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Abstract
In this paper, a new approach is proposed based on the Fuzzy-nearest neighbor model to deal with drought monitoring. 
According to the Standardized Precipitation Index and via Fuzzy-kNN approach, a method has been presented to predict the 
most likely drought conditions. In order to appraise the precision of results, the model was applied to monitor the drought 
status in city of Kerman, located in south east of Iran. The results showed that the area has faced drought and also rainfall 
shortages in recent years. The calculated values of correlation coefficient, RMSE, CRM and MAE coefficients showed the 
accuracy and efficiency of the proposed approach.
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Introduction

Drought is a natural and repetitive phenomenon which 
occurs due to reduction in rainfall over a certain period. That 
whether or not this phenomenon can be short and less severe 
depends on its extremity, continuance, and the distance of 
impacted area. It may start slowly but emerge in a relatively 
long interval in different sections including agriculture, 
water resources, economy, environment, etc. (Mishra and 
Singh 2010). Drought can occur in any climatic conditions 
throughout the world. The designing and management of 
water resources and different agricultural sections are highly 
related to how manage drought and adopt proper guidelines 
to face such phenomena (Fadaei-Kermani et al. 2017).

Drought prediction and monitoring can play a very 
important role in the system management of water resources 
and remarkably decrease the damage. In general, the inten-
sity of drought is predicted and monitored via drought indi-
ces. The drought indices aim to expound the phenomenon 
quantitatively and also include the combination of differ-
ent effective features on drought in quantitative and simple 
relations. There are usually various indices to monitor this 

phenomenon including: Palmer-Drought Severity Index 
(PDSI) (Palmer 1968), Deciles Index (DI) (Gibbs and Maher 
1976), Standardized Precipitation Index (SPI) (McKee et al. 
1993), Reclamation-Drought Index (RDI) (Weghorst 1996), 
US Drought Monitor (USDM) (Svoboda et al. 2002) and, 
etc.

In recent years, drought and its dependent crises and 
threats have become one of the most important global chal-
lenges. A large number of research has been conducted 
regarding the drought monitoring and control techniques 
(e.g., Luo and Wood 2007; Paulo and Pereira 2008; Rhee 
et al. 2010; Pan et al. 2013; Fadaei-Kermani et al. 2014; 
Hao and AghaKouchak 2014; Wood et al. 2015; Hao et al. 
2016; Park et al. 2017; Yu et al. 2018; Abbasi et al. 2019). 
These studies used drought indices, machine learning, and 
data mining algorithms to monitor and predict the severity 
of the effects caused by drought.

By average annual rainfall of 240–250 mm as one third of 
average global figure, Iran is considered among the regions 
in which these are insufficient proper precipitation. Since 
most parts of this country are covered with dried areas, water 
has played a vital role in its economic development. In the 
present study, via the fuzzy k-nearest neighbor model, a 
method has been proposed to predict the most likely drought 
status of Kerman, south eastern of Iran. The nonparametric 
techniques (e.g., fuzzy-k-nearest neighbor algorithm) can 
be applied as convenient approaches for estimating drought 
conditions. These algorithms can be useful in problems that 
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the relationships between instances are not already obvious 
and fully determined.

Standard Precipitation Index (SPI)

McKee et al. (1993) proposed the SPI (Standardized Pre-
cipitation Index) for drought monitoring respect to multi-
ple time scales. SPI is widely used for characterizing and 
detecting meteorological drought which can be compared 
across regions with significantly different climate. It is 
determined using long-term precipitation records, and then 
a Z-standard normal distribution is fitted according to fol-
lowing equations:

where P(x) refers to the cumulative probability function. 
According to precipitation data, time series can be obtained. 
After the data were sorted in increasing order, the empiri-
cal probability distribution is calculated as follows (Fadaei-
Kermani et al. 2017):

where a equals the row number of sorted precipitation data, 
and b represents the precipitation data total number. The 
standard normal cumulative distribution curves can be used 
to calculate the Standard Precipitation Index (SPI) for each 
corresponding time scales.

