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Abstract
In recent years, fuzzy logic has emerged as a powerful technique in the analysis of hydrologic components and decision 
making in water resources. Problems related to hydrology often deal with imprecision and vagueness, which can be very well 
handled by fuzzy logic-based models. This paper reviews a variety of applications of fuzzy logic in the domain of hydrol-
ogy and water resources in brief. So far in the literature, fuzzy logic-based hybrid models have been significantly applied in 
hydrologic studies. Furthermore, in this paper, the literature is reviewed on the basis of applications using pure fuzzy logic 
models and applications using hybrid-fuzzy modeling approach. This review suggests that hybrid-fuzzy modeling approach 
works well in many applications of hydrology when compared with pure fuzzy logic modeling.
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Introduction

Fuzzy logic is a well-known soft computing tool which 
develops the workable algorithms by embedding struc-
tured human knowledge. It is a logical system that presents 
a model designed for human interpretation modes that are 
inexact rather than precise. The fuzzy logic system can be 
applied to design intelligent systems on the basis of informa-
tion expressed in human language (Bai et al. 2006). Fuzzy 
logic is one of the forms of artificial intelligence; however, 
its history and uses are newer than artificial intelligence 
based expert systems. Fuzzy logic deals with problems that 
have imprecision, vagueness, approximations, uncertainty 
or qualitative mess or partial truth.

Fuzzy logic was introduced by Professor L. A. Zadeh, 
University of California at Berkeley, in the year 1965 (Zadeh 
1965; Bai et al. 2006) through his paper ‘Fuzzy sets.’ His 
work was not recognized until Dr. E. H. Mamdani, Profes-
sor at London University, practically applied the concept of 

fuzzy logic to control an automatic steam engine in the year 
1974 (Mamdani and Assilion 1974; Bai et al. 2006).

Since the beginning of applications of fuzzy logic in the 
domain of hydrology (Bogardi et al. 1983, 2004) a great sum 
of investigations have been undertaken, and presently, fuzzy 
logic has turned into a useful approach in water resources 
assessment and hydrologic analysis. Hydrology is often vul-
nerable to uncertainties caused due to lack of data, nature 
causes (e.g., climate) and imprecision’s in modeling. Sys-
tem limitations and initial conditions as well bring in uncer-
tainty. In addition, potential pressure on the system cannot 
be clearly identified in many hydrologic studies. Fuzzy logic 
allows us to consider the handling of all such vagueness (or 
ambiguity) in hydrology (Bogardi et al. 2004).

In order to employ a systems approach, it is necessary 
to change the fundamental understanding of physical real-
ity under consideration (Simonovic 2008). New researchers 
have focused on the application of fuzzy logic-based tech-
niques for modeling vagueness within the water resource 
systems. So far in the literature, many research contributions 
have been made for dealing with the vagueness in water 
resources systems which include fuzziness, bias, ambiguity 
and deficiency of ample data (Mujumdar and Ghosh 2008).

‘Fuzzy rule-based modeling’ is an extension of the con-
cept of fuzzy logic. The key difference in fuzzy logic and 
fuzzy rule-based modeling is that the former is used for sys-
tems with feedback and the latter is used for systems with no 
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feedback process (Sugeno and Yasukawa 1993; Wang and 
Mendel 1992; Decampos and Moral 1993; Bogardi et al. 
2004). The idea of application of FL in the modeling of the 
hydrologic systems is comparatively fresh and innovative 
(Bardossy et al. 1995).

Some of the areas of fuzzy logic application in hydrol-
ogy include: fuzzy-based regression (Bardossy et al. 1990; 
Bardossy et al. 1991; Ozelkan and Duckstein 2000; Bogardi 
et al. 2004), hydrologic forecasting (Kojiri 1988; Bogardi 
et al. 2004), hydrologic modeling (Hundecha et al. 2001; 
Bogardi et al. 2004), regional water resources management 
(Bogardi et al. 1982; Nachtnebel et al. 1986; Bardossy et al. 
1989, Bogardi et al. 2004), reservoir operation planning 
(Simonovic 1992; Shrestha et al. 1996; Teegavarapu and 
Simonovic 1999; Bogardi et al. 2004), water resources risk 
assessment (Feng and Luo 2011) and so on.

