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Abstract
The impact of environmental variables and processes of nutrient enrichment on phytoplankton community at Epe lagoon was 
studied for 18 months (November 2012–April 2014). Two cyanobacterial bloom incidences were observed in the two dry 
seasons during this period. Rainfall pattern regulated nitrogen limitation which triggered cyanobacterial bloom development 
and influenced the bloom duration. Nutrient-laden influx from agricultural practices accounted for the increase in nitrate, 
phosphate and the relatively low silicate. Hypoxic conditions during the two bloom episodes reflected the vulnerability of 
this lagoon ecosystem. The cyanobacterial blooms were dominated by potentially toxic species; Anabaena circinalis, A. 
flos-aquae, A. limnetica and A. spiroides. A comparison of ambient nutrient ratios with the Redfield ratio (N/P/Si = 16:1:16) 
showed clear temporal variations that coincided with phytoplankton dynamics and the bloom regime. Low N/P ratios were 
recorded during the first 8 months, and there was a shift to higher ratios during the subsequent 8 months, followed by low 
N/P ratios in the last 2 months. Higher silicate values coincided with decreased cyanobacterial biomass, cyanobacteria bloom 
collapse and proliferation of diatoms during the first annual cycle. Cyanobacterial abundance exceeded the alert level 1 and 
almost reached alert level 2 which call for continuous environmental monitoring and management of coastal waters.
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Introduction

Phytoplankton form the base of aquatic food webs (Sommer 
1989; Arrigo 2005) and are important biological component 
of marine ecosystems and biogeochemical cycles (Malone 
1977; Litchman 2007; Litchman et al. 2015). Their exces-
sive growth can cause significant threat to biodiversity and 
ecosystem functioning as in the case of toxic algal blooms 
(HABs) (Paerl and Huisman 2008). HABs occur naturally 
because of increased water temperature and inorganic nutri-
ents (phosphate, ammonium and nitrate) (Carmichael 1997; 
Hitzfeld et al. 2000; Wetzel 2001). Global reports on algal 
blooms have increased because of human activities resulting 

from elevated nutrient loadings (Paerl and Whitall 1999; Van 
Dolah 2000; Anderson et al. 2002) and water flow modifica-
tions (Ferreira et al. 2005; Edwards et al. 2006). HABs result 
in food web alterations (Jackson 2001) and dominance of 
introduced species (Hallegraeff and Bolch 1992; Vander-
ploeg et al. 2001).

Toxic cyanobacterial blooms can potentially serve as 
signs or ecological indicators of changes in aquatic ecosys-
tem integrity (Jeppesen et al. 1997; Sanchis et al. 2002; Wil-
lame et al. 2005; Carmichael 2008; Peretyatko et al. 2010). It 
is important to identify and understand what triggers bloom 
events to enable prediction, surveillance and management 
strategies for bloom occurrences. The relationships among 
hydrologic discharge (flushing and residence time), verti-
cal/horizontal salinity and thermal gradients, rainfall and 
drought, wind and tidal mixing determine the frequency, 
severity, spatial and temporal extent of bloom events in 
coastal ecosystems (Paerl 2006).

Oxygen depletion in aquatic ecosystem can result from 
algal blooms. Harmful algal blooms reduce the aesthetic 
value of coastal and aquatic environment which causes 
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economic loss from ecotourism, fisheries resources and 
human health threat (Kevin et al. 2003). Human health threat 
occur from the consumption of shellfish or fish contami-
nated with cyanobacterial toxins. Shellfish such as clams, 
mussels and oysters rapidly accumulate algal toxins in their 
tissues because they filter large volume of water. Cases of 
HAB-related neurotoxic shellfish poisoning (NSP), para-
lytic shellfish poisoning (PSP), amnesic shellfish poisoning 
(ASP), diarrhetic shellfish poisoning (DSP) and saxitoxin 
puffer fish poisoning (a finfish poisoning) have been reported 
(Van Dolah 2000).