Table 1 represents the drought intensities classification 
according to the range of SPI values. Anytime the SPI value 
is continuously negative, drought is likely to occur. On the 
other hand the event ends when the SPI value becomes posi-
tive (Moreira et al. 2006).
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Fuzzy‑nearest neighbor algorithm

As one of the most popular nonparametric and lazy instance 
based machine learning algorithms, the k-nearest neighbor 
algorithm is extensively applied in data mining and pattern 
recognition (Fadaei-Kermani et al. 2015). In recent years, 
several approaches to nearest neighbor modeling have been 
suggested based on fuzzy mathematics to improve the qual-
ity of the classification. Keller et al. (1985) proposed a fuzzy 
version of the basic k-NN algorithm by incorporating the 
theory fuzzy sets into the standard k-NN. It was named 
Fuzzy-nearest neighbor algorithm (Fuzzy-kNN). The both 
k-nearest neighbor and Fuzzy-nearest neighbor algorithms 
involve measuring the similarity of a new instance (unknown 
instance) to the instances with a specific label in the train-
ing set. Then, by determining a set of k nearest neighbors, 
and casting a vote on the class of query instances, the most 
likely class can be dedicated to the unknown instance by 
incorporating all the votes (Derrac et al. 2016 and Ezghari 
et al. 2017).

Owing to the Fuzzy-nearest neighbor algorithm, rather 
than individual classes as in the k- nearest neighbor mod-
eling, a Fuzzy Membership Function (FMF) of samples can 
be specified to all various categories (Kermani et al. 2018). 
Let X =

(

x
1
, x
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)

 be a training set consists of n labeled 
samples which are introduced by C classes. In case of a 
new unknown instance Y, the class confidence values can be 
determined as the aggregation of k nearest neighbors’ class 
attributes according to Eq. 4 (Keller et al. 1985).

where i = 1, 2,… ,C , and j = 1, 2,… , k . The fuzzy strength 
parameter m is utilized to intensify the distances between 
the unknown instances and the related elements of training 
data set. The value of m can be chosen as m ∈ (1,+∞) that 
is often m = 2. y − xj expresses the distance between y and its 
jth nearest neighbor from the training set data xj. �ij refers to 
the membership rating of the instance xj among the training 
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Table 1   Classification of drought intensity due to SPI values

Class Range of SPI values Status of drought

I + 2 and more Extremely wet
II 1.5 to 1.99 Very wet
III 1 to 1.49 Moderately wet
IV 0.99 to − 0.99 Near normal
V − 1.49 to − 1 Moderately dry
VI − 1.99 to − 1.5 Very dry
VII − 2 and less Extremely dry
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set to the class i, among the k nearest neighbors of x that is 
satisfied the following relations (Derrac et al. 2016):

where 1 ≤ i ≤ C and 1 ≤ j ≤ k.
In the general Fuzzy-kNN model, various techniques can 

be applied to define �ij . In the case of crisp labeling, every 
instance has membership of one in its known class and zero-
membership in other classes. In case of a constrained fuzzy 
membership, the k nearest neighbors of every training set 
data (xk) is determined, and then the membership of xk in 
every class can be calculated using the following member-
ship function (Keller et al. 1985):

where nj represents the neighbors number found which fit in 
the jth class. The fuzzy procedure causes no arbitrary assign-
ments can be made by the algorithm. Moreover, a level of 
assurance should be provided by the membership values of 
the vector to attend the outcome classification.

Model processing and application

In the present study, the hydrological and precipitation data 
of Kerman city during 1980–2018 has been investigated. 
The area is located in southeast of Iran between 53° and 
26 min to 59° and 29 min of eastern length and 25° and 
55 min to 32° northern latitudes (Fig. 1). Drought has been 
always a prevalent phenomenon in Kerman province. The 
area has never been detached from the destructive conse-
quences of this phenomenon.

According to the precipitation data of Kerman city, the 
moving time series and, respectively, the standard normal 
distribution functions were determined based on different 
time scales. By calculating the standard normal cumulative 
distribution, the SPI value can be obtained for every cor-
responding time scales. Figure 2 presents the precipitation 
cumulative and standard normal probability distribution 
functions of the Kerman precipitation data for 3-, 6-, 12-, 
24- and 48-month time scales. These graphs can be used to 
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determine the SPI value and corresponding drought status 
according to the precipitation data for every time scales.

Then, according to the standard normal probability and 
the precipitation cumulative probability distribution func-
tions, the SPI values for various time scales have been cal-
culated. For example, Fig. 3 shows the calculated values 
of 3-, 6-, 12- and 24-month SPI for the study area during 
different years.

Then the calculated values of SPI during the desired 
period can be applied in the Fuzzy-nearest neighbor model. 
Before working with the model, the data should be normal-
ized using the relation 7.

where the normalized variable value (Y′) can be obtained 
according to standard deviation (σ (y)) and mean ( y ) of the 
observed variable values in the reference dataset.