To increase the accuracy of fuzzy systems, various stud-
ies have been undertaken for years and the major inference 
is that fuzzy hybrid modeling can efficiently increase the 
accuracy of fuzzy system modeling. New advances have 
been taken place in the fields of adaptive fuzzy operators 
(Terzi et al. 2006), genetic fuzzy systems modeling (Guan 
and Aral 2005; Han et al. 2012) and wavelet–fuzzy modeling 
(Partal and Kisi 2007), which will be discussed in further 
sections of this article.

From the early application of fuzzy logic to hydrology 
(Bogardi et al. 1983), a large amount of research has been 
pursued and, at present, fuzzy logic has become a practi-
cal tool in hydrologic analysis and water resources deci-
sion making. In this paper, the main areas of applications in 
hydrology and water resources are highlighted.

General methodology (work‑flow of fuzzy logic 
systems)

In order to apply FL technique to a practical application 
problem, the following steps are to be followed (Bai et al. 
2006):

1. Fuzzification—this step involves the conversion of crisp 
data or classical data into fuzzy set data or the member-
ship functions (MFs)

2. Fuzzy inference process—this process consists of com-
bining MFs along with the fuzzy control rules to obtain 
the fuzzy output

3. Defuzzification—this process is the reverse process of 
fuzzification. It involves the conversion of the fuzzy 
output into crisp output along with associated rules (as 
shown in Fig. 1).

Machines are capable of processing crisp data such as 
the binary system (‘0’ or ‘1’) and can be facilitated to han-
dle uncertain linguistic data such as ‘high’ and ‘low’ if the 

crisp input and output are converted to linguistic variables 
along with the fuzzy components. Moreover, both the crisp 
input and the crisp output have to be converted to fuzzy 
data. All of these conversions are carried out by the first 
step—fuzzification.

The second step is the fuzzy inference process (FIS) 
where membership functions (MFs) are combined with the 
control rules in order to derive the fuzzy control output, and 
the outputs are arranged into a table format called as the 
‘lookup table.’ In FIS, the important is the fuzzy control 
rules. Those rules are as similar as that of human being’s 
inference and intuition to the course of action. Various meth-
ods such as mean of maximum (MOM) or center of gravity 
(COG) are been used to work out the related control output, 
and each one of the control output must be arranged into a 
table format called lookup table.

For a real-life application, a fuzzy control output must be 
chosen from the lookup table developed in the previous step 
based on the present input. Further, that fuzzy control output 
must be transformed from the linguistic variable form to the 
sharp or crisp variable and perform the control operator. The 
process is known as defuzzification or step 3.

Real-life applications are usually associated with input 
variables having more than one dimension. In such cases, 
one needs to develop the membership functions for each 
dimensional variable separately and the similar operation 
needs to be carried out if the system consists of multiple 
output variables.

To summarize, the fuzzy system modeling is a chain of 
crisp-fuzzy-crisp transformation used to derive results for an 
actual working system. The initial input and the final out-
put must necessarily be crisp variables; however, the transi-
tional stage is a fuzzy inference process, where the linguistic 

Fig. 1  Workflow of a fuzzy logic system (Bhattacharjee et al. 2018)
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variables are used to derive the outputs. The motive why 
there is need to transform a sharp or crisp variable to a fuzzy 
variable is that, from the principle of fuzzy system process 
or a human’s inference or intuition, no absolutely crisp vari-
able exists in our factual world.

