the coefficient of linearity,�ij is the coefficient of 
interaction, and �jj is the quadratic coefficient, Xi and Xj are 
input variables, k represents the number of input factors, and 
ei denotes random process error. After generating a quadratic 
RSM model, it’s input space is optimized using desirability 
function (DF) method. The optimal solution from RSM-DF 
is again compared by using RSM integrated genetic algo-
rithm (GA) approach.

Genetic algorithm (GA), an artificial intelligence-based 
stochastic nonlinear optimization method, can be used to 

(4)Y = 𝛽0 +

k
∑

j=1

𝛽jXj +

k
∑

j=1

𝛽jjX
2
j
+

k
∑

j<l

𝛽jlXjXl + ei

optimize the input space of any well-trained models like 
artificial neural network (ANN) model (Dibaba et al. 2016). 
While GA may be used to configure optimum ANN model, 
the same ANN model, or any RSM model, can be used as 
an objective (fitness) function within GA to generate opti-
mum function values and process settings (Sharma et al. 
2017; Kumar and Kumar 2019). After the development of a 
generalized ANN or RSM model, the GA approach is used 
to find the optimum process settings. Therefore, GA is an 
optimization strategy developed based on the principles 
of natural selection that start with the selection of fittest 
individuals from a population (Mukherjee et al. 2019). A 
solution of GA is characterized by a chromosome having 
a fitness value which ensures the solution to be competent 
enough. The parameters of GA may comprise of a set of 
the population consist of chromosomes and genes, selection, 
crossover, mutation, fitness and fitness function (Abdollahi 
et al. 2019). The algorithm begins with a random initial set 
of population and a selection process based on fitness value 
to create the next generation. Crossover and mutation prin-
ciples are used to combine genes for the next iteration and 
apply stochastic changes to reproduce population (Hassani 
et al. 2018). Upon the successive generations, the popula-
tion evolves, and the optimum solution is determined. In the 
current study, the optimum solution obtained from RSM-GA 
simulation is compared with RSM optimal conditions gener-
ated by Design-Expert software.

Results and discussion

Characterization of seawater

The seawater sample, collected from Muscat, Gulf of Oman, 
was characterized in terms of total organic carbon (TOC), 
pH, salinity, etc. Table 1 summarizes the physicochemi-
cal characteristics of the sample seawater collected before 

Table 1  Characteristics of seawater sample from the Gulf of Oman, 
2.0  km away from the shore, at the location 23° 41.921′ N, 058° 
11.115′ E

No Parameter Unit Range of con-
centrations in 
seawater

1 Ph – 7.5–8.1
2 Conductivity mS 52.34–56.22
3 Salinity mg/L 34,000–34,400
4 Turbidity NTU 1.50–1.65
5 Dissolved oxygen, DO mg/L 5.12–5.38
6 Total dissolved solids, TDS mg/L 53,200–53,400
7 Chemical oxygen demand, COD mg/L 4.9–5.78
8 Total organic carbon TOC mg/L 2.94–3.89
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each experiment. The silt density index (SDI) of the sea-
water samples before and after photocatalytic treatment 
(under optimum conditions) is found to be 0.45 and 0.38, 
respectively.

Effect of process input factors on the removal of TOC 
and COD

For determining the significance and optimum ranges of 
operating variables, OFAT study has been conducted by 
judiciously varying one input factor at a time while keep-
ing other factors at constant levels. At first, TiO2 dosage 
has been varied in the range of 0.1−0.8 g/L , while ZnO 
dosage, H2O2 dosage, solar irradiation time and pH were 
kept constant at 0.5 g/L , 0.5mL/L , 180 min and 8, respec-
tively. The TOC and COD removal have been measured 
after each photocatalytic reactions, as shown in Fig. 2a. It 
was observed that maximum TOC removal (49.5 ± 4.25%) 

and COD removal (40.5 ± 4.12%) occurred at TiO2 dosage 
of 0.45 g/L and higher dosages resulted in reduced organic 
removal efficiency. Similar results were obtained with ZnO 
dosage (Fig. 2b). In a previous study to remove organics 
from petroleum wastewater, Dheea et al. observed a similar 
trend at higher concentrations of TiO2 and ZnO catalysts 
(Aljuboury et al. 2016). Turbidity caused by a higher con-
centration of catalysts hinders the penetration of light into 
the reactor and hence reduced organic removal efficiency 
is observed (Malato et al. 2009). In the current study, the 
values of TiO2 and ZnO dosages obtained from first two 
sets of experiments were used in the third OFAT study 
where maximum removal (TOC removal = 48.1 ± 4.15%, 
COD removal = 41.8 ± 3.84%) is achieved at H2O2 dosage 
of 0.6mL/L(Fig. 2c). Generally, the degradation efficiency 
increases with H2O2 dosage in the initial phase of the pho-
tocatalytic reaction. However, after an optimal threshold 
value, a further increase in H2O2 concentration inversely 

