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Abstract
In this study, the scales of Micropogonias undulatus fish were investigated as precursors for the development of low-cost 
biosorbent for the removal of Pb(II) and Zn(II) from aqueous media. The biosorbent was characterised using Fourier trans-
form infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-ray diffractometry (XRD). Adsorption param-
eters (temperature, biosorbent dosage and contact time) were optimised using response surface methodology Box–Behnken 
experimental design. The optimal factors for Zn(II) removal by croaker fish scale were 145.5 min, 7.01 g/L biosorbent dosage, 
30 °C and pH 5.4. The optimal factors for the removal of Pb(II) were 179.3 min, 6.61 g/L biosorbent dosage, 20 °C and pH 
3.4. The numerical optimisation revealed that the optimal removal efficiency for Zn(II) and Pb(II) sorption is 96.45% and 
98.76%, respectively. The biosorption of both heavy metals was best fit to Freundlich isotherm and pseudo-second-order 
kinetic models. Thermodynamics studies revealed that the biosorption process was exothermic and spontaneous.
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Abbreviations
AAS	� Atomic absorption spectrophotometry
ANOVA	� Analysis of variance
BBD	� Box–Behnken design
Df	� Degree of freedom
DOE	� Design of experiments
FS	� Fish scales
FTIR	� Fourier transform infrared spectroscopy
Rpm	� Rounds per minute
RSM	� Response surface methodology
SEM	� Scanning electron microscopy
XRD	� X-ray diffractometry

List of symbols
α	� Temkin isotherm constant (equilibrium binding 

constant) (L/mol)
Ǻ	� Armstrong
b	� Temkin constant related to the adsorption heat
β	� Constant related to adsorption energy (mol2/J2)
C	� Constant of the thickness of boundary layer
Ce	� Equilibrium concentration (mg/L)
Ci	� Initial concentration (mg/L)
CL	� Equilibrium concentration in the liquid phase
CS	� Equilibrium concentration in the solid phase
KF	� Freundlich constant (mg/g)
KE	� Equilibrium constant
K1	� Rate constant of the pseudo-first-order model 

(min−1)
K2	� Rate constant of the pseudo-second-order 

model (gm g−1 min−1)
Kdif	� Intra-particle diffusion rate constant (mg/

gmin0.5)
KL	� Langmuir constant related to affinity (l/g)
n	� Freundlich constant
qe	� Amount of chemical species removed at equi-

librium (mg/g)
qmax	� Maximum metal uptake (mg/g)
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qt	� Amount of chemical species removed at time t 
(mg/g)

R	� Universal gas constant 8.314 (J/mol K)
R2	� Coefficient of determination
T	� Temperature
t	� Time
ΔG	� Gibbs free energy change
ΔH	� Enthalpy change
ΔS	� Entropy change

Introduction

Pollution of water bodies by industrial effluents has been a 
long-standing environmental problem globally (Babatunde 
et al. 2019). This effluent has been established to contain 
heavy metals, dyes, pharmaceutically active compounds and 
a plethora of other inorganic pollutants that need to be miti-
gated in a variety of ways (Chandrakanth et al. 2014; Eletta 
et al. 2019). Heavy metals are non-biodegradable and could 
be toxic to living organisms (Abbas et al. 2014) and even in 
little concentrations can be very toxic to human (Alluri et al. 
2007). One of the techniques in wastewater treatment by the 
adsorption of pollutants is the utilisation of living and non-
living biomass in a process known as biosorption (Demir-
bas 2008). Biosorption can be defined as the removal of 
substances from a solution by biological material (Adeniyi 
and Ighalo 2019; Goeffrey 2008). This technology has been 
extensively investigated in the removal of heavy metals 
(Ighalo and Adeniyi 2020a). Techniques and mechanisms 
involved in the process have been examined (Amirnia 2015; 
Ramachandra et al. 2006). Bioaccumulation (Zabochnicka-
Świątek and Krzywonos 2014) describes an active process 
in which pollutant uptake involves the metabolic activity of 
a living organism (Abdi and Kazemi 2015).