Applications in the field of surface water 
hydrology

Fuzzy rule-based systems were successfully applied for 
drought evaluation (Pesti et al. 1996), forecasting of rainfall 
patterns (Abebe et al. 2000), investigation of uncertainty in 
modeling groundwater flow (Abebe et al. 2000), water levels 
control in polder areas (Lobbrecht and Solomatine 1999), 
modeling the dynamics of rainfall streamflow (Vernieuwe 
et al. 2005) and so on. Some selective applications are listed 
as follows:

Applications in evaporation and evapotranspiration

Fuzzy models were developed in literature for daily pan 
evaporation assessment from observed meteorological 
records. Penman equation, which is most widely used, is 
used to compare with the fuzzy model results. Theory of 
FL was successfully applied for estimating monthly pan 
evaporation with meteorological data as input (Atiaa and 
Abdul-qadir 2012). This study concluded that the approach 
of FL is adequate and intelligent for evaporation modeling. 
Fuzzy models were also developed for estimating of daily 
pan evaporation, and outcomes were compared with Pen-
man method (Keskin et al. 2004). The fuzzy model proved 
a better agreement with observed data than the Penman 
method. Similarly, evapotranspiration (ET) was estimated 
and predicted using fuzzy inference system (FIS) by Patel 
and Balve (2016), and the results were compared with the 
FAO-56 Penman–Monteith method. FIS showed a high effi-
ciency in predicting and estimating ET values.

Rainfall–runoff (R–R) modeling

Huge cost and labor use experienced in past for developing 
a water resource project request a lot of consideration in 
contriving exact R–R models for its fruitful execution. These 
models are reliant on the physiographic, climatic and biotic 
qualities of the watershed. These elements now and again 
actuate either a direct, nonlinear or profoundly complex 
behavior among the precipitation and runoff parameters. The 
unstructured idea of R–R relations has occupied the con-
sideration of specialists toward soft computing techniques 
(Chandwani et al. 2015).

Hundecha et al. (2001) developed a fuzzy rule-based 
routine in order to simulate the generation of runoff using 

precipitation data. A fuzzy conceptual framework for rain-
fall–runoff modeling was proposed to deal with uncertainties 
of every element of R–R modeling (Özelkan and Duckstein 
2001). The study showed that FL framework facilitates the 
decision maker to realize model sensitivity and uncertainty 
resulting from elements of R–R modeling. Further, a fuzzy 
rule-based system (FRBS) was developed using Takagi–Sug-
eno–Kang approach to forecast the definite discharge at the 
outlet of the catchment in which soil moisture was used as 
the input variable (Casper et al. 2007).

Floods and droughts

Flood disasters are among the world’s most recurrent and 
destructive kinds of catastrophes (World Disaster Report 
1998; Jiang et al. 2009). Flood risk, disasters and hazards 
are the products of an interface between social and environ-
mental processes (Parker 2000; Jiang et al. 2009). Several 
researchers used the fuzzy numerical technique to investi-
gate flood forecasting and risk evaluation (Jiang et al. 2008; 
Mao and Wang 2002; Nayak et al. 2005; Jiang et al. 2009).

Flood disaster risk was assessed by Jiang et al. (2009) 
using three fuzzy-based methods such as fuzzy similarity 
method (FSM), simple fuzzy classification (SFC) and fuzzy 
comprehensive assessment (FCA). It was found that the FCA 
method is more reliable for the study area than the other two 
techniques. An attempt was made to enhance the real-time 
flood forecasting using a modified Takagi–Sugeno (T–S) 
FIS (Lohani et al. 2014). The model forecast was reason-
ably accurate with sufficient lead time. A flood forecasting 
model based on Mamdani FIS was developed by Perera and 
Lahat (2015) in order to assess the potential of fuzzy logic in 
real-time flood forecasting. A fuzzy logic-based method and 
geographical information system (GIS) were combined to 
analyze mass evacuation decision support system (Jia et al. 
2016). It was helpful in illustrating the importance of evacu-
ation maps in crisis management.

Fuzzy models were also used as updating technique in 
order to improve flood forecasting models (Yu and Chen 
2005). A study on estimating the potential impacts of cli-
mate change on droughts was carried out by Pesti et al. 
(1996). In this study, fuzzy rules were applied to forecast 
droughts with the help of atmospheric circulation patterns.