Finally, the accuracy and efficiency of the model can be 
evaluated via root-mean-square error (RMSE), mean abso-
lute error (MAE), coefficient of correlation (r) and coef-
ficient of residual mass (CMR). These coefficients can be 
obtained using following equations (Dashtaki et al. 2009):
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Fig. 1   The location of Kerman province in Iran map
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Fig. 2   The precipitation cumulative and standard normal probability distribution functions
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where yi and xi express the values of predicted and measured 
attributes, and n refers to the number of attributes.
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Results and discussion

At the beginning of the calculations, the number of near-
est neighbors of the attributes for the Fuzzy-kNN model 
should be determined. The best value of K (number of near-
est neighbor) can be determined by n-fold cross-validation 
method. First, the data set is divided into n equal-sized parts 
(Fig. 4). For each part, the model is trained to the other 
data set parts, and the prediction error of the fitted model 
is calculated when the desired part of the data is predicted. 
The procedure is done for every value of k (k = 1, 2, …, 
K) to obtain the best value of k with minimum prediction 
error rate (Huang et al. 2017). In Fig. 5 the precision of 
the fourfold cross-validation method according to the sum 
of squares error (SSE) coefficient has been shown. Due to 

Fig. 2   (continued)
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Fig. 5, the values of k = 15, 17 and 18 have the same lowest 
error rate. The K value of 18 has been selected for the Fuzzy-
kNN model since according to Travis and Mays (2010) the 
larger k values can often minimize risk of overfitting.

After determining the best value of K, the value can be 
introduced to the Fuzzy-kNN model for further computa-
tions. Then according to calculated SPI values, the most 
likely drought situation for the city of Kerman was deter-
mined during different years. Table 2 and Fig. 6 present the 
region drought classification determined and predicted by 
the Fuzzy-kNN model.

According to the results, Kerman has recently been exposed 
to drought and also rainfall shortages in normal and even 
much lower than normal levels. This is clearly evident in the 
drought classes which are assigned to the region (classes 4 
and above). Since the average annual precipitation in Kerman 
is about 122 mm compared to the average annual rainfall of 
Iran (about 250 mm), which is very low on the global scale, it 

Fig. 3   The 3-, 6-, 12- and 
24-month SPI values for differ-
ent years
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Fig. 4   The n-fold cross-valida-
tion method scheme

Fig. 5   The error rate for Fuzzy-kNN model according to fourfold- 
cross-validation
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indicates the damage and the intensity of the phenomenon in 
this region. The accuracy and precision of the present model 
results have been evaluated by coefficient of correlation (r), 
root-mean-square error (RMSE), coefficient of residual mass 
(CRM) and mean absolute error (MAE). The calculated val-
ues are presented in Table 3. Appropriate values of the coef-
ficients indicate the acceptable precision and low error rate of 
the Fuzzy-kNN model for drought monitoring and prediction.

Conclusion

Drought is a climatic phenomenon, occurring in any cli-
matic conditions which can affect different aspects of 
water resources management and planning. The present 

study deals with the investigation of drought intensity and 
status in city of Kerman located in Iran. In this paper, a 
new approach was proposed to monitor and predict the 
most likely drought status for the study area via the Fuzzy-
kNN model. At first according to the precipitation data, 
the values of SPI for different time scales were deter-
mined. Then the Fuzzy-kNN modeling was employed to 
predict the most likely drought status. The results showed 
that this city has faced drought and also rainfall short-
ages in the recent years which are consistent with real 
observations. Finally, the values of coefficient of correla-
tion (r = 0.924), root-mean-square error (RMSE = 0.108), 
coefficient of residual mass (CRM = 0.0012) and mean 
absolute error (MAE = 0.101) were calculated according 
to the results of Fuzzy-kNN modeling. The results indi-
cated that the present model is efficient and accurate.

Table 2   Drought classification 
assigned by the Fuzzy-kNN 
model for the city of Kerman

Assigned membership 
to drought classes

Year

Class-I Class-II Class-III Class-IV Class-V Class-VI Class-VII

2010 0.0000 0.0000 0.0000 0.0000 0.0000 0.1783 0.8217
2011 0.0000 0.0000 0.0986 0.9014 0.0000 0.0000 0.0000
2012 0.0000 0.0000 0.2870 0.7130 0.0000 0.0000 0.0000
2013 0.0000 0.0000 0.0534 0.8534 0.0932 0.0000 0.0000
2014 0.0000 0.0000 0.0000 0.9812 0.0188 0.0000 0.0000
2015 0.0000 0.0000 0.0725 0.9275 0.0000 0.0000 0.0000
2016 0.0000 0.0000 0.0000 0.0000 0.1275 0.7860 0.0865
2017 0.0000 0.0000 0.0000 0.3927 0.3955 0.2118 0.0000
2018 0.0000 0.0000 0.0000 0.5307 0.3554 0.1139 0.0000

Fig. 6   Assigned membership to 
each drought class according to 
the Fuzzy-kNN model
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