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Abstract
Electrical resistivity data acquired in one hundred and ten (110) locations using vertical electrical sounding method of 
Schlumberger array have been used to study the hydrogeological properties and groundwater storage potential of bedrock 
aquifers in an area covered by Geological Sheet 223 Ilorin, Nigeria. The aim of the study was to identify productive aquifer 
zones for citing boreholes for community water supply. The data acquired were processed and interpreted using auxiliary 
curve matching and computer automation method to delineate the different geo-electric layers, their resistivities, thicknesses, 
and depths. Geo-electrical layers were interpreted to their equivalent geological layers using borehole lithological logs from 
the study area. Then, the hydraulic conductivity, transmissivity, fracture contrast, reflection coefficient were estimated and 
plotted in the form of 2D maps to describe the spatial variations of these parameters in the area. The results of the study 
revealed the presence of three to five geo-electric layers. The geo-electric layers, from top to the bottom, corresponds to the 
topsoil layer, lateritic layer, weathered rock layer, fractured rock layer, and the fresh basement rock. Lateritic and/or fractured 
rock layers were not delineated in some places. The weathered and fractured rock layers, where present, correspond to the 
aquifer units. The thickness of the fracture aquifer ranges from 0.6 to 33.6 m while the thickness of the weathered aquifer 
ranges from 1.4 to 49.3 m. The transmissivity, T  , and hydraulic conductivity, K , range from 3 to 1200 m2/day and 1 to 48 m/
day, respectively. The reflection coefficient and fracture contrast map showed the presence of water-bearing fractures and 
shared some similarities with T and K maps. A mathematical model for predicting groundwater potential, GW

P
 , of weath-

ered aquifer in the basement complex terrain was proposed in this study. The consistencies between the overall groundwater 
potential map and aquifers parameters distributions maps suggest the appropriateness of the proposed mathematical model 
for predicting groundwater potential of weathered rock in the basement complex area of Nigeria. The western, northwestern, 
and central parts of the study area, having GW

P
 greater than 0.6 (60%), were recommended for groundwater development 

through boreholes drilled to a depth ranging between 75 and 100 m.

Keywords Crystalline aquifers · Groundwater potentials · Vertical electrical sounding · Fracture coefficient · Hydraulic 
conductivity · Transmissivity

Introduction

Climate change is anticipated to affect groundwater avail-
ability throughout Africa than it was previously forecast. In 
addition to shortage in rainfall and excessive loss in surface 
water due to temperature rise and prolonged evaporation, 

surface and rain water are severely polluted and unfit for 
human consumption without prior treatment. Currently, 
there is heavy dependence on groundwater to meet daily 
global demand for fresh water. Groundwater accounts for 
more than 95% of worldwide storage for fresh water (Shik-
lomanov 1998; Healy et al. 2007). However, groundwater is 
not evenly distributed in the subsurface. Groundwater distri-
bution is affected by a number of factors including porosity 
and permeability of the subsurface rocks, amount of rainfall 
and surface water available for recharge, topography, size of 
the aquifer, nature of the overburden material among others 
(Bhattacharya and Patra 1968; Kosinski and Kelly 1981; 
Kalinski et al. 1993; Olayinka 1996). An aquifer is a body 
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of earth material that contains sufficient permeable material 
to yield significant quantity of water to wells. On a regional 
annual scale, changes in sedimentary aquifer storage are 
negligible because water can easily flow from areas of sur-
plus to areas of deficit. On a local scale, in hard rock terrain, 
changes in aquifer storage, due to groundwater withdrawal 
can be substantial and significant because the aquifers have 
limited extent, are not interconnected and poorly recharge 
(Healy et al. 2007; Raji et al. 2019; Raji and Abdulkadir 
2020a, b). This is why groundwater scarcity is common in 
the basement rock terrain.