Fish scales have also been studied as a source of biosor-
bents for heavy metal removal (Eletta and Ighalo 2019). 
Scales from fish species such as Gadus morhua (Basu 
et al. 2006, 2007; Rahaman et al. 2015), Tilapia nilotica 
(Huang 2007; Zhe et al. 2014; Zhu et al. 2013), Oreochromis 
niloticus (Neves et al. 2017; Ribeiro et al. 2015; 2018a, b), 
Labeo rohita (Chakraborty et al. 2012; Iqbal et al. 2011; 
Kondapalli and Mohanty 2011; Mandal et al. 2015; Mar-
rakchi et al. 2016, 2017; Nadeem et al. 2008) and Catla catla 
(Das et al. 2016; Kondapalli and Mohanty 2011; Prabu et al. 
2012; Srividya and Mohanty 2009) have been studied for 
the adsorption of pollutants from aqueous media. Croaker 
fish (Micropogonias undulatus) is scarcely investigated, and 
it is one easy way to assess in the current demographic of 
this study. Croaker fish (Micropogonias undulatus) is readily 
available in Nigeria, and the scale is a waste material with 
no other competitive use. It has also not been reportedly 
studied as a biosorbent for heavy metals (Ighalo and Eletta 

2020). This leaves an interesting knowledge gap to explore. 
Studies such as this are justified in the light of the need for 
waste valorisation and environmental protection.

This paper was targeted at a specific environmental prob-
lem. The levels of heavy metal pollution from industrial 
effluent are a significant issue especially in the demographic 
of the study. The choice of heavy metal was made based 
on the observations from real water samples. The aim of 
this study is to investigate the viability of the Micropogo-
nias undulatus (croaker) scales as a precursor in developing 
efficient and cost-effective biosorbents for the removal of 
Zn(II) and Pb(II) from aqueous solutions and optimise the 
parameters by Box–Behnken design. The biosorbent will be 
characterised using Fourier transform infrared spectroscopy 
(FTIR), scanning electron microscopy (SEM) and X-ray 
diffractometry (XRD). Response surface methodology and 
Box–Behnken design will be used to optimise the biosorp-
tion process. Equilibrium modelling alongside kinetic and 
thermodynamic studies will also be conducted.

Materials and methods

Preparation of biosorbent

Micropogonias undulatus (croaker) scales were sourced 
from the market in Ilorin metropolis in Kwara State, Nigeria. 
The scales were washed thoroughly with water and liquid 
detergent to remove oil and other surface contamination. 
This was followed by liberal rinsing with distilled water. 
The scales were pre-treated by soaking in 5% Nitric acid 
(HNO3) in a plastic container for 24 h. This was to ensure 
that compounds like iron and lead oxides (FeO, PbO) are 
removed, thereby increasing the adsorption capacity (Oth-
man et al. 2016). The scale was further soaked in distilled 
water for another 24 h and then dried in an oven (GenLab 
Electric oven model; MINO/50) at 60 °C until they were 
crispy and constant in weight. The dry scales were ground to 
a fine powder in an electric blender and sieved through 100 
mesh to achieve 150 µm maximum particle size.

Characterisation of biosorbent

The biosorbent was characterised by Fourier transform 
infrared spectroscopy (FTIR), scanning electron micro-
scope (SEM) and X-ray diffractometry (XRD). FTIR (Shi-
madzu, FTIR-8400S, Japan) was performed according to 
the description by Adeniyi et al. (2020). SEM (Phenom 
ProX, Eindhoven Netherlands) was performed based on the 
description in Adeniyi et al. (2019). For the XRD analy-
ses, an Empyrean X-ray diffractometer (Pan Analytical) 
was employed to investigate the physical properties of the 
adsorbent as it relates to the crystallinity of the material. 
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The XRD was operated with Cu Kα emission (ƛ = 1.54105 
Ǻ, 45 kV, 40 mA per s).