Fig. 2  a TOC removal (%) 
and COD removal (%) at ZnO 
dosage 0.5 g/L , H2O2 dosage 
0.5mL/L , solar irradiation time 
180 min and pH 8 for different 
TiO2 dosage; b TOC removal 
(%) and COD removal (%) at 
TiO2 dosage 0.45 g/L , H2O2 
dosage 0.5mL/L , solar irradia-
tion time 180 min and pH 8 for 
different ZnO dosage; c TOC 
removal (%) and COD removal 
(%) at TiO2 dosage 0.45 g/L , 
ZnO dosage 0.45 g/L , solar 
irradiation time 180 min and 
pH 8 for different H2O2 dosage; 
d TOC removal (%) and COD 
removal (%) at TiO2 dosage 
0.45 g/L , ZnO dosage 0.45 g/L , 
H2O2 dosage 0.6mL/L , solar 
irradiation time 180 min for 
different pH
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affects organic degradation due to the distinct nature of 
H2O2 as a radical scavenger. In the fourth sets of experi-
ments, pH was varied from 2 to 8 (Fig. 2d) where maximum 
organic degradation (TOC removal = 48.3 ± 3.32%, COD 
removal = 39.9 ± 3.45%) was achieved at pH 6, TiO2 dosage 
0.45 g/L , ZnO dosage 0.45 g/L , H2O2 dosage 0.6mL/L and 
solar irradiation time of 180 min. At acidic operational pH, 
the surface charge for TiO2 becomes positive and exerts an 
attractive electrostatic force on anionic organic composites 
which in turn enhances the photocatalytic degradation. Fig-
ure 3 shows TOC removal and COD removal at TiO2 dosage 
0.45 g/L , ZnO dosage 0.45 g/L , H2O2 dosage 0.6mL/L and 
pH 6 for different solar irradiation time. It was found that 
maximum TOC removal (48.2 ± 2.75%) and COD removal 
(40.7 ± 3.13%) occurred at a solar reaction time (RT) of 
150 min and further increment in time does not give any 
improvement in organic removal efficiency. Since the irra-
diation time depends on the initial concentration and ionic 
state of various organic contaminants, after a certain thresh-
old, the degradation rate remains unchanged.

Five‑factor centre composite design (CCD)

The results obtained from the OFAT study was utilized 
in identifying the design space and fixing the operating 
ranges of input parameters in CCD-RSM-DF modelling 
and optimization process. In RSM modelling, TiO2 dos-
age, ZnO dosage, H2O2 dosage, reaction time (RT) and pH 
were chosen as input parameters, and the coded + 1 (high) 
level and − 1 (low) level were set at 0.2 and 0.7 g/L, 0.2 
and 0.7 g/L, 0.3 and 0.9 mL/L, 60 and 180 min and 3 and 
7, respectively. Table 2 shows the central composite design 

layout and the respective response values generated from 
each experimental run. The COD removal ranges from 13.6 
to 56.9%, while the TOC removal lies between 27.1% to a 
maximum of 67.3%.

Analysis of variance (ANOVA) study

In the present study, ANOVA was used for statistical anal-
ysis of the data to determine main and interaction effects 
between input factors and process responses. Tables 3 and 
4 show the ANOVA modelling parameters for response-
surface generated second-order model for TOC removal 
and COD removal, respectively. Influence of independent 
variables on each response is demonstrated in these tables. 
All the insignificant terms (except the terms for hierarchy) 
with a p value greater than 0.05 have been removed from the 
model. Lack of fit test checks whether the regression model 
fits well or not and compares the variation that is visible 
in the replicates with the variation present in the model. 
Significance of polynomial model terms and the model was 
assessed by the p value (probability) with a 95% confidence 
level. Models with good fit should have R2 value greater 
than 0.8. In the present research, the predictedR2 value for 
TOC and COD degradation was found to be 0.92 and 0.91, 
respectively. The R2 determines the amount of correlation 
between the predicted responses and experimental data. 
Large R2 value (nearing 1) demonstrates decent agreement 
between the observed and calculated results.