Blooms can produce toxins (e.g., microcystin) which are 
released by cyanobacteria, diatoms and dinoflagellates (Paerl 
and Whitall 1999; Hitzfeld et al. 2000; Wetzel 2001; Ander-
son et al. 2002; Rabalais and Nixon 2002). Extensive study 
of population dynamics of cyanobacteria in relation to envi-
ronmental factors (light, temperature, nutrient, pH, mixing or 
zooplankton grazing) have been documented (Downing et al. 
2001; Paerl and Otten 2013; Fernández et al. 2015). Cyano-
bacteria can outcompete other algal groups because of their 
resistance to zooplankton grazing, buoyancy and nitrogen 
fixing ability by heterocystous forms (Graham and Wilcox 
2000; Reynolds 2006). In addition, cyanobacteria can thrive 
in CO2-deficient and low-pH conditions in aquatic ecosys-
tem (Shapiro 1973; 1997; Sandrini et al. 2016; da Silva Brito 
et al. 2018). The frequency of eutrophic events has increased 
over the last several decades in many coastal ecosystems 
where blooms of phytoplankton are particularly affected by 
riverine discharge (Paerl et al. 2018). For instance, bloom 
incidences have been reported in Chesapeake Bay (Officer 
et al. 1984), the northern Adriatic Sea (Justic et al. 1987), 
the Baltic Sea (Andersson and Rydberg 1988), Neuse River 
Estuary (Paerl 2006), Pearl River Estuary (Yin and Harrison 
2008), Kopački Rit floodplain (Mihaljevic and Stevic 2011), 
South African inland waters (Matthews and Bernard 2015), 
Wadden Sea (Vogt et al. 2017), Eurasian Arctic and Hypo-
arctic large River Estuaries (Davydov and Patova 2017) and 
Lake Taihu, China (Li and Qin 2019).

In recent years, the south-west coastal Nigeria is one of 
the fastest developing regions in West Africa. Epe lagoon 
boarders the eastern section of the largest metropolitan 
city (Lagos) in West Africa. Lagos consists of over 21 
million inhabitants (Ojolowo and Onifade 2016) with asso-
ciated rapid economic development and coastal degrada-
tion by human activities. Epe lagoon is connected to the 
Lagos lagoon and, hence, receives large loads of anthro-
pogenic nutrients from increased agriculture, fish farm-
ing, poorly treated sewage effluent (Onyema et al. 2004; 
Akagha 2017) and domestic/industrial waste discharge 
(Chukwu and Nwankwo 2004). In Nigeria, the incidences 
of cyanobacteria blooms have been documented over the 
past three decades. Blooms of Anabaena flos-aquae, A. 
spiroides, Microcystis aeruginosa, M. flos-aquae and M. 

wesenbergii were reported in the Lagos lagoon (Nwankwo 
1993; 1996), Microcystis aeruginosa in Iju, Ogun river 
(Nwankwo 1993), Microcystis sp. in Kuramo lagoon 
(Nwankwo 1993), Anabaena flos-aquae in Owo river 
(Nwankwo et al. 1999), Microcystis aeruginosa in Awba 
reservoir, Ibadan (Akin-Oriola 2003), Microcystis aerugi-
nosa and M. wesenbergii bloom in Oyan dam, Ogun state 
(Adesalu et al. 2016) and the proliferation of Oscillatoria 
sp. in the Lagos lagoon (Onyema and Nwankwo 2009). 
These bloom series were reported to cause colouration, 
anoxia, odour and bad taste of the water in these aquatic 
ecosystems.

Akagha et al. 2019 documented the presence of a new 
cyanobacterial species Lagosinema tenuis in the Lagos 
lagoon which further highlights the ecological relevance 
of cyanobacterial dominance in tropical African lagoon 
systems. In this paper, our objectives are to elucidate: (1) 
environmental variables and phytoplankton dynamics, (2) 
nutrient dynamics and eutrophication and (3) annual cyano-
bacterial blooms and associated environmental factors in 
Epe lagoon through an 18-month investigation of three eco-
logical sites.

Materials and methods

Study area

Epe lagoon (Fig. 1) is a tropical water body with a surface 
area of 243 km2 located at the eastern part of the Lagos 
lagoon complex (Kusemiju 1988). Epe lagoon is fresh, 
lotic, non-tidal and sandwiched between Lagos and Lekki 
lagoons (Nwankwo 1998; Uwadiae 2010). It is connected 
to the Atlantic Ocean via the Lagos lagoon year round. Epe 
lagoon is influenced by freshwater input from creek and river 
inflow (Nwankwo 1998). Riparian vegetation such as Pas-
palum orbiculare, Raphia hookeri, Elaeis guineensis, Acros-
tichum aureum, Cocos nucifera and mangroves Rhizophora 
racemosa, Avicennia nitida are found along the fringing 
wetland. Notable fauna found in this area are amphipods, 
oligochaetes, polychaetes, isopods, barnacles, oysters, nema-
todes, fiddler crabs and migratory birds that feed on exposed 
biota. The bordering wetland has experienced rapid popula-
tion growth, agricultural and urban development over the 
past decade. As a result, anthropogenic activities includ-
ing domestic waste deposition, fishing, indiscriminate sand 
mining and inland water transportation are increasing in 
Epe lagoon. Human influenced sites along the Epe lagoon 
include the hydrothermal plant at Egbin and agricultural 
sites on the bordering wetland at Ikosi. In this paper, three 
sites (Imope, Ikosi and Egbin) were investigated based on 
their ecological uniqueness and bloom incidences.
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Collection of water and phytoplankton samples