Determination of target pollutant

The specific environmental problem leading to the choice of 
target pollutant was obtained by assessing the heavy metal 
amount in a pharmaceutical effluent in Ilorin Nigeria. The 
wastewater was sourced from a pharmaceutical company 
located at 8o28′N, 4o33′E in Ilorin, Nigeria. The satellite 
image in Fig. 1 shows the vicinity around which the waste-
water was sourced. The point marked with a white cross-hair 
represents the place of release of effluents from the nearby 
pharmaceutical industry. The water is released and fed into 
the tributary which goes on to join the Asa River on the 
east. The area in consideration can be observed to be urban. 
There are numerous negative environmental impacts of such 
effluents released into the river.

The heavy metal concentration in the wastewater was 
analysed using BUCK scientific ACCUSYS 211 Atomic 
Absorption Spectrophotometer (AAS). The wastewater sam-
ple was digested to make the heavy metals easily detectable 
during analysis. HNO3 and HCl (in the ratio 3:1) making 
12 mL was dissolved in 2 mL of the wastewater sample in a 

beaker. The resultant solution was heated directly (in a fume 
cupboard) till only white fumes were evolved, and the solu-
tion was clear. The solution was filtered with Whatman filter 
paper, and the filtrate was made up to 50 mL using distilled 
water. The solution was analysed AAS, and the results are 
shown in Table 1. It was observed that zinc (Zn) and lead 
(Pb) appeared at or above the WHO standard. Hence, it can 
be stated that the wastewater is a source of heavy metal pol-
lutants into the ecosystem in Ilorin town. From the findings 
of the wastewater characterisation, target impurities for this 

Fig. 1   Satellite image of wastewater sampling point (8°28′N, 4°33′E)

Table 1   Results of heavy metals in pharmaceutical effluent

ND not detected, NS not stated

Metal Sample A 
(mg/L)

Sample B 
(mg/L)

WHO (2003) 
standard (mg/L)

Flagged (A, 
B ≥ WHO)

Fe 0.03 0.03 3.00
Mn 0.02 0.03 0.40
Zn 0.85 0.87 0.01 flagged
Cd ND ND 0.003
Cu 0.20 0.10 2.00
Cr 0.01 0.01 NS
Pb 0.03 0.03 0.01 flagged
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study were chosen as zinc and lead since they are above the 
WHO standard. The pH of the wastewater was measured 
and found to be 6.7.

Preparation of stock solutions

All reagents used in this study were analytical grade 
(> 99.9% purity). The reagents used were nitric acid (HNO3), 
hydrochloric acid (HCl), zinc sulphate (ZnSO4·7H2O), 
lead nitrate (Pb(NO3)2) and distilled water (H2O). For 
the preparation of the stock solution of Zn(II), 4.396 g of 
ZnSO4·7H2O was dissolved in 1 L of distilled water to give 
a 1000 mg/L of Zn(II). For the stock solution of Pb(II), 
1.5985 g of Pb(NO3)2 was dissolved in 1 L of distilled water 
to give a 1000 mg/L solution.

Batch biosorption experiments

All biosorption experiments will be performed in 250-mL 
glass-stoppered Erlenmeyer flasks with 50 ml of wastewater 
solution. A weighed amount of biosorbent (in grams) was 
added to the water to form a solution of known concentration 
or dosage. The pH of the solution was left at their natural 
value of 3.4 for the lead solution and 5.4 for the zinc solution 
without any adjustments. The flasks were agitated at a con-
stant speed of 120 rpm for a known length of time ‘t’ hours 
in an incubator shaker based on the experimental design in a 
constant temperature incubator shaker. The incubator shaker 
was set at a known temperature based on the experimental 
design. At the attainment of the required contact time, the 
samples were taken off and filtered through Whatman filter 
papers. The samples obtained are then digested and ana-
lysed by Atomic Absorption Spectrophotometry (ACCUSYS 
211). The optimisation experiment in the current paper was 
developed using response surface methodology (RSM), and 
the design matrix chosen was Box–Behnken design (BBD). 
BBD is a three-level optimisation design on response sur-
face methodology. The factors to be optimised were adsor-
bent dosage (1–5 g/L), agitation time (10–100 min) and 
temperature (20–40 °C). An experimental plan for the opti-
misation totalling 17 runs was generated by the software 
Design Expert 10.0.1 (shown in the supplementary data). 