Due to global warming, smaller duration high-intensity 
rainfall showers have now replaced the longer duration low-
intensity rainfall events. Consequently, the runoff component 
of rainfall has increased, thereby reducing aquifer recharge 
and groundwater availability (Vashisht and Aggarwal 2016). 
Sedimentary rock aquifers are easily recharged, and they 
store more water than the crystalline rock aquifers (other-
wise known as hard rock aquifers, or bedrock aquifers) due 
to the abundant interconnected pore spaces in the former 
and lack of pore spaces in the later. Crystalline rocks are 
generally impervious to fluid except when it’s decomposed 
by weathering, or fractured, jointed, and faulted by tectonic 
activities. Unfortunately, these impervious crystalline rocks 
cover about 50% of the land mass in Africa (MacDonald 
et al. 2012; UNEP Africa Water Atlas 2020). Groundwater 
development in hard rock terrain requires carefully designed 
pre-drill geophysical survey targeted at determining the 
hydro-geophysical properties and the approximate thick-
nesses and depths of the weathered and fractured rock lay-
ers in the subsurface. The ultimate target of such survey is 
to locate weathered horizons and/or bedrock with network 
of interconnected fractures that can store sufficient quantity 
of water and transmit same to well or boreholes. Weathered 
and fractured rocks are not evenly distributed in the subsur-
face. Therefore, the knowledge of the spatial distribution of 
hydraulic properties of rocks is essential for the prediction 
of groundwater availability, recharge, and yield in bedrock 
aquifers (Scanlon and Cook 2002; Ezeh 2011; Raji 2014).

Aside groundwater development for community supply, 
quantitative overview of hydraulic properties of bedrock 
aquifers is essential for ensuring all year round water sup-
ply for irrigation purposes. However, the evaluation of spa-
tially quantitative dynamic properties of bedrock aquifers 
requires a deep understanding of the intrinsic rock proper-
ties that are not directly measurable by geophysical surveys. 
Hydraulic properties like yield, recharge, and specific capac-
ity cannot be directly measured through any geophysical 
method, but can be indirectly inverted from the estimates of 
closely related parameters such as transmissivity, hydrau-
lic conductivity, fracture coefficient, and fracture contrast 
(Niwas and Singhal 1981; MacDonald et al. 2001, 2012; 
Raji and Abdulkadir 2020b). Also, direct measurements 

of groundwater volume in bedrock aquifer is a difficult 
endeavor. But, quantitative estimates of aquifer thickness, 
porosity, storativity, fracture contrast, and fracture coeffi-
cient, among others, may be used to predict the volume of 
groundwater storable in an aquifer. Therefore, the evaluation 
of groundwater potentials and availability in aquifers should 
be based on sub-regional evaluation of aquifer properties 
rather than the local, on the spot, assessment as commonly 
done for borehole survey.

Electrical resistivity survey (ERS) is the most commonly 
use geophysical method for groundwater study in different 
geological terrains. ERS is a non-invasive depth probing 
techniques that is most suited for shallow subsurface study 
in built-up and undeveloped environments. ERS is environ-
mentally friendly, operationally simple, cost effective, time 
inexpensive, and easy to deploy regardless of the geologi-
cal terrain. 2D/3D electrical resistivity survey has evolved 
with technology, and is currently being used for groundwater 
survey in geologically complex areas. The cost of acquiring 
the equipment and interpretation packages is restricting the 
widespread use of 2D/3D methods. So 1D ERS is still reli-
able for groundwater exploration, and its chance of success 
can be enhanced by expert’s knowledge and the availability 
of borehole lithologic logs in the study area. ERS method 
relied on the direct influence of moisture in rocks on the 
electrical conductivity of such rocks (Zohdy et al. 1974). 
Among the classical electrode arrays used for resistivity 
measurement, vertical electrical sounding (VES) of Schlum-
berger array is the most popular. A study by Raji et al. 
(2020) compared six classical electrode arrays for resistiv-
ity measurement in a field experiment in a basement com-
plex terrain of Nigeria and showed that Schlumberger array 
is the most dependable method of probing earth resistivity 
with depth. Parameters inverted from VES measurements 
have been used for groundwater exploration and develop-
ment, predicting aquifer seasonal behavior, aquifer vulner-
ability studies, and groundwater pollution from oil spillage 
and dump-site leachate in the different parts of the world 
(e.g., Kalinski et al. 1993; Olorunfemi and Fasuyi 1993; 
Edet et al. 1994; Sharma and Baranwal 2005; Viase et al. 
2005; Casas et al. 2005; 2007; Abubakar and Danbatta 2012; 
MacDonald et al. 2012; Raji 2014; Abubakar et al. 2014; 
Raji and Adeoye 2017; Aluko et al. 2017; Raji et al. 2018; 
Raji and Abdulkadir 2020a). Therefore, VES method using 
Schlumberger electrodes array will be applied to interrogate 
subsurface geology for groundwater potential in this study.