Reservoir operation (RO)

Fuzzy rule-based models were successfully developed by 
the researchers in order to derive rules for operating a mul-
tipurpose reservoir (Shrestha et al. 1996) and single purpose 
reservoir (Panigrahi and Mujumdar 2000). Further, the com-
plexity of fuzzy modeling for RO was reduced by reducing 
the fuzzy rules (Sivapragasam et al. 2008) and the results 
were highly encouraging the purpose of the study.
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Dubrovin et al. (2002) applied the fuzzy model for real-
time reservoir operation. A new methodology for fuzzy 
inference was developed, called as total fuzzy similarity. The 
study illustrated the strong mathematical background of the 
FIS makes the fuzzy reasoning to have a solid foundation.

Deriving stage–discharge (S–D) relationship 
and prediction of sediment concentrations

A fuzzy rule-based model was developed for deriving S–D-
sediment concentration relationship, and the result was com-
pared with conventional sediment rating curves and neural 
networks (Lohani et al. 2007). The fuzzy model showed bet-
ter results and potentiality for its application in prediction 
of sediment concentration. Streamflow prediction was done 
using two FISs (Ozger 2009), and the results showed that 
Mamdani type of fuzzy inference modeling performs better 
than that of Takagi–Sugeno fuzzy inference systems for river 
discharge prediction.

Fuzzy models were developed as a superior alternative 
to traditional sediment rating curves for determining the 
suspended sediment concentration on a daily basis for a 
given river section (Kisi 2004). The study showed that fuzzy 
models prove their superiority in comparison with the rating 
curve models for the same input data. Further, Kisi et al. 
(2006) used the FL approach to carry out river suspended 
sediment modeling. They concluded that the proposed fuzzy 
model was site-specific and failed to simulate the effects of 
hysteresis.

Water quality modeling and water treatment

A fuzzy optimization model was developed for river water 
quality management on a seasonal basis (Mujumdar and 
Sasikumar 2002). The model successfully gave solutions 
for removal of pollutants on seasonal fraction basis. Icaga 
(2007) developed an index model for surface water quality 
classification based on the fuzzy logic concept. The study 
demonstrated the feasibility and practical application of the 
index. A two-stage fuzzy set theory was applied to river 
quality evaluation (Liou et al. 2003; Ip et al. 2009). A FIS 
was used to assess the river water quality, and the results 
were compared with a widely used method like water qual-
ity index (WQI) (Abdullah et al. 2008). The results clearly 
indicated that FIS can be successfully used to harmonize the 
discrepancies and the internal complexities of river water 
quality assessment.

Surface water quality was assessed by developing an 
indicator based on fuzzy logic. The results were compared 
with conventional WQI, in which fuzzy indicator provided 
better results (Oroji et al. 2017). Chang et al. (2001) studied 
the identification of river water quality by using three fuzzy 

synthetic evaluation techniques, and the outputs were com-
pared with a conventional procedure like WQI.

Superior capabilities of the fuzzy logic concept in han-
dling the nonlinearity, complexity and uncertainty of sys-
tems were illustrated by Bai et al. (2009) in their study of 
WQI based on fuzzy logic. A new WQI based on fuzzy 
(FWQI) was developed, and the outcomes were compared 
with two other indices (González et al. 2011). FWQI proved 
to be a potential index for a decision maker in water manage-
ment. Fuzzy-based models were successfully developed for 
forecasting WQI in the municipal water distribution system 
(Patki et al. 2013), and the results of the fuzzy model were 
compared with adaptive neuro-fuzzy (ANFIS) models. The 
study revealed that fuzzy models outperformed as that of 
ANFIS models. Sedeño-Díaz and López-López (2016) stud-
ied reservoir water quality using a fuzzy logic model.

Surendra and Deka (2014) used Mamdani FIS for predict-
ing water consumption using different climatic variables. 
Performance indicators showed the capability of fuzzy 
logic in predicting the water consumption in a municipal 
water distribution system. A novel approach based on fuzzy 
logic was developed for water quality assessment, especially 
for human drinking purposes (Gharibi et al. 2012). Fuzzy 
controller systems were designed and implemented by the 
researchers in regulating an aeration system in a water treat-
ment plant (Fiter et al. 2005). The results illustrated that 
more than 10% energy savings can be achieved using fuzzy 
aeration control while still keeping the removal levels good. 
A fuzzy multi-criteria decision-making method was devel-
oped to select the optimal strategy for the rural water supply, 
and the results were quite promising (Minatour et al. 2015).