For the equilibrium isotherm study, the temperature was set 
at 30 °C, initial metal concentration (Ci) was 1000 mg/L 
and contact time of 120 min will be used. The adsorbent 
dosage was varied from 2 to 10 g/L in increments of 2. For 
the kinetic studies, the temperature was set at 30 °C, initial 
metal concentration (Ci) was at 1000 mg/L and dosage of 
6 g/L was utilised. The contact time was varied from 30 
to 150 min in increments of 30. For experiments, the pH 
was maintained at their initial values of 5.4 and 3.4 Zn(II) 
and Pb(II) biosorption. For the thermodynamic studies, the 
response surface optimal for Zn(II) equilibrium concentra-
tion will be obtained at 20, 30 and 40 °C and 5.5 g/L dosage 
and 95 min.

Results and discussion

Biosorbent characterisation

The FTIR was conducted to know the functional groups 
present in the biosorbent and to ascertain those responsi-
ble for the sorption of Zn(II) and Pb(II) (summarised in 
Table 2). Figure 2 shows the FTIR spectrum of fish scale 
before adsorption, then after the adsorption of Pb(II) and 
Zn(II), respectively. Spectrum A shows the presence of 
carbonyl group C=O at peak 1643 cm−1, while the peak 
at 1049 cm−1 corresponds to ethers (C–O stretch) (Oth-
man et al. 2016). The peak observed at 1535 cm−1 corre-
spond to the presence of nitro compounds which does not 
shift frequency in the spectra of the fish scale loaded with 
Pb(II) and Zn(II) which implies that the nitro compounds 
may not be involved in the adsorption. Studies have shown 
the shifting of frequency level of many functional groups 
to different levels after adsorption which indicates the pos-
sible involvement of the functional groups for the uptake of 
metal cations (Chowdhury et al. 2012; Othman et al. 2016). 
Changes in the intensity and shifts in the position of peaks 
were observed in the spectra after Pb(II) and Zn(II) adsorp-
tion on the fish scales. There was no shifting observed in the 
peak at 1643 cm−1 which characterise carbonyl group stretch 
(C=O) from ketone, carboxylic acid and aldehyde (Othman 
et al. 2016; Pavia et al. 2008). The characteristic peak at 

Table 2   FTIR peaks and their 
corresponding assignments for 
Micropogonias undulatus scales

Raw biosorbent After Pb(II) uptake After Zn(II) uptake

Peak (cm−1) Assignment Peak (cm−1) Assignment Peak (cm−1) Assignment

1643 C=O 1643 C=O 1643 C=O
1535 Nitro 1535 Nitro 1535 Nitro
1774 C=O 1774 C=O 1736 C=O
2924 N–H 2939 N–H 2924 N–H
1427 C–C 1435 C–C 1450 C–C
1049 C–O 1018 C–O 1026 C–O
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1774 cm−1 also suggests the presence of C=O in the adsor-
bent (Spectrum A). However, the peak remains unchanged 
after Pb(II) adsorption, while it shifts to about 1736 cm−1 
and increases in intensity after Zn(II) adsorption.

The peak at 2924  cm−1 corresponds to the presence 
of amine group N–H in the adsorbent. The peak shifts 
to 2939 cm−1 in the Pb(II) adsorption, while it remains 
unchanged but increases in intensity after Zn(II) adsorp-
tion. The small peak observed at 1427 cm−1 in the raw fish 
scale spectra may correspond to the C–C stretch of aromatic 
rings, which further shifts to 1435 cm−1 and 1450 cm−1 in 
the spectra for fish scale loaded with Pb(II) and Zn(II), 
respectively. This implies that the aromatic C–C group was 

involved in the adsorption of both Pb(II) and Zn(II) (Zayadi 
and Othman 2013a). The peak 1049 cm−1 observed in spec-
trum A shifted to 1018 cm−1 and 1026 cm−1 in spectra B and 
C, respectively, and may correspond to C–O stretch of esters 
and carboxylic acids (Chowdhury et al. 2012; Zayadi and 
Othman 2013b). The adsorbent characterisation proved the 
involvement of carbonyl group (carboxylic acid, ketone and 
aldehyde), nitro compounds, aromatic C–C and amine group 
in the adsorption of Zn(II) and Pb(II) ions on fish scales as 
also noted by Othman et al. (2015).