The rate of abortive boreholes and the scarcity of port-
able water in the study area is the motivation for this study. 
15–20% borehole failure rate has been reported in the central 
part of the study area (Geo-Drill 2019, verbal communica-
tion). The aim of the study is to interrogate the subsurface 
geology for groundwater availability and identify the pro-
ductive aquifer zones for groundwater development in the 
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study area. The objectives of the study are to: characterize 
the subsurface geo-electric layers, determine depth to aqui-
fers, and describe the dynamic hydraulic properties of the 
aquifers (e.g., transmissivity and hydraulic conductivity) in 
the study area. The expected outcome of this study include 
spatially quantitative maps of combined aquifer thickness, 
transmissivity (indicative yield), hydraulic conductivity 
(indicative recharge), fracture density map, and the over-
all groundwater potential map of the area. Data acquired 
for the study and the results obtained from the study, when 
published, will improve experts’ understanding of the hydro-
geology of the hard rock terrain.

The study area and its geological setting

The study area lies between latitudes 08° 24.50′ N and 08° 
27.99′ N of the equator and longitudes 04° 27.50′ E and 04° 
41.00′ E of the Greenwich Meridian (Fig. 1a, b). The area 
covers about 161 square kilometers in Ilorin South Local 

Government of Kwara State and falls within Geological 
Sheet Ilorin 223 of the Nigerian Geological Survey Agency. 
The study area is part of the Savana region of Nigeria, has 
two main seasons—rain season and dry season. The mean 
annual rainfall and temperature range from 75 to 112 mm 
and 27 and 35 °C. Drainage is provide by River Asa, River 
Oyun, their tributaries and distributaries. The mean daily 
sun shine is about 8 hours. Geologically, the study area falls 
within the Precambrian basement terrain of the southwest-
ern Nigeria considered to be Precambrian to lower Paleo-
zoic in age (Oyawoye 1964; Rahaman 1976; Annor et al. 
1987). The rock comprised mostly gneiss, granite, schist, 
and undifferentiated meta-sediment. In the study area, the 
rocks outcrop in some places and are covered by weathered 
rock and topsoil in many places. The rocks are well exposed 
along river channels.

The oldest rocks in the study area comprise gneiss com-
plex whose principal member are Biotite-Hornblende-
Gneiss with intercalated Amphibolites (Annor et al. 1987). 
The younger suites are granites with medium to coarse 

Fig. 1  a Geologic map of the Nigeria showing the location of the study area. b Map showing the location of VES survey points in the study area
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grains light colored rocks with variation in biotite content. 
In some places, the Biotite minerals are thread-like, arranged 
in roughly parallel pattern. In other places the Biotite miner-
als are disoriented in the ground mass. The feldspar mineral 
occurs as fine to medium grains. Other rock types include 
schist and quartzite. Minor bodies of pegmatites and quartz 
intruded the rock at different places during the Pan African 
orogeny (Oluyide et al. 1998). The quartzite, the metamor-
phic equivalence of quartz-rich sandstone, filled the preexist-
ing fractures in the area. The rocks have been weathered at 
shallow depth in some places due to in situ physico-chemical 
activities. Structural features mapped in the area included 
fault, fracture, pinch and swell structure, strikes, and dips. 
The rocks are dipping to the west and east with angles rang-
ing from 28° to 45°.

Groundwater occurrence in the Precambrian basement 
terrain is hosted within zones of weathering and fracture 
which are not evenly distributed. The two main aquifer types 
in the study area are weathered rock and fractured rocks 
aquifers. The aquifers are overlain by different soil material 
of variable thickness. The soil materials include laterites, 
clay, sand, and silt-sized particles deposited by runoff and 
surface water. Aquifers in the basement complex of south-
western Nigeria are typically found at varied, but shallow 
depths, have limited extent, low porosity, and permeability. 
The aquifers depend on secondary porosity derived from 
weathering and fracturing, faulting, jointing, and cracking 
of rock units for transmitting fluid from one place to another 
(Davis and DeWiest 1966; Dan-Hassan 2001; Olasehinde 
and Raji 2007; MacDonald et al. 2012; Abubakar and Auwal 
2012; Abubakar et al. 2014).

Materials and methods

One hundred and ten (110) points were survey in the differ-
ent parts of the study area using Vertical Electrical Sounding 
Technique of Electrical Resistivity with Schlumberger elec-
trodes array. Data acquisition equipment comprised ABEM 
3000 Earth Resistivity Meter, two current and two potential 
electrodes, four reels of electrical cables, hammers, meas-
uring tapes, battery, and portable geographic positioning 
system, GPS. The spacing between one survey point and 
the other ranges between 100 and 350 m depending on the 
available space for spreading electrodes and cables for the 
survey. The obstruction caused by the presence of building, 
roads, and other engineering infrastructure prevented regu-
lar spacing of VES stations. Current electrode spacing, AB, 
ranges from 1 to 200 m. The GPS coordinates and elevation 
of every survey point were measured and recorded against 
the survey number for ease of geo-referencing. Locations of 
the VES stations are shown in the base map (Fig. 1b).