Downscaling of climate variables

The art of applying fuzzy rule-based techniques for down-
scaling of climate variables can be seen since two decades. 
Bardossy et al. (1995) applied the fuzzy-based method to 
classify the daily atmospheric circulation patterns (CPs). 
They stated that the fuzzy rule-based approach has high 
potential applications in the classification of general cir-
culation models (GCMs). Clustering and classification of 
large-scale atmospheric CPs using multi-objective fuzzy 
technique were done by Özelkan et al. (1998). An automated 
objective classification of CPs for precipitation and tempera-
ture downscaling on daily basis was carried out based on 
optimized fuzzy rules (Bárdossy et al. 2002). The method 
produced physically realistic CPs. Fuzzy-based classification 
for downscaling was compared with two methods, analog 
method and statistical downscaling model (Teutschbein et al. 
2011). The study demonstrated that the suitability of downs-
caling technique was highly variable with river basin under 
consideration.
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Applications in the field of groundwater 
hydrology

Some of the important fields of fuzzy logic applications in 
the field of groundwater hydrology are as listed in Table 1.

Applications of hybrid‑fuzzy models

Some of the selective applications of fuzzy hybrid models 
in water resources are listed in Table 2.

Results and discussions on the literature 
reviewed so far

As mentioned before, fuzzy logic can very well handle 
the uncertainty or vagueness associated with hydrologic 
problems. Hence in many of the literature, fuzzy-based 
models have shown better performance in comparison 
with the conventional methods. In modeling evaporation, 
fuzzy modeling proved a better agreement with observed 
data when compared with the widely used Penman method 
(Atiaa and Abdul-qadir 2012; Keskin et al. 2004; Patel and 
Balve 2016).

Özelkan and Duckstein (2001) showed that FL framework 
facilitates the decision maker to realize model sensitivity 
and uncertainty resulting from elements of R–R modeling. 
In flood modeling, fuzzy models were well verified for the 
performance and different fuzzy models like fuzzy compre-
hensive assessment, simple fuzzy classification and fuzzy 
similarity method were compared with each other (Jiang 
et al. 2009).

Streamflow prediction was carried out using two fuzzy 
inference systems, namely Mamdani type and Takagi–Sug-
eno type inference systems, where the former showed bet-
ter performance (Ozger 2009). Fuzzy models were proved 
to be outperforming in both stream water quality modeling 
(Chang et al. 2001) and municipal water distribution (Patki 
et al. 2013).

Fuzzy models were developed in different fields of 
groundwater hydrology like infiltration modeling, regional 
groundwater management, groundwater remediation, aquifer 
studies and groundwater pollution assessment, where fuzzy 
models have shown better performance.

Among the various hybrid-fuzzy models developed so far, 
fuzzy neural comes out to be the most widely used model 
in various hydrologic studies. ANFIS showed its better per-
forming capabilities in fields like evaporation (Terzi et al. 
2006); fuzzy neural network model produced good results 
in deriving stage–discharge relationship when compared to 

conventional curve fitting method (Deka and Chandramouli 
2003).

Different combinations of hybrid-fuzzy modeling, like 
wavelet-fuzzy, wavelet-ANFIS, fuzzy-SVM, fuzzy-genetic 
algorithms and so on, were well experimented (as shown 
in Table 2), and the results show the potentiality of fuzzy 
systems in modeling the hydrologic components (Figs. 2, 3). 

Merits and demerits of fuzzy logic

Merits of fuzzy logic

Fuzzy logic explains schemes in expressions of a mixture 
of numerics and linguistics (symbolic). It has compensa-
tion over pure numerical (mathematical) methods or pure 
symbolic methods because frequently system information 
is accessible in such a mixture.