Figure 3 is the SEM image of the fish scale biosorbent. 
A large pebble-like structure, agglomerated with some grit 
—grain particles—can be observed. Also observed was a 

Fig. 2   Spectra of raw biosorbent (A), after Pb(II) uptake (B) and after Zn(II) uptake (C)
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mushroom-like cluster, embedded in a similar but cubic 
shaped structure. However, clouded white pyramid forms 
were observed randomly on the morphological surface of the 
sample. The adsorbent has a generally heterogeneous surface 
which makes it very suitable for use as an adsorbent (Ighalo 
and Adeniyi 2020b). The XRD spectrum (shown in the sup-
plementary data) shows that the inorganic content of the 
croaker fish scale is majorly Brushite (CAS:01-072-0713). 
The common name is calcium hydrogen phosphate hydrate 
(CaHPO4·H2O2). The crystallographic parameters from the 
analysis revealed that the particles are monoclinic and have 
a density of 2.32 g/cm3. The crystallographic parameters are 
a = 5.812 Å, b = 15.18 Å and c = 6.239 Å. The sharp peaks 
indicate the crystalline nature of the material.

Optimisation and modelling studies

Box–Behnken experimental design in response surface meth-
odology was used for the optimisation studies. The goals of 
optimisation were to maximise the uptake of heavy metals and 
to do the numerical optimisation in range of the factors studied 
(Ighalo and Adeniyi 2020d). It was observed that the optimal 
factors for Zn(II) removal by croaker fish scale are 145.5 min, 
7.01 g/L biosorbent dosage and temperature of about 30 °C. 
The optimal factors for the removal of Pb(II) by croaker fish 
scales are 179.3 min, 6.61 g/L biosorbent dosage and tempera-
ture of 20 °C. The optimum removal efficiency for Pb(II) was 
marginally higher than that of Zn(II). The removal efficiencies 
were excellent, and these go to prove that croaker scales are 
excellent adsorbents for the removal of Zn(II) and Pb(II) from 

polluted effluents. The results obtained are for pH of 5.4 for 
Zn(II) and 3.4 for Pb(II). From the information on removal 
efficiencies obtained, response surface models were developed 
by the software. These models are entirely empirical and can 
be used to make predictions/estimations of Zn(II) and Pb(II) 
removal efficiency at a given set of factor levels. Based on the 
input data, the software predicted a quadratic model as best 
fit for Zn(II) sorption and linear model as best fit for Pb(II) 
sorption. An analysis of variance (ANOVA) was computed 
and presented in the supplementary data.

From ANOVA in the supplementary data for Zn(II), we 
observe that the model is significant for predicting the removal 
efficiency of Zn(II) by croaker fish scales based on a given 
level of input factors. Dosage and time make significant con-
tributions to the model, but the temperature does not. The final 
equation in terms of actual factors best fitting the experimental 
result is presented in Eq. 1.

where A is the temperature in °C, B is the biosorbent dosage 
in g/L and C is the contact time in min. From the ANOVA 
in the supplementary data for Pb(II), it can be seen that the 
model is significant and suitable for making estimations of 
lead biosorption based on the factor inputs. Time was the 
only significant factor in the model, however. The linear 

(1)

%Zn(II) uptake = 82.92 − 0.3956A

+ 0.39115B + 0.0824C + 5.09 × 10−4AB

− 8.58 × 10−5AC − 1.05 × 10−3BC

− 6.519 × 10−3A2 − 9.351 × 10−3B2

− 2.557 × 10−4C2

Fig. 3   SEM image of croaker fish scale biosorbent
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model obtained from the software in terms of actual factors 
is presented in Eq. 2.

where A is the temperature in °C, B is the biosorbent dosage 
in g/L and C is the contact time in min.