The adequate precision (AP) fractions of COD and 
TOC response models in this study were found to be 64.3 
and 53.4, respectively. This ratio measures the signal-to-
noise ratio to estimate the validity of the regression mod-
els obtained. AP values above four are required to qualify 
the models to be used for process optimization and navi-
gate the design space formulated by the central compos-
ite design (CCD). As per ANOVA results, COD and TOC 
models were found significant by F test at 95% confidence 
level (Prob < 0.05). The response model F-ratio of 209.2 
and 322.7 with low probability values ((Prob > F) < 0.05) 
shows that both models are significant enough to predict 
the response and optimum values. The difference between 
adjusted and predicted R2 should be within 0.2, which was 
satisfied with both models.

CCD models in terms of actual and coded factors

Table 5 shows CCD equations of TOC and COD removal 
(%) in coded and actual factor terms. Coded factor mod-
els provide more meaningful insight about the process than 
equations represented in terms of actual factors. In coded 
factors, the terms are normalized and depicted in relative 
weights, while in equations with actual factors, owing to 
the presence of units, the prominence of coefficients is 

Fig. 3  TOC removal (%) and COD removal (%) at TiO2 dosage 
0.45 g/L , ZnO dosage 0.45 g/L , H2O2 dosage 0.6mL/L and pH6 for 
different solar irradiation time
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Table 2  Five-factor central composite design (CCD) matrix; input factors at actual levels and the corresponding experimental and predicted 
results

Run Input factors Experimental RSM-predicted

A:  TiO2 (g/L) B: ZnO (g/L) C:  H2O2 
(mL/L)

D: pH E: RT (min) TOC 
removal 
(%)

COD 
removal(%)

TOC removal (%) COD 
removal 
(%)

1 0.45 0.45 0.3 5 120 60.2 41.6 56.31 40.75
2 0.45 0.45 0.6 5 120 61.1 53.9 60.50 50.97
3 0.2 0.2 0.9 7 180 59.5 33.6 57.98 33.23
4 0.7 0.7 0.9 3 60 44.8 34.6 42.39 33.29
5 0.45 0.7 0.6 5 120 53.1 50.2 54.16 50.86
6 0.2 0.7 0.9 7 180 62.2 37.2 59.35 37.49
7 0.45 0.45 0.6 7 120 67.3 56.9 67.03 55.39
8 0.7 0.2 0.9 7 180 62.1 37.9 64.32 37.98
9 0.2 0.7 0.9 3 180 42.5 27.2 44.14 28.63
10 0.45 0.45 0.6 5 60 57.1 43.7 56.46 42.46
11 0.2 0.7 0.3 7 60 39.5 26.3 39.26 26.58
12 0.7 0.2 0.9 3 60 41.9 23.8 41.03 23.07
13 0.7 0.7 0.9 3 180 50.1 39.6 50.48 39.35
14 0.2 0.2 0.3 7 180 42.2 29.9 45.99 28.38
15 0.7 0.7 0.3 3 60 36.7 30.5 37.62 31.35
16 0.7 0.2 0.3 7 60 47.2 30.1 47.17 29.98
17 0.2 0.7 0.3 3 180 36.3 22.9 36.44 23.78
18 0.45 0.45 0.6 3 120 54.2 46.7 53.97 46.54
19 0.45 0.2 0.6 5 120 52.2 44.2 52.79 43.62
20 0.7 0.2 0.3 7 180 57.3 36.3 55.26 36.04
21 0.2 0.7 0.3 3 60 29.1 18.7 28.35 17.72
22 0.7 0.7 0.3 3 180 43.6 37.4 45.71 37.41
23 0.7 0.45 0.6 5 120 56.2 51.2 56.93 51.39
24 0.45 0.45 0.6 5 120 57.1 48.1 60.50 50.97
25 0.7 0.2 0.9 7 60 56.5 32.4 56.23 31.92
26 0.2 0.2 0.3 3 60 27.1 13.6 26.98 13.46
27 0.2 0.2 0.9 3 60 34.3 17.7 34.69 18.31
28 0.2 0.2 0.3 3 180 35.3 19.9 35.07 19.52
29 0.45 0.45 0.6 5 180 65.5 47.2 64.55 48.52
30 0.2 0.2 0.3 7 60 38.5 20.3 37.90 22.32
31 0.2 0.2 0.9 3 180 44.2 25.8 42.78 24.37
32 0.2 0.7 0.9 3 60 35.3 23.6 36.05 22.57
33 0.45 0.45 0.9 5 120 64.2 45.2 64.70 45.14
34 0.2 0.7 0.3 7 180 48.7 32.8 47.35 32.64
35 0.7 0.2 0.3 3 180 44.3 28.5 44.35 27.19
36 0.7 0.7 0.3 7 180 56.8 47.2 56.63 46.26
37 0.45 0.45 0.6 5 120 61.4 49.2 60.50 50.97
38 0.45 0.45 0.6 5 120 58.5 52.5 60.50 50.97
39 0.2 0.2 0.9 7 60 48.4 25.6 49.89 27.17
40 0.2 0.7 0.9 7 60 51.3 32.4 51.26 31.43
41 0.2 0.45 0.6 5 120 48.2 42.3 49.12 42.20
42 0.45 0.45 0.6 5 120 59.4 49.3 60.50 50.97
43 0.7 0.2 0.3 3 60 37.7 19.6 36.26 21.13
44 0.7 0.7 0.3 7 60 47.2 40.1 48.54 40.20
45 0.7 0.7 0.9 7 60 56.7 42.1 57.59 42.14
46 0.7 0.2 0.9 3 180 49.1 27.6 49.12 29.12
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incomparable. Making inference about the relative effect 
between process variables is possible from coded factors 
equations. In the coded equation, the relative influence of 
the factors on response can be determined by comparing the 
factor coefficients.