Resistance measured and resistivity computed were 
recorded against the respective current and potential elec-
trode separation, and resistivity curve were plotted on the 
field for quality assurance purposes. In situation where a 
curve exhibits anomaly peaks in difference to the previous 
stations, the experiment is repeated to clear any doubt and 
reduce uncertainties. VES data were subjected to manual 
and automated processing to invert different geo-electric 
parameters. The raw data were pre-processed, where neces-
sary to remove spikes and instrumental errors (e.g., contri-
bution from low voltage, poor electrode contact, etc.) using 
a curve smoothing algorithm (Raji and Adeoye 2017) and 
the pre-processed/raw data were re-plotted on double loga-
rithm papers. The curves on double logarithm papers were 
transferred to tracing papers and carefully interpreted using 
auxillary curve matching techniques (Orellana and Mooney 
1966; Koefoed 1979; Telford et al. 1990) to deduce the 
approximate number of layers, the resistivity, and thickness 
of each geo-electric layer.

The field data and the number of layers obtained from 
the manually interpretation were input to WinResist—a 
computer iterative curve-matching software for final inter-
pretation. The number of geo-electric layers obtained from 
auxiliary curve matching is used as the starting model in 
WinResist, rather than guessing the starting model. For an 
example, if four geo-electric layers were obtained from the 
manual interpretation, a minimum of three and maximum 
of five geo-electric layers are set as the model in WinResist. 
After a preset number of iterations, the software matches the 
curve from field data to a computer defined curve and output 
the estimated number of layers, resistivities, thickness and 
depth of each geo-electric layers, and the inversion uncer-
tainties (RMS error). Some results from the curve-matching 
procedure are shown in Fig. 2a. The inversion error defines 
the misfit or mismatch between the field data curve and the 
computer defined curves. Where the misfit is higher than 
10%, the preset values, for examples, the number of layers, 
or number of iterations is reset, and the interpretation pro-
cess is repeated until the RMS error falls within a reasonable 
limit (less than 10%). To describe the hydraulic properties of 
the aquifers and the groundwater potential of the area, some 
parameters including hydraulic conductivity, transmissivity, 
fracture coefficient, and the groundwater potential were esti-
mated at each of the 110 VES points. Hydraulic conductivity 
(K) and transmissivity (T

r
) of the aquifer were estimated 

following the method of Heigold et al. (1979) and Niwas 
and Singhal (1981), as shown in Eqs. 1 and 2, respectively. 
Detailed explanations can be found in some recent literature 
(e.g., Obiora et al. 2016; Raji and Abdulkadir 2020b).

(1)K = 386.40R−93283
rw
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where R
rw

 is the resistivity of the aquifer, T , �, S, and h are 
transverse resistance, conductivity of the aquifer layer, lon-
gitudinal conductance, and the thickness of the layer, respec-
tively. Then, the reflection coefficient and fracture contrast 

(2)T
r
= K�T =

KS

�
= Kh

of the weathered aquifers were computed following Eqs. 3 
and 4, respectively.

(3)R
C
= �

n
− �

n−1
/

�
n
− �

n+1

Fig. 2  a Some VES curves and their interpretations. b Lithologic logs from two boreholes in the study area
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where �
n
 is the apparent resistivity of a geo-electric layer 

and �
n−1 is the apparent resistivity of the geo-electric layer 

overlying nth layer. Finally, the groundwater potential of the 
area was estimated using a combination of different aqui-
fer parameters which include combined aquifer thickness, 
fracture density, hydraulic conductivity and transmissivity, 
porosity, and overburden thickness. An empirical equa-
tion linking the overall groundwater potential (GWP) of the 
weathered rock aquifer to the different aquifer parameters is 
defined in Eq. 5.

where hw is the thickness of the weathered aquifer; T is trans-
missivity; � is the porosity; Rc is the reflection coefficient; 
and Fc is the fracture contrast. An effective porosity of 7.5% 
was used for this study. The value was adopted from range of 
values of 1–10% available in the literature on series of local, 
national, and regional studies on different types of crystal-
line aquifers across Africa and other parts of the world (Lott 
1998; Petford 2003; Samaila and Singh 2010; MacDonald 
et al. 2012). The equation is applied at every VES survey 
point to compute the spatial distribution of groundwater 
potential for the study area. GWP at every point was nor-
malized to a scale of 0–1 by dividing the value estimated at 
each VES point by the maximum values in the survey area. 
Areas with values greater than 0.6 was considered to have 
high groundwater potential (GWP > 0.6).