Parametric studies for Zn(II) biosorption

Response surface plots of a combination of the factors were 
also generated to elucidate any combinatorial effects of the 
factors on the amount of Zn(II) removed. The factors consid-
ered were adsorbent dosage, contact time and temperature. 
There are three possible 2-factor combinations of a set of 
three factors, hence three response surface plots. Figure 4a, 
b does not show significant effects of each factor on each 
other. The convolutions of Fig. 4c reveal that a greater shak-
ing time will lead to a higher amount adsorbed, and this 
relationship holds in all domain of dosage. The surface is 
oriented in such a way that increased removal efficiency with 
increasing dosage is also noticeable.

An initial increase in removal efficiency was observed 
with an increase in temperature (Fig. 4a). However, upon the 
exceeding of a maximum of about 30 °C, a drop in biosorp-
tion was noticed. From careful observation of the y-axis, it 
can be opined that the effect of temperature on the process 
is only marginal. This is a key pointer towards a physical 
adsorption process where the effect of temperature is less 
pronounced and higher temperature tends to reduce the 
amount adsorbed. The amount of Zn(II) adsorbed increased 
with increasing dosage. This is expected as a higher dosage 
indicates the presence of a greater number of active sites 
available for adsorption. The trend was observed over the 
entire range of the factor studied. It can also be observed 

(2)
%Pb(II) uptake = 86.889 − 0.3339A + 0.2260B + 0.09815C

that the amount adsorbed increases steadily with contact 
time. Maximum adsorption is observed at about 145 min of 
equilibration. This trend is because at lesser shaking time, 
equilibrium will not have been achieved; hence, the trans-
fer of adsorbate from the solution to the adsorbent surface 
would not have been completed, leading to a lesser removal 
efficiency (Eletta et al. 2020).

Parametric studies for Pb(II) biosorption

Response surface plots of a combination of the factors were 
also generated and are presented in Fig. 5 to elucidate any 
combinatorial effects of the factors on the amount of Pb(II) 
removed. The plots show that there are no significant factor 
interactions in the biosorption process.

Figure 5 reveals that the amount of Pb(II) removed by 
adsorption reduces with an increase in temperature. This 
informs that the adsorption process is likely to be strongly 
exothermic. This assertion was confirmed by the ther-
modynamics study where the enthalpy was shown to be 
− 10.28 kJ/mol. The amount of Pb(II) adsorbed increased 
with increasing dosage. This is expected as a higher dosage 
indicates the presence of a greater number of active sites 
available for adsorption. An optimum of about 7 mg/L was 
observed beyond which there was no longer any signifi-
cant improvement in the removal efficiency. It can also be 
observed that the amount adsorbed increases steadily with 
shaking time. This was observed in the entire domain of the 
factor level studied. This is because at lesser shaking time, 
equilibrium will not have been achieved; hence, the trans-
fer of adsorbate from the solution to the adsorbent surface 
would not have been completed leading to a lower metal 
uptake.

Fig. 4   a–c Response surface plots for Zn(II) biosorption
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Equilibrium isotherm modelling

The results of experiments for equilibrium concentration 
of Zn(II) biosorption were fitted into Langmuir, Freundlich 
and Temkin isotherms. The respective plots for the different 
isotherms were done with Microsoft Excel to determine the 
trend line, and linear regression expression was also shown 
(in the supplementary data). From these, we can obtain 
values for the slope and intercepts which were needed for 
computing the different isotherm parameters. The coefficient 
of determination (R2) informs us to what extent the vari-
ability of the data is captured by the model. The R-squared 
values of the different plots reveal that the Freundlich iso-
therm (R2 = 0.9685) is the best fit for the biosorption of 
Zn(II) onto croaker fish scales. The intercepts and slopes 
were used to compute the other isotherm parameters, and 
the results are presented in Table 3. The value of the con-
stant n is greater than 1. This informs that the process is 
a physical adsorption process. The monolayer adsorption 