Samples of water and phytoplankton were collected monthly 
for 18 months (November 2012–April 2014) in the morning. 
Water samples were collected in a well-labelled 1-L plastic 
bottle with screw cap and transported in a cooler with ice to 
the laboratory for chemical analysis. Three 250-ml amber 
bottles were used to collect water samples for analysis of dis-
solved oxygen, biological oxygen demand and chlorophyll a. 
Samples for dissolved oxygen were fixed with the Winkler 
reagent. Phytoplankton samples were collected with a 35 μm 
plankton net tied unto a motorized boat and towed at low 
speed (4 knots) for 5 min. The plankton net was hauled in 
and the samples were emptied into a 500-ml well-labelled 
plastic container with screw cap and fixed with 4% unbuff-
ered formalin.

Physical and chemical parameters

Water temperature was measured in situ with a mercury 
thermometer, and water depths were measured with a cali-
brated pole. A Philips pH meter (Model PW950) and a 

hand-held Refractometer (model RHS-10 ATC) were used 
to determine pH and salinity, respectively. Total dissolved 
solids (TDS) were measured with HANNA instrument 
(HI98311). Total suspended solids (TSS) were measured fol-
lowing standard methods (APHA 2005). Dissolved oxygen 
was determined by the standard Winkler method, and bio-
logical oxygen demand (BOD) was measured after 5 days of 
incubation. Chemical oxygen demand (COD) was estimated 
using closed Reflux method (APHA 2005). Chlorophyll a 
determination was made using the acetone extraction spec-
trophotometric method (APHA 2005) with detection limits 
of approximately 1 µg/L, which was based on three times 
the standard deviation of the lowest concentrations of the 
samples. Rainfall data were provided by the Department of 
Meteorological Services, Oshodi, Nigeria.

Inorganic macronutrients and nutrient ratio

Phosphate and nitrate were analysed using ascorbic acid 
spectrophotometric method and the phenol disulphonic acid 
method, respectively (APHA 2005). Sulphate and silicate 
were determined using the standard methods (Strickland and 

Fig. 1   Map of study area indicating the three sampling sites: Egbin, Ikosi and Imope
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Parsons 1972). To determine the seasonal trend of nutri-
ent (molar) ratios, data were pooled for each season and 
the average were taken as follows: dry season I (Novem-
ber 2012–February 2013), early wet I (March 2013–June 
2013), late wet I (July 2013–October 2013), dry season II 
(November 2013–February 2014) and early wet II (March 
2014–April 2014).

Stoichiometric assessment of nutrient limitation

Stoichiometric assessment of nutrient limitation was made 
according to the published criteria (Dortch and Whitledge 
1992; Justic et al. 1995a, b; Xu et al. 2008). The ratio of 
two ambient nutrients was calculated, and the Redfield 
ratio (Redfield et al. 1963) was applied to predict that: (1) 
N limitation occurs when N/P < 16:1 and Si/N > 1:1 and an 
estimated threshold value of 1 mM; (2) P limitation was 
assumed when N/P > 16:1 and Si/P > 16:1 with an estimated 
threshold value of 0.1 μM; and (3) Si limitation was assumed 
when N/Si < 1:1 and Si/P < 16:1, with an estimated thresh-
old value of 2 μM. The approach was similar to others, for 
example, in the Mississippi River estuary (Justic et al. 1995a 
and in Hong Kong waters where the variations of nutrient 
stoichiometry in regulating phytoplankton biomass were 
used (Xu et al. 2008).