Results and discussion

VES results show that the study area is underlain by three 
to five distinct geo-electric layers (Fig. 2a). Interpretation 
of the geo-electric layers to their corresponding geologic 
unit was guided by lithologic logs obtained from boreholes 
in the area (Fig. 2b) and previous studies in the area (Olas-
ehinde and Raji 2007). The interpretation showed that the 
five geo-electric layers correspond to the topsoil layer, lat-
eritic layer, weathered rock layer, fractured rock layer, and 
fresh basement rock, respectively. The three geo-electric unit 
that are consistently present in all the survey points are the 
topsoil layer, weathered rock layer, and the fresh basement 
rock. Lateritic layer and/or fractured rock layer are present 
in some places and absent in others. The various VES curves 
are best described by QQH, QHK, QHA curve types repre-
senting over 70% of the survey points. Two aquifer zones 
were delineated: the first aquifer zone corresponds to weath-
ered rock layer, while the second aquifer zone corresponds 
to fracture rock layer. The thicknesses, resistivity, and other 
results were plotted, evaluated and used to compute some 

(4)F
C
= �

n

/

�
n−1

(5)GWP = hwT
�∕(Rc∕Fc)

�

secondary parameters required for assessing the hydraulic 
properties of the aquifers and the groundwater potential of 
the study area.

Figure 3a, b shows the thickness and resistivity of the 
weathered aquifer, respectively. The thickness of weath-
ered aquifer ranges from 1.4 to 49.2 m, while the resistivity 
ranges from 10.1 to 421 Ωm. The thickest weathered aquifer 
zones are located in the extreme western part of the study 
area around VES stations 103, 109, and 108; in the north-
western part around VES stations 90, 97, 105, 101, and 100; 
and in the center of the study area around VES stations 69, 
43, 56, and 57. Variation in the thickness of weathered zone 
suggests differences in the resistance of the rocks to weather-
ing. It is note worthy that the thickest aquifers in the west, 
northwest and southwest correspond to very low resistivity 
values—ranging between 20 and 80 Ωm (Fig. 3b). These 
values of resistivity suggest the presence of water in the 
weathered rock and the possibility of water-bearing fractures 
around the zone (Zohdy et al. 1974; Olayinka 1996; Asry 
et al. 2012).

Figure 4 shows that the thickness of overburden layer 
(unsaturated zone) in the study area ranges from 0.4 to 
16.2 m. Overburden thickness is estimated as the sum of 
the thicknesses of the topsoil and the lateritic layer in the 
respective VES stations. The thicker the unsaturated zone, 
the higher its capability to retain water from runoff during 
rainfall and transmit water to the aquifer zone. The unsatu-
rated zone is moderately porous as it contains loose sand 
particle derived from weathered rocks and other material 
deposited by wind and runoff water. The zone is particularly 
useful for agricultural purpose. Figure 5 presents the spa-
tial distribution of total aquifer thickness. The total aquifer 
thickness was estimated as the summation of the weathered 
aquifer and fractured rock aquifers thicknesses. The esti-
mated value ranges from 4.5 to 82.8 m. Areas having thick 
aquifer are potential places for groundwater storage. From 
the surface, depth to the aquifer bottom was estimated as the 
sum of the overburden thickness and the total aquifer thick-
ness. Considering an additional 15 m column for ground-
water storage or accommodation below the aquifer bottom 
(in the wells/drill hole), the borehole depth in the area was 
estimated to range from 75 and 100 m.

The aquifer transmissivity (T) plot presented in Fig. 6 
shows that the estimated transmissivity ranges from 3 to 
1200 m2/day. Highest values were recorded in the north-
central, northwestern and southwestern parts of the study 
area. Aquifer transmissivity is an indirect indicator of yield 
(MacDonald et al. 2012), and it describes the lateral move-
ment of groundwater in the aquifer. This why some authors 
including Acheampong and Hess (1998) and Graham et al. 
(2009) have found borehole yields to be directly related to 
transmissivity. Figure 7 shows the spatial distribution of the 
estimated hydraulic conductivity of the aquifers ( K ) in the 
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Fig. 3  a Estimated thickness of weathered aquifer. b Resistivities of the weathered aquifer