capacity of Zn(II) biosorption was 555.6 mg/g. The results 
of equilibrium isotherm experiments for Pb(II) biosorption 
were also fitted into the Langmuir, Freundlich and Temkin 
isotherms. The respective plots for the different isotherms 
were done with Microsoft Excel (shown in the supplemen-
tary data). The trend line and linear regression expression 
were also obtained and were for determining the slope and 
intercepts which were important for computing the different 
isotherm parameters. The R-squared values of the different 
plots reveal that the Freundlich isotherm (R2 = 0.8903) is 
the best fit for the biosorption of Pb(II) onto croaker fish 
scales. The intercepts and slopes were used to compute the 
other isotherm parameters, and the results are presented in 
Table 3. The value of the constant n is greater than 1. This 
informs that the process is a physical adsorption process and 
that the adsorption is generally favourable. The monolayer 
adsorption capacity for Pb(II) biosorption was 909.9 mg/g.

From the postulates of the Freundlich isotherm, the fol-
lowing can be deduced about the adsorption process. The 
uptake of metal ions occurs on a heterogeneous surface by 
multilayer adsorption. The mechanisms of sorption of the 
adsorbate to the adsorbent are not singular, and the energies 
of the forces of attraction can differ from one adsorbed mol-
ecule to the other. This is also expected as surface sorption 
is accompanied by sorption into interstitials on the macro-
molecular structure of the bio-material. Based on the pos-
tulates of the Freundlich isotherm, we can also assume that 
the stronger binding sites are occupied first and the binding 
strength decreases with increasing degree of site occupa-
tion. There are also possible interactions between already 
adsorbed molecules.

Kinetics modelling

The results of biosorption kinetics were computed and fit-
ted into the pseudo-first-order, pseudo-second-order and 

Fig. 5   Response surface plots for Pb(II) biosorption

Table 3   Summary of equilibrium modelling results

Parameters Zn(II) Pb(II)

Langmuir isotherm
Qmax (mg/g) 555.6 909.1
KL (L/g) 0.0115 0.0025
R2 0.8833 0.4001

Freundlich isotherm
KF (mg/g) 24.65 2.532
n 1.93 1.52
R2 0.9685 0.8903

Temkin isotherm
b 3.924 8.415
α 0.4233 0.2636
R2 0.8975 0.7968
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intra-particle diffusion models (shown in the supplemen-
tary data). From the R2 values, it can be surmised that the 
model of best fit is the pseudo-second-order model (R2 = 1). 
This has also been observed in numerous other fish scale 
biosorption studies (Eletta and Ighalo 2019). The slopes and 
intercepts were used to compute the other kinetic param-
eters (presented in Table 4). It can also be surmised that the 
model of best fit for Pb(II) sorption is the pseudo-second-
order model (R2 = 0.9957). The slopes and intercepts were 
used to compute the other kinetic parameters (Table 4). The 
rate of Zn(II) biosorption is 0.0041 g/mg min−1. The value 
of qe calculated from the second-order model is quite close 
to those obtained from experiments. From the postulates 
of the pseudo-second-order model, we can, therefore, state 
that Zn(II) biosorption by croaker scales is dependent on 
the number of metal ions present in the solution as well 
as the free biosorption sites on the biosorbent surface. The 
rate of Pb(II) biosorption is 0.0009 g/mg min−1. The value 
of qe calculated from the second-order model is quite close 
to those obtained from experiments. From the R2 values, we 
can conclude that the sorption of Pb(II) by croaker fish scale 
is also according to second-order kinetics. This has also been 
observed in numerous other fish scale biosorption studies 
(Eletta and Ighalo 2019).

Biosorption thermodynamics studies

The Gibbs free energy change (ΔG) values can discern 
whether a process is spontaneous is not, and the negative 
values of ΔG imply a spontaneous process. The enthalpy 
change (ΔH) provides information about the exothermic 
nature or endothermic nature of the process and differenti-
ate between the physical and chemical adsorption process 
(Ighalo and Adeniyi 2020c). The intercepts and slopes of 
van’t Hoff’s plots (not shown) were used to compute the 

thermodynamic parameters. The results obtained are pre-
sented in Table 5.