Effects of process variables as three‑dimensional 
response surfaces

Figure 4a shows the 3D response surface plots for COD 
removal (%) obtained by statistical analysis through 

Table 2  (continued)

Run Input factors Experimental RSM-predicted

A:  TiO2 (g/L) B: ZnO (g/L) C:  H2O2 
(mL/L)

D: pH E: RT (min) TOC 
removal 
(%)

COD 
removal(%)

TOC removal (%) COD 
removal 
(%)

47 0.7 0.7 0.9 7 180 67.1 47.1 65.68 48.20
48 0.45 0.45 0.6 5 120 61.7 51.4 60.50 50.97

Table 3  Analysis of variance 
(ANOVA) results of second-
order models for TOC removal

Source Sum of squares df Mean square F value p value

Model 5067.84 9 563.09 209.22 < 0.0001 Significant
A—TiO2 517.92 1 517.92 192.43 < 0.0001
B—ZnO 15.83 1 15.83 5.88 0.0202 Mean 50.23
C—H2O2 597.24 1 597.24 221.91 < 0.0001 R2 0.9768
D—pH 1449.53 1 1449.53 538.57 < 0.0001 Adj. R2 0.9568
E—RT 556.07 1 556.07 206.61 < 0.0001 Pred. R2 0.9282
AC 17.26 1 17.26 6.41 0.0156 SD 1.64
CD 36.77 1 36.77 13.66 0.0007 CV  % 3.27
A2 201.20 1 201.20 74.76 < 0.0001 Adeq. Prec. 53.4
B2 177.72 1 177.72 66.03 < 0.0001
Residual 102.27 38 2.69
Lack of fit 85.30 33 2.58 0.7615 0.7175 Not significant
Pure error 16.97 5 3.39
Cor total 5170.11 47

Table 4  Analysis of variance 
(ANOVA) results of second-
order models for COD removal

Source Sum of squares df Mean square F value p value

Model 6020.87 11 547.35 322.71 < 0.0001 Significant
A—TiO2 717.60 1 717.60 423.08 < 0.0001
B—ZnO 445.69 1 445.69 262.77 < 0.0001 Mean 36.16
C—H2O2 97.92 1 97.92 57.73 < 0.0001 R2 0.9662
D—pH 666.18 1 666.18 392.77 < 0.0001 Adj. R2 0.9471
E—RT 312.03 1 312.03 183.96 < 0.0001 Pred. R2 0.9114
AB 71.10 1 71.10 41.92 < 0.0001 SD 1.3
AC 16.97 1 16.97 10.00 0.0032 CV % 3.60
A2 45.57 1 45.57 26.87 < 0.0001 Adeq. Prec. 64.3
B2 36.28 1 36.28 21.39 < 0.0001
C2 148.05 1 148.05 87.29 < 0.0001
E2 78.37 1 78.37 46.21 < 0.0001
Residual 61.06 36 1.70
Lack of fit 36.13 31 1.17 0.2337 0.9955 Not significant
Pure error 24.93 5 4.99
Cor total 6081.93 47
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Design-Expert software. The plots demonstrate the 
effects of reaction time (RT) and TiO2 dosage on the 
response when the other three variables kept constant at 
their optimum level (ZnO dosage = 0.502 g/L, pH = 7 and 
 H2O2 = 0.745 mL/L). The dome-shaped surface of the 
response indicates that the factor A:  TiO2 dosage and fac-
tor E: reaction time (RT) have a quadratic effect on COD 
removal. The second-order terms ( A2 and E2 ) of the COD 
model in Table 5 validate this argument. The colour-coded 
optimum region (red) demonstrates that optimum COD 
removal is attained at TiO2 dosage = 0.535 g/L and reac-
tion time (RT) = 162 min.