Fig. 4  Spatial distribution of unsaturated zone thickness in the study area
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area. The values are generally moderate, ranging from 1 to 
48 m/day with the highest values concentrated in the north-
central and southwestern parts of the study area. Hydraulic 
conductivity is an indicative parameter for aquifer recharge 
potential. It describes the vertical movement of water in the 
aquifer and can be used to express aquifers potential recharge 
where borehole pump data are unavailable (Heigold et al. 
1979; George et al. 2015). Comparing Figs. 6 and 7, the spa-
tial distribution of hydraulic conductivity is similar to that 
of transmissivity. A joint evaluation of the two parameters 
suggests that the aquifers in the north-central and southwest-
ern parts of the study area have the highest potentials for 
groundwater in terms of borehole yield and aquifer recharge 
potential.

Refection coefficient (RC) and fracture contrast (FC) in 
weathered aquifers in contrast to the fracture aquifer are 
plotted in Figs. 8 and 9, respectively. Reflection coefficient 
and fracture contrast are indicators of water-filled fractures 
(Olayinka et al. 2000; Obiora et al. 2016). Comparing the 
fractured layer (n) and the weathered layer (n − 1), low val-
ues indicate low contrast between the two aquifers, thereby 
suggesting good fractured network in the aquifers. Good 
fracture network implies high groundwater accumulation 
and fluid flow in the aquifers. As shown in Figs. 8 and 9, RC 
ranges from − 0.955 to 0.085, while FC ranges from 0.073 
to 1.18. The low values of reflection coefficient and fracture 
contrast are found in the western part of the study area. This 
suggest that the aquifers in the western part of the study area 

Fig. 5  Estimated total aquifer thickness

Fig. 6  Transmissivity of the aquifer in the study area
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have higher density of water-filled fractures than the aquifer 
in the eastern part.

Finally, the joint parameters map here known as the 
indicative groundwater potential map is shown in Fig. 10. 
The map is a model of the overall groundwater potential 
comprising the direct and indirect groundwater parameters 
(aquifer thickness, transmissivity, hydraulic conductivity, 
and fracture contrast, reflection coefficient, and porosity) 
as defined in Eq. 3. The values of the indicative ground-
water potential ranges from 0 to 1. The areas with ground-
water potential of 0.6 (i.e., 60%) and above, on a scale of 
zero to one (0–1) are recommended for borehole drilling. 
Figure 10 also shows that the highest value of groundwater 
potential correspond to the extreme western, northwestern, 

and the central parts of the study area. In consideration 
of the groundwater potential of aquifers in the hard rock 
terrain (basement rock terrain), the size of the weathered 
aquifer and the availability of water-bearing fractures are 
the key indicators of high potential for groundwater. The 
larger the size of the aquifer adjudged from the thickness 
of the weather rock and the higher the fracture density, 
the higher the storage potential. From this study, the dis-
tribution of these two parameters (Fig. 5, 8, and 9) are 
spatially consistent with the overall groundwater potential 
map (Fig. 10). Therefore, it is reasonable to conclude that 
the extreme western, northwestern, and the central parts 
of the study area have the highest groundwater potential 
in the study area. It is recommended that boreholes should 

Fig. 7  Hydraulic conductivity of the aquifers in the study area

Fig. 8  Reflection coefficient map of the area
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be drilled in these areas to depth ranging between 75 and 
100 m.

Conclusion

Groundwater aquifer parameters and hydraulic properties 
of rocks estimated geo-resistivity data acquired in 110 VES 
stations in an area measuring 161 km2 within geological 
sheet 223 Ilorin have been used to evaluate the groundwa-
ter potential of the bedrock aquifers in the area. Five geo-
electric layer and two aquifer zones were delineated. The 
estimated thickness of the weathered and fractured aquifer 

ranges from 1.4 to 49.2 m and 0.6–33.6 m, respectively, 
while the combined aquifer thickness ranges from 4.5 to 
82.8 m. The estimated hydraulic conductivity, transmissiv-
ity, and fracture density maps revealed wide variation in 
aquifer properties across the study area. The north-central 
and western parts of the study area were recommended for 
citing boreholes for community water supply. Although the 
groundwater potential model is subject to improvement 
for a more robust estimate, the consistencies between the 
overall groundwater potential map and the hydraulic prop-
erties of the aquifer confirmed the appropriateness of the 
model, developed in this study, for estimating groundwater 
potential of bedrock aquifers.

Fig. 9  Fracture contrast map of the area

Fig. 10  Indicative groundwater potential map
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