Problems for which a specific mathematically fixed 
account is missing or is only obtainable for very limited 
conditions can repeatedly be undertaken by fuzzy logic, 
given a fuzzy model is in attendance. Fuzzy logic at times 
uses only estimated data, so easy sensors can be employed. 
The algorithms can be explained by minute data, so minute 
memory is necessary.

The algorithms are frequently quite comprehensible. 
Fuzzy algorithms are frequently vigorous, in the logic that 
they are not very responsive to altering environments and 
mistaken or away from rules. The logic process is habitually 
simple, assessed to computationally exact systems, so com-
puting influence is reserved. This is a fascinating feature, 
mainly in real-time systems. Fuzzy methods frequently have 
a shorter growth time than conventional methods.

Demerits of fuzzy logic

Fuzzy logic sums up to the function estimation in the case 
of crisp-input/crisp-output systems. The meaning is that in 
numerous cases, using fuzzy logic is just a dissimilar way 
of performing exclamation. In domains that have excellent 
mathematical imagery and solutions, the use of fuzzy logic 
most frequently may be rational when calculating power 
(i.e., time and memory) limits are too rigorous for an abso-
lute mathematical realization.

Cautious examination of contrast examples, ‘proving’ the 
advantage of fuzzy logic frequently shows that they are in 
contrast the fuzzy technique with a very straightforward, 
non-optimized traditional method. Proof of individuality 
of fuzzy systems is not easy or unworkable in many cases 
because of the absence of mathematical explanations; par-
ticularly in the areas of stability of control systems which is 
a vital research point.
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Table 1  Some of the literature showing applications of fuzzy logic in the field of groundwater hydrology

Sl. no. References Applications Data used/models developed/results obtained

1 Bardossy and Disse (1993) Infiltration modeling Two fuzzy-based models were developed based 
on different training sets and rules. Results 
were in good agreement with observed infil-
tration values

2 Quiroz Londoño et al. (2016) Infiltration modeling Designed a fuzzy logic-based approach for 
assessing potential infiltration areas in water-
sheds with a low gradient and mapping of the 
same. Remote sensing data were used for the 
purpose

3 Bogardi et al. (1983) Regional aquifer management Fuzzy set analysis for combining N environ-
mental objectives into one single fuzzy mem-
bership function. Application of the model to 
the nonlinear case is also included in the study

4 Guan and Aral (2004) Groundwater remediation Two fuzzy optimization models were devel-
oped for the optimal design of groundwater 
remediation systems. Results were compared 
with the results of the probabilistic analysis. 
Both models provided reliable and flexible 
strategies and increase the effectiveness of 
the groundwater remediation system under 
uncertainty

5 Di Martino et al. (2005) Vulnerability of aquifer Developed a fuzzy-based tool called fuzzy 
spatial reliability analysis (FUZZY-SRA) for 
analysis and modelization of vulnerability 
of aquifer. FUZZY-SRA functioned as a tool 
inside GIS software

6 Muhammetoglu and Yardimci (2006) Assessment of groundwater pollution FL was used to calculate the water pollution 
index and the values indicated high to moder-
ate levels of groundwater pollution

7 Venkat Kumar et al. (2009) Groundwater quality assessment The fuzzy set theory was applied for decision 
making in groundwater quality assessment for 
drinking purposes. Results showed the high 
capability of FL to assess groundwater quality

8 Caniani et al. (2011) Groundwater pollution risk assessment Fuzzy-based model was developed for assess-
ment of groundwater vulnerability and risk of 
aquifer contamination. The model involved 
sensitivity analysis to deal with the uncer-
tainty associated with input data and the 
model itself

9 Gorai et al. (2016) Groundwater quality index The suitability of groundwater for drink-
ing purpose was checked by estimating the 
water quality index using fuzzy aggrega-
tion approach. The outputs were compared 
with widely used weighted arithmetic mean 
aggregation