Figure 4b demonstrates the RSM plot for TOC removal 
versus ZnO (g/L) and TiO2 (g/L) at optimum settings 
of  H2O2 dose = 0.745  mL, pH = 7 and reaction time 
(RT) = 162.2 min. The perfect dome-shaped surface indi-
cates that the maximum TOC removal (%) is achieved near 
the centre values of both TiO2 and ZnO factors. Optimum 
conditions from Table 6: TiO2 dosage = 0.535 g/L, ZnO 

dosage = 0.502 g/L indicate that colour-coded peak appears 
near to the centre of the design space. The quadratic effects 
of both TiO2 and ZnO on TOC removal (%) is visible from 
the curvature of the response and also from the second-
order terms of factors A and B in the coded equation of TOC 
removal (%) (Table 5). It is observed that the removal effi-
ciency is decreasing at higher concentration of catalysts due 
to the turbidity factor, which impedes the passing of solar 
light for the photocatalytic reaction (Malato et al. 2009).

Synergistic effects of  TiO2 and ZnO dosages

The efficiency of the photocatalytic treatment process also 
depends on the ratio of TiO2 and ZnO dosages used in each 
experimental runs. Both OFAT and RSM studies suggested 
that the concentration of the catalyst should be near to 
1:1 proportions and higher dosages decline the amount of 
organic removal. Optimum catalysts dosage is necessary to 
avoid turbidity and opacity due to excess amount, hindering 

Table 5  Final ANOVA **regression model equations for COD and TOC responses in terms of actual and coded factors

Coded factors equations Actual factors equations

COD 
removal 
(%)

= 50.97 + 4.59 × A + 3.62 × B + 1.70 × C + 4.43 × D

+3.03 × E + 1.49 × A × B − 0.73 × A × C − 4.17 × A
2

−3.72 × B
2 − 7.52 × C

2 − 5.47 × E
2

−59.72 + 73.58 × TiO
2
+ 57.38 × ZnO + 110.35 × H

2
O

2
+ 2.21

TOC 
removal 
(%)

= 60.5 + 3.9 × A + 0.68 × B + 4.19 × C + 6.53 × D + 4.04 × E − 0.74×

A × C + 1.07 × C × D − 7.48 × A
2 − 7.03 × B

2

= −24.84 + 129.19 × TiO2 + 103.95 × ZnO + 9.44 × H2O2 + 2.19

×pH + 0.067 × RT − 9.79 × TiO2 × H2O2 + 1.78 × H2O2 × pH

−119.67 × TiO
2

2
− 112.47 × ZnO

2

×pH + 0.41 × RT + 23.85 × TiO
2
× ZnO − 9.71 × TiO

2
× H

2
O

2

−66.79 × TiO
2

2
− 59.59 × ZnO

2 − 83.61 × H
2
O

2

2
− 0.001 × RT

2

Fig. 4  a 3D plot for COD removal (%) versus reaction time (RT) and 
TiO2 dosage at optimum settings of pH = 7.0, ZnO dosage = 0.502 g/L 
and H2O2 dosage = 0.745  mL/L. b 3D-plot for TOC removal (%) 

versus ZnO (g/L) and TiO2 (g/L) at optimum settings of H2O2 
dose = 0.745 mL, pH = 7 and reaction time (RT) = 162.2 min
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sunlight absorption during the photocatalytic process. The 
‘AB’ interaction term between factors A: TiO2 and B: ZnO 
present in the coded equation in Table 5 shows their com-
bined effect on COD removal (%). The perfect dome-shaped 
curvature of response in Fig. 4b indicates that both the fac-
tors simultaneously increase the removal efficiency near to 
the centre of the design space and at extreme ranges (four 
corners, − 1 and + 1 levels) the removal is minimal. The syn-
ergistic effect in TiO2–ZnO combination is due to the enrich-
ment of charge transfer resulting in enhancement of hydroxyl 
radical production (Palominos et al. 2009). The second-order 
terms (A2 and B2) in both TOC and COD model show the 
quadratic effect of TiO2 and ZnO on organic removal.