We see that the value of Gibbs free energy is negative for 
all temperatures. This informs that the process is spontane-
ous. Once the biosorbent is added to a solution containing 
the pollutants and agitated, adsorption will take place. The 
negative values of the enthalpies indicate that the process 
is exothermic. This is supported by the decrease in metal 
uptake with increased temperature. However, the biosorption 
of Pb(II) is more strongly exothermic than that of Zn(II). The 
negative entropy for Pb(II) indicates less randomness in the 
system, hence more energy requirement for sorption (in the 
form of agitation). The positive entropy for Zn(II) indicates 
more randomness in the system, hence less energy require-
ment for sorption. This is expected as Pb(II) is a heavier ion 
than Zn(II).

Comparison with other biosorbents

Table 6 compares the adsorption capacity obtained in the 
current study for Zn(II) and Pb(II), respectively, to those 
obtained for other bio-materials. It can be seen that the 
croaker fish scale is an excellent biosorbent for the removal 
of these heavy metals from aqueous solutions. Croaker fish 
scale was only better than tea leaves for Zn(II) biosorption, 
and it was the highest of the compared bio-materials for 
Pb(II) biosorption.

Conclusion

The scales of croaker fished were investigated as precur-
sors for the development of low-cost adsorbents capable of 
removing heavy metals from aqueous solutions. Several key 
findings were made by this research work. SEM revealed the 
morphology of the particles to be large pebble-like struc-
ture agglomerated with some grit—grain particles. XRD 
showed that the sample fish scale majorly consists of Brush-
ite with a common name of calcium hydrogen phosphate 
hydrate (CaHPO4·H2O2). The crystallographic parameters 
revealed that it is monoclinic and has a density of 2.32 g/
cm3. The FTIR analysis of the used biosorbent revealed that 

Table 4   Summary of kinetic modelling results

Zn(II) Pb(II)

qe(exp) (mg/g) 159.4 160.8
Pseudo-first order

qe(calc) (mg/g) 10.7 100.5
K1 (min−1) 0.0217 0.032
R2 0.9310 0.6440

Pseudo-second order
qe(calc) (mg/g) 161.3 163.9
K2 (g/mg min) 0.0041 0.0009
R2 1.000 0.9957

Intra-particle diffusion
C 148.64 126.23
Kdif (mg/g min0.5) 0.9695 2.5843
R2 0.8415 0.8203

Table 5   Summary of thermodynamics result

Metal Temp (°C) ΔG (kJ/mol) ΔH (kJ/mol) ΔS (J/molK)

Zn(II) 20 − 3.1106
30 − 3.3707 − 0.0515 10.61
40 − 3.3158

Pb(II) 20 − 2.4193
30 − 2.1229 − 10.28 − 26.86
40 − 1.8833
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aromatic C–C group and C–O stretch of esters and carbox-
ylic acids were involved in the absorption of both Pb(II) and 
Zn(II). The optimal factors for Zn(II) removal by croaker 
fish scale were 145.5 min, 7.01 g/L biosorbent dosage, 
30 °C and pH 5.4. The optimal factors for the removal of 
Pb(II) were 179.3 min, 6.61 g/L biosorbent dosage, 20 °C 
and pH 3.4. The numerical optimisation revealed that the 
optimal removal efficiency for Zn(II) and Pb(II) sorption 
is 96.45% and 98.76%, respectively, at an initial concen-
tration of 1000 mg/L. Regression models of metal uptake 
were developed and validated. A parametric study was 
done to elucidate the effect of temperature, time and dos-
age on the biosorption process using both one-factor and 
two-factor plots. The biosorption of both Zn(II) and Pb(II) 
was the best fit for Freundlich isotherm and pseudo-second-
order kinetic models. The monolayer adsorption capacity 
of the biosorbent for Zn(II) and Pb(II) was 555.6 mg/g and 
909.9 mg/g, respectively. Thermodynamics studies revealed 
that the adsorption process for both metals was exothermic 
and spontaneous. It has been shown that the biosorbent from 
croaker fish scales is an excellent material for the removal of 
heavy metals from aqueous solutions and consequently for 
the treatment of industrial effluents.
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