Phytoplankton

The preserved phytoplankton samples were concentrated 
by allowing cells to settle for at least 24 h and thereaf-
ter decanted. The micro-transect drop count method as 
described by Lackey (1938) was employed to investigate 
the phytoplankton species composition and abundance. One 
drop of each concentrated sample was thoroughly investi-
gated by observing all fields within the cover slip border 
using an Olympus BX51 binocular microscope with cali-
brated eye piece at different magnifications (10 × and 40 ×). 
This was done five times to account for all phytoplankton 
species in the water samples. The total number of phyto-
plankton identified was recorded as number of cells per ml. 
Taxonomy publications including Patrick and Reimer (1966, 
1975), Prescott (1961, 1973, 1975, 1979, 1984), Compère 
(1976, 1977), Komárek and Fott (1983, Round 1981), Van-
landingham (1982), Krammer and Lange-Bertalot (1986, 
1988, 1991, 2000), Krammer et al. (1991a), Komárek and 
Anagnostidis (1998, 2005) and Wolowski and Hindak (2005) 
were consulted to identify phytoplankton taxa.

Statistical analyses

Analysis of variance (ANOVA) was used to test the sig-
nificant differences of each parameter between the sampling 
sites. The correlation coefficient, r was calculated using 

Microsoft® Excel 2015. The statistical test for significance 
is based on critical values of correlation coefficient, r (Zar 
1999).

Results

Physical and chemical variables

Rainfalls ranged between 0 and 413.6 mm during the study 
period. In January 2013 (bloom episode I), there was no 
rainfall, but increased to 80.1–132.7 mm in January and Feb-
ruary 2014 (bloom episode II). Water temperature oscillated 
between 23 and 34 °C with the minimum recorded in August 
2013 (Fig. 2). Total suspended solids and total dissolved 
solids were between (4–3166 mg/L) and (30–5290 mg/L), 
respectively. pH was 6.1–7.7, indicating acidic conditions, 
while salinity was in the range of 0–5‰ (Fig. 2). Dissolved 
oxygen, BOD and COD were in the range of 2–15 mg/L, 
0.5–13 mg/L and 15–160 mg/L, respectively (Fig. 3). There 
were no significant differences (P > 0.05) in the environmen-
tal variables across all the sampling sites except for total 
suspended solids which was significantly different (P > 0.05) 
across the sampling sites. 

Chlorophyll a

Chlorophyll a ranged from 1 µg/L (below the limit of detec-
tion) at Imope in February 2013 to 201 µg/L at Ikosi in Feb-
ruary 2014. Chlorophyll a values were higher (≥ 55 µg/L) 
in the dry months (November 2012–January 2013) at the 
three sites during the first annual cycle, and higher values 
(≥ 153 µg/L) were recorded at Ikosi during the dry month 
(January 2014–February 2014) of the second annual cycle 
(Fig. 3).

Nutrient concentrations and molar ratios

Nitrate ranged from 1.45 to 20.16 µM, whereas lower val-
ues (≥ 1.45 µM) were recorded in January 2013 at all sites. 
PO4, SiO4 and SO4 concentrations were (0.18–18.76 µM), 
(0.03–4.24  µM) and (0.10–18.63  µM), respectively. 
Nitrate, phosphate and sulphate concentrations showed 
seasonal trends. Higher values of nitrate were recorded in 
the wet month (≥ 2.42 µM) at the three stations, whereas 
lower sulphate values (≤ 4.37 µM) were observed in the 
wet season except in March 2013 when values were higher 
(≥ 12.08 µM) at Egbin. SiO4 values were highest at Imope 
(≥ 2.31 µM) in February 2013 and at Ikosi (≥ 4.24 µM) 
in March 2013 (Fig. 3). N/P ratio at the three sampling 
sites varied seasonally unlike Si/N ratio. Low N/P ratios 
(≤ 4.5:1) were recorded during the first 8 months and 
shifted to higher ratios (≥ 16.7:1) during the subsequent 
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Fig. 2   Monthly variations in 
temperature (23–34 °C), pH 
(6.1–7.7), salinity (0–5‰), 
TSS (4–3166 mg/L) and TDS 
(30–5290 mg/L) at the three 
stations
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8 months (late wet I and dry season II), followed by low 
ratios (≤ 13.21) in the last 2 months at the three sampling 
sites (Fig. 4). Overall, N/P ratio values were between 
0.22–58.23 at Imope, 0.22–48.1 at Ikosi and 0.21–59.4 at 
Egbin, while Si/N ratios were between 0.01–0.90 at Imope, 
0.01–0.33 at Ikosi and 0.01–0.26 at Egbin (Fig. 5). Based 
on Si/N = 1:1, N/P = 16:1 and Si/P = 16:1, there were six 
different areas characterized by the most limiting nutri-
ents. NO3, PO4 and SO4 were not significantly correlated 
with chlorophyll a at Ikosi, except for SiO3 which showed 

a significant and negative relationship with chlorophyll a 
(Fig. 6).  