Even though due to catalyst dosage, a large number of 
active sites are generated, a limiting point is reached where 
the excessive amount resulting in turbidity reducing light 
penetration. The trade-off between these two competing 
phenomena decides the optimum catalysts dosage required 
for efficient photocatalytic degradation. In the present study, 
TiO2 dosage of 0.51 g/L and ZnO dosage of 0.46 g/L (RSM-
GA) were found to be optimum by achieving 61.2% removal 
of COD and 73.3% removal of TOC through validation 
experiments. Similar synergistic mineralisation performance 
was exhibited in a previous study where TOC removal effi-
ciency (%) was reached up to 95.3% for simulated solar 
photocatalysis of methylene blue removal (at pH = 7) using 
TiO2/ZnO/reduced graphene oxide composite (Nguyen et al. 
2020). The results from the present study confirm that simi-
lar TOC and COD degradation of organic pollutants can be 
achieved at circumneutral pH of the seawater.

Effects of pH

The pH of the reaction mixture is a significant parameter 
in oxidation processes. Determining the most effective pH 
is still being debated widely because of the intermediates 
that were formed can result in different optimum pH values. 
In the current study, the optimum pH required for maxi-
mum TOC and COD degradation was found to be 6.9 (from 
RSM-GA optimization). Since adjusting a large volume of 
seawater pH to 6.9 in an RO desalination plant on a daily 

basis is problematic, experimental runs were also conducted 
without changing the initial pH of seawater, which was 7.8 
(average). From the confirmation run (which was conducted 
at RSM-GA optimum setting), comparable organics removal 
efficiencies (TOC removal = 66.4%, COD removal = 49.2%) 
were observed when seawater pH kept constant (as target 
pH = 8). At circumneutral pH, similar photocatalytic degra-
dation efficiency was achieved in a previous study (Ji et al. 
2017) where degradation rate of diesel pollutants from sea-
water was reached up to 87.74% using TiO2/ZrO2 catalysts 
under visible light. Also, it was reported that, for solar pho-
tocatalytic disinfection of water, the degradation efficiency 
does not depend significantly on pH at ranges from 4 to 10 
(Malato et al. 2016).

The positive coefficients of factor D (pH) in the model 
equations (coded factors) given in Table 5, show that pH 
has a tendency towards the upper limit (which was set as 7) 
for improving organic removal efficiency. At pH less than 
optimal conditions, generation of ·OH radicals become com-
paratively lower and lead to reduced oxidation of organics. 
pH also affects the position of conductance and valance 
bands, size of catalyst agglomeration and the charge on cat-
alyst particles. Increasing the pH above optimal condition 
results in a lower generation of H+ ions that further results 
in lower production of ·OH radicals (Jung et al. 2009). At 
acidic operational pH, the surface charge for  TiO2 becomes 
positive and exerts an attractive electrostatic force on ani-
onic organic composites. Such polar attraction between 
negatively charged compounds and  TiO2 enhances adsorp-
tion rate for succeeding photocatalysis. The surface charge 
property of the catalyst alters with deviation in pH of the 
solution. The point of zero charge (PZC) for Degussa-P25-
TiO2 is around 6.8 (Gogniat et al. 2006). In basic solution, 
the  TiO2 surface is negatively charged, and when pH is lower 
than PZC, it is charged positively. The PZC value is altered 
when using  TiO2 catalyst with ZnO powder. Hence, in the 
current study, the optimum organic removal is achieved at 
near-neutral pH. Similar ranges of optimum values were 
reported by Kim et  al. (2012) where they have demon-
strated the synergistic effect of two different advanced oxi-
dation processes ( TiO2 and Fenton-like reaction) resulted 

Table 6  Optimum RSM and GA solutions for COD and TOC removal (%) efficiencies and experimental validation results

Optimization technique Parameters Optimum solu-
tion

Validation 
results

Optimum condition

RSM-DF optimization COD removal (%) 55.55 51.2 TiO2 dosage = 0.535 g/L
ZnO dosage = 0.502 g/L, pH = 7
H2O2 = 0.745 mL/L, RT = 162 min

TOC removal (%) 72.58 68.6

Desirability 0.64
GA optimization (Pareto optimal solu-

tion selected for validation)
COD removal (%) 63.9 61.2 TiO2 dosage = 0.51 g/L

ZnO dosage = 0.46 g/L, pH = 6.9
H2O2 = 0.89 mL/L, RT = 179 min

TOC removal (%) 76.5 73.3
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in enhanced ·OH production and drastic improvement in the 
oxidation of organic pollutant at circumneutral pH values.