10 Gholami et al. (2016) Groundwater quality mapping A coactive neuro-fuzzy inference system 
(CANFIS) method was applied to simulate 
groundwater quality and the results were 
mapped using GIS software. The results 
showed high efficiency of CANFIS and GIS 
models together

11 Ghazavi et al. (2018) Recharge wells site selection in urban area Hydraulic conditions such as hydraulic conduc-
tivity, specific recharge, distance to production 
water wells and depth of groundwater table 
were considered as input layers to Mamdani 
fuzzy inference system. Site selection was 
done based on ‘High’ priorities of number of 
pixels for the above-mentioned input layers
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Conclusion

Fuzzy-based modeling approach is increasingly been applied 
in most of the fields of hydrology and water resources as 
it can take the uncertainties into consideration. It can also 
be applied effectively in cases like missing data in long-
term time series, unavailability of data, prediction of time 
series, etc. Due to its capacity to consider the uncertainty 
and vagueness, it works efficiently in real-time forecasting 
applications. Literature shows a wide range of applicabil-
ity of fuzzy logic in surface water hydrology, groundwa-
ter hydrology, irrigation technology, etc. Literature studies 
also show that fuzzy models are often combined with other 
models and the hybrid-fuzzy modeling is found to be more 
efficient than pure fuzzy modeling in many of the applica-
tions. In comparison with models like ANN, SVM, fuzzy 

models show moderate accuracy but prove a better perfor-
mance when combined with other models.

Scope for future work

• Investigation of a best suitable hybrid-fuzzy model for 
application in hydrologic studies.

• Among the hybrid-fuzzy models, ANFIS is most widely 
used and accepted technique so far. It can be used for 
assessing the performance of hybrid-fuzzy models for 
the same study.

• Fuzzy logic has proven its performance in prediction 
studies. Hence, its predictive power can be used effec-
tively in hydrologic time series forecasting.

Table 1  (continued)

Sl. no. References Applications Data used/models developed/results obtained

12 Nadiri et al. (2019) Modeling groundwater level variations Three fuzzy logic models, namely Sugeno, 
Mamdani and Larsen models, were used to 
model time series of groundwater levels. The 
models were developed based on management 
scenario. This study revealed that water table 
variations are more effected by aquifer water 
use than climatic variation

13 Theodoridou et al. (2017) Groundwater level analysis Groundwater levels were analyzed using spatial 
analysis tools like geostatistical tools. Fuzzy 
logic was applied to improve the performance 
of ordinary kriging method. This study 
showed that fuzzy logic approach leads to 
Gaussian variogram model which increased 
the performance significantly

14 Laxmi Mohanta et al. (2019) Human health risk assessment of fluoride-rich 
groundwater

This study compared the conventional hazard 
index (HI) with fuzzy hazard index (FHI) to 
assess the effect of fluoride on human health. 
They found that fuzzy method was superior 
than the conventional method

15 Aouragh et al. (2016) Identifying potential zones of groundwater 
recharge

Fuzzy logic was integrated with a GIS environ-
ment to identify the potential zones of ground-
water recharge. Fuzzy membership values 
were assigned to different thematic layers

16 Varouchakis et al. (2019) Modeling of groundwater level Aquifer level fluctuations were studied by using 
two types of variogram functions and com-
pared with space–time ordinary kriging. Both 
the functions performed better than ordinary 
kriging

17 Das and Pal (2020) Assessment of over-exploitation of ground-
water

Groundwater exploitation was assessed using 
different methods, namely multi-criteria deci-
sion analysis (MCDA), analytical hierarchy 
process (AHP), fuzzy logic and ensemble 
method in a GIS environment. All the meth-
ods performed well

18 Borna and Hassan (2020) Impact of drought on quantity of groundwater This study used fuzzy logic and ArcGIS to 
assess the impact of drought on quantity of 
groundwater, They found that groundwater 
levels depend on rainfall and other water 
inputs like irrigation networks
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• The performance evaluation of pure fuzzy mode-
ling and hybrid-fuzzy modeling can be an important 
research in many hydrologic applications.

• Fuzzy logic-based models can efficiently deal with 
problems where data are scanty or limited.
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