Phytoplankton dynamics

A total of 116 species belonging to 54 genera were recorded 
during the study, and there were six phytoplankton groups 
including Bacillariophyceae (40.7%), Chlorophyceae 
(30.1%), Chrysophyceae (0.89%), Cyanophyceae (20.4%), 
Dinophyceae (0.89%) and Euglenophyceae (7.08%). The 
centric diatom, Aulacoseira granulata, was the dominant 
species except in January 2013, 2014 and February 2014 

Fig. 3   Monthly variations of water DO, BOD, COD, chlorophyll a, nitrate, phosphate, silicate and sulphate at the three stations
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(dry season I and II) when there was an incidence of cyano-
bacterial bloom. At Imope, the lowest diatom abundance 
(48%) was recorded in April 2013, while cyanobacterial 
abundance was highest (22–47.0%) in May, June and July 
2013. At Ikosi, the lowest diatom abundance (37.0%) was 
recorded in May 2013, while cyanobacterial abundance 
peaked (≥ 98.0%) in January 2013, January 2014 and Feb-
ruary 2014. Diatoms were lowest (5.0%) in April 2013, 
while cyanobacteria were highest (≥ 36.0%) in April and 
May 2013 at Egbin (Fig. 7). The prevalent bloom species 
were Anabaena circinalis, A. flos-aquae, A. limnetica and 
A. spiroides.

Twenty-three cyanobacterial taxa were recorded. Spe-
cies richness was observed in the Order Nostocales with 
10 taxa, Chroococcales with 5 taxa, Oscillatoriales with 
4 taxa, Spirulinales with 2 taxa  and Synechococacca-
les with 2 taxa, respectively (Table 1). Two cyanobacte-
rial bloom episodes were observed at Ikosi, Epe lagoon, 
during the two annual cycles of the study when rainfall 
was low (Fig. 8). The first bloom began in January and 

ended in February 2013, while the second bloom started 
in January 2014 and ended in March 2014. There was 
notable increase in phytoplankton density (> 40,550 cells/
ml) and the dominance of cyanobacteria (> 98%). Dur-
ing the first bloom episode, Anabaena circinalis (30,000 
cell/ml, 73.0%) and Anabaena limnetica (10,000 cell/ml, 
24%) were dominant, but the bloom collapsed in February 
2013. Conversely, during the second bloom episode, Ana-
baena flos-aquae (40,000 cell/ml, 99.0%) was dominant. 
Anabaena flos-aquae (15,050 cells/ml, 27%), A. circinalis 
(30,000 cells/ml, 53%) and Anabaena spiroides (10,000 
cell/ml, 18%) were recorded in February 2014 at Ikosi. 
The bloom collapsed in March 2014. At Ikosi, cyanobacte-
rial cells were ≥ 98.0% of the total phytoplankton density 
which was higher (2000 cell/ml–40,000 cell/ml) than the 
alert level 1 (≥ 2000 cells/ml) for raw waters (Bartram 

Fig. 4   Seasonal mean ± SD of nutrient molar ratios at the three sta-
tions

Fig. 5   Scatter diagrams of atomic nutrient ratios at Imope, Ikosi and 
Egbin during dry and wet season (November 2012–April 2014). 
Potential limitation for N, P and Si based on their stoichiometric 
ratios is indicated by the number of data points in the quadrants. 
Vertical, horizontal and diagonal lines indicate Redfield et al. (1963) 
ratio (N/P), Brzezinski (1985) ratio (N/Si) and Agboola et al. (2013) 
aggregated ratio (Si/N/P = 16:16:1), respectively
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et al. 1999) during the two bloom episodes. The cyano-
bacteria bloom did not reach alert level 2 (≥ 100,000 cells/
ml) at the sampling sites during the study period (Fig. 9).  