Effect of  H2O2

The influence of hydrogen peroxide on the organic removal 
efficiency was investigated in the range of 0.2–1.0 mL/L. 
The optimum dosage of H2O2 (= 0.89 mL/L, from RSM-
GA optimization) and the positive coefficients of factor C 
(H2O2) ) in the coded equations for TOC and COD removal 
(%) as given in Table 5 indicate its positive influence on 
overall organics degradation. This is attributed to the ability 
of H2O2 for scavenging electron and enhancing the produc-
tion of hydroxyl radicals (Jamil et al. 2019). Apart from 
preventing charge recombination, by accepting electrons, 
oxidants like H2O2 may dissociate into highly reactive 
radicals and thereby improve the mineralization efficiency 
(Diya’Uddeen et al. 2011). Oxidative degradation of organ-
ics is enhanced at the higher concentration of hydrogen 
peroxide leading to an overall increase in TOC and COD 
removal from the seawater.

Effect of irradiation time

Irradiation time has a significant role in decontamination of 
polluted water through heterogeneous photocatalysis. Irra-
diation time depends on the initial concentration and ionic 
state of various organic contaminants present in seawater 
as well as the type of catalyst used. Since seawater is very 
complex, it is not easy to degrade some contaminants into 
water and  CO2. In the present study, the optimum irradiation 
time obtained from RSM-DF and RSM-GA simulation stud-
ies was 162 min and 179 min, respectively. The optimum 
reaction time in this study is very less when compared with 
a previous photocatalytic degradation study (Zulfiqar et al. 
2019), where the irradiation time was 540 min for optimum 
removal of phenol using TiO2 nanocatalysts. When com-
pared with photocatalytic degradation of other industrial 
effluents, the irradiation time is significantly less in seawater 
treatment if the reaction is performed under optimum condi-
tions. Factors such as photonic flux absorbed by TiO2∕ZnO , 
uniform distribution of catalysts in suspension, continuous 
flow of seawater through borosilicate tubular reactor contrib-
ute to achieve faster degradation of organics. The availability 
of high solar irradiance in the region (670 Watts/m2) also 
enhanced the overall degradation rate.

Process optimization using response surface 
methodology (RSM) and desirability function (DF)

In RSM, desirability function (DF) is used to optimize 
multiple responses in order to achieve maximal removal 
efficiencies of TOC and COD simultaneously. This 

approach enables to locate the optimal settings of the 
variables to attain the desired response. According to the 
numerical optimization steps in the Design-Expert (ver-
sion 11) software, the desired goal for input variables 
( TiO2, ZnO,H2O2 dosages, pH andRT ) is chosen as “in 
range”, while TOC and COD removal (%) responses are 
defined as “maximum”. The software combines the indi-
vidual desirability to determine the best set of trade-offs. The 
programme then searches the design space to optimize desir-
ability function based on the defined goals. Table 6 shows 
the values of optimum removal efficiencies forecasted by the 
model under optimum process operating conditions. Addi-
tional experiments were performed to confirm the validity of 
the prediction, revealing agreement between predicted and 
experimental results.

The TOC and COD percentage degradation obtained from 
RSM-DF analysis was found to be more than that resulted 
from OFAT analysis (72.58% and 55.55% against 49.5% and 
41.5%). This result shows that the study on interaction or 
interdependence of influencing factors is critical in a mul-
tivariate system. The synergistic or antagonistic effects of 
input factors on responses are not visible in the univariate 
investigation of OFAT analysis of any process. Solar photo-
catalytic seawater treatment is a complex multivariate pro-
cess in which the system performance and organic removal 
efficiency are affected by a large number of synergistic and 
antagonistic interactions and main effects. While OFAT is 
suitable for screening and range finding, RSM provides more 
insight into the process behaviour.

Genetic algorithm (GA) multiobjective optimization

While RSM uses the desirability function (DF) approach 
for optimization, the genetic algorithm utilizes adaptive 
heuristic search techniques based on evolutionary ideas of 
genetics and natural selection (Bhatti et al. 2011). In com-
plex processes like seawater solar photocatalysis, finding the 
global optima is cumbersome with conventional techniques 
as more often the solution tends to converge to local minima 
or maxima. Many technicals have found the superiority of 
GA over other optimization techniques as the GA solutions 
are always better due to convergence to global optimum 
(Betiku et al. 2016; Gou et al. 2018). In the current study, 
the optimization capacity of RSM-desirability function 
(RSM-DF) technique is compared with the solutions gener-
ated by GA multiobjective optimization. The TOC and COD 
removal models developed using RSM were implemented in 
an optimization process using gamultiobj solver, one of the 
multiobjective optimizers included in  MATLAB®(2017a) 
software. The GA solver stochastically searches through 
the domain space to attain the optimum solution. GA is an 
optimization technique developed based on the principle of 
natural evolution (Yasin et al. 2014). The GA strategy starts 
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with the initialization of population known as chromosomes 
followed by fitness evaluation based on an objective func-
tion. The genetic propagation of chromosomes is based on 
the selection of the fittest and then through operators like 
crossover and mutation.

The five photocatalytic process factors which represent 
the input space of TOC and COD models (Table 2), were 
optimized using GA multiobjective solver from the opti-
mization toolbox. This was attained through searching for 
the optimum solution that results in maximum removals of 
TOC and COD simultaneously. The RSM models of TOC 
and COD, developed in terms of actual factors (Table 5), 
were used as the fitness (objective) functions to evaluate 
the quality of the individual solution from the population. 
In terms of the GA toolbox implementation, the popula-
tion type was selected as a double vector with crossover 
probability set as 0.9. The adaptive-feasible mutation was 
utilized to create genetic diversity and enable GA to search 
for broader space. The population size, function tolerance 
and the maximum number of generations were set at 100, 
0.0001 and 100, respectively. Finally, the optimal results 
were derived as a fully converged Pareto front.

The Pareto front (Fig. 5) generated by gamultiobj solver, 
demonstrates the trade-off between two competing objec-
tives (TOC and COD removal) and determines the non-
dominated solutions. It includes those population members 
for which no other solution exists which is dominant than 
the Pareto set member. The GA optimizer in  MATLAB® 
GA toolbox is essentially a minimization tool. Hence, the 
TOC and COD models (actual factors equations-Table 5) 
were negated when used as the objective function (fitness 
function). As depicted by the number of solution points 
in Fig. 5, the Pareto front gives a set of optimal solutions. 
Each point on the Pareto front is associated with a set of 
process factors (decision variables). In the current study, a 

set of 36 solutions were generated as optimal on the Pareto 
set. From Pareto optimal sets, one solution with maximum 
TOC removal (73.3%) was selected for validation, and the 
results are shown in Table 6. The degradation efficiency 
could be improved by using doped nanophotocatalysts 
(with metals or non-metals) to reduce the bandgap energy 
and thereby enabling the reaction in the visible region of 
the solar spectrum. When compared to RSM-DF optimiza-
tion, GA multiobjective solutions identify more accurate 
TOC and COD removal efficiencies under different opti-
mum conditions. The closeness of validation results to the 
optimum results of GA (Table 6), supports the superiority 
of RSM-GA over RSM-DF method of optimization.

Conclusion

In this advanced oxidation treatment study, efficiency and 
performance evaluation for TOC and COD removal from 
seawater have been investigated. Main effects and interac-
tion among crucial process factors such as TiO2 dosage, 
H2O2 dosage, pH, reaction time (RT) and ZnO dosage 
were assessed to evaluate optimum operational settings and 
treatment efficiency. Process optimization and performance 
evaluation were undertaken using response surface method-
ology-desirability function (RSM-DF) and RSM integrated 
with genetic algorithm (RSM-GA) approaches. In RSM-
DF method, organic removal, with a reaction time (RT)of 
162 min, pH 7.0, TiO2 dosage of 0.535 g/L, ZnO dosage of 
0.502 g/L and H2O2 dosage of 0.745 mL/L was found to be 
optimum by achieving 55.55% of COD removal and 72.58% 
of TOC removal. The obtained optimum values using RSM-
GA include a reaction time of 179 min, 0.51 g/L of TiO2 , 
0.46 g/L of ZnO, pH 6.9 and 0.89 mL/L of H2O2 . RSM-
GA method gave higher organic removal rate at optimum 

Fig. 5  Pareto-optimal set of 
solutions computed for multi-
objective optimization of TOC 
removal efficiency (Objective-1) 
and COD removal efficiency 
(Objective-2)
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conditions different from RSM-DF (COD removal = 63.9% 
and TOC removal = 76.5%). The results validate the per-
formance of the multiobjective genetic algorithm for its 
convergence to the global optimum. The predicted RSM-
GA results correspond well with the experimental results 
(COD removal = 61.2% and TOC removal = 73.3%). The 
synergistic removal efficiency obtained in this work dem-
onstrates that the combination of TiO2 catalyst with ZnO 
and H2O2 can be a feasible alternative for persistent organic 
removal. Thus, the solar mediated photocatalytic pretreat-
ment of seawater can be applied as a sustainable technique 
for degradation of organics that foul RO membranes. The 
solar nanophotocatalysis of TiO2∕ZnO∕H2O2 is a competi-
tive method for decontaminating highly saline seawater by 
utilizing efficient renewable resources. Utilization of renew-
able solar energy coupled with optimum use of nanopho-
tocatalysts enables this technique to be a unique treatment 
process for seawater reverse osmosis pretreatment and mem-
brane fouling mitigation.
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