Discussion

Environmental dynamics

Seasonality and distribution of terrestrial and aquatic organ-
isms in the tropics are determined by rainfall pattern (Webb 
1960). Rainfall is a driving force in aquatic ecosystems 
of south-west, Nigeria (Olaniyan 1969; Oyenekan 1988; 
Nwankwo 1996) because it influences flow rate, mixing, 
dilution and nutrient recycling (Valiela et al. 2013). The 
observed lowest temperature (≤ 27 °C) in the wet season 
(late wet I) might be attributed to the influx of cooler flood 
waters from wetlands, adjoining creeks and rivers. These 
assertions confirm temperature regimes in coastal lagoons 
of south-west, Nigeria (Onuoha and Vyverman 2010; 
Nwankwo et al. 2013). The low total suspended solids and 
total dissolved solids in the wet months agree with observa-
tions of Nwankwo (1996, 1997), Onyema and Nwankwo 
(2006), Adesalu and Nwankwo (2010) and Onuoha and 
Vyverman (2010) in coastal waters of south-west Nigeria. 
Flood water intrusion causes dilution, high flushing rate and 
low retention time during the rainy season, which is differ-
ent from the situations in the dry season and the onset of the 
rainfall. pH indicated an acidic condition in certain occa-
sion (July 2013) which could be attributed to the seepage of 

humic and fulvic acid exudates from surrounding wetlands 
(Nwankwo et al. 2013; Canini et al. 2013). The slightly 
acidic to neutral nature of Epe lagoon probably accounted 
for the dominance of Aulacoseira granulata at Epe during 
the off-bloom season. Talling and Talling 1965 associated 
the proliferation of Aulacoseira granulata to low pH in 
studies of central African lakes. The observed pH remained 
within the acceptable limits of 6.3–8.5 for inland waters 
(Antoine and Saadi 1982). At Ikosi, a pH range between 
6.7 and 7.4 was found to correspond to the period of high 
prevalence of Anabaena flos-aquae, A. circinalis, Anabaena 
limnetica, Anabaena sphaerica and Anabaena spiroides.

Dissolved oxygen is dependent on water temperature and 
decreases as water temperature increases. Photosynthesis, 
respiration and other hydrological dynamics such as river 
influx, flushing rate and mixing influence dissolved oxygen 
levels in aquatic ecosystems (Watt 2000). In this study, dis-
solved oxygen and BOD were relatively low especially dur-
ing the bloom episodes in the dry season. The relatively 
higher DO and BOD values that were observed during the 
rainy season might be due to mixing of surface water with 
atmospheric oxygen by current, wave action and river inflow. 
Chindah and Nduaguibe 2003 observed high dissolved oxy-
gen levels attributed to current and wave action in a study of 
the Bonny river in Niger Delta.

In lotic fresh waters, Hynes (1960) suggested that BOD 
between 6.0 mg/L and 8.0 mg/L indicates moderate pollu-
tion while values greater than 8.0 mg/L indicate severe pol-
lution. BOD values at Epe lagoon suggest that Epe lagoon is 
moderately to highly polluted during the wet season, owing 

Fig. 6   Chlorophyll a versus NO3, PO4, SiO3, SO4 at Ikosi (November 2012–April 2014). The regression equations are significant at P > 0.05 and 
the correlation coefficient r is given
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to influx of land-originated pollutants. The acceptable limit 
of BOD set by the WHO (1978) for international water 
quality standards is 15.9–37.5 mg/L with warning limit of 
18.9–34.9 mg/L. An increase in the amount of organic mate-
rials in aquatic ecosystems results in high levels of COD 
(WHO 1978). COD values were high at Ikosi in January 
2013 and February 2014, Imope in March 2014 and Egbin 
in April 2014. The observed higher values of COD at these 
sites during this period may be due to the collapse of the 
bloom and horizontal mixing of the surface water. There 
was no significant difference (P > 0.05) in water tempera-
ture, pH, salinity and TDS across all the sampling sites, 
whereas significant difference (P > 0.05) was observed for 
total suspended solids which was high at the onset of the 
rainy season.

Nutrients and molar ratios

Nutrient concentrations and variations in stoichiometric 
nutrient ratio (Si/N, N/P and Si/P) are influenced by rain-
fall, human activities (Elser et al. 2009; Yadav and Pan-
dey 2018), internal nutrient cycling and regeneration (e.g. 
denitrification, nitrogen fixation) (Hudson et al. 1999). The 
rate of nitrogen and phosphorus cycling through sediment 
influences nitrogen or phosphorus limitation in aquatic eco-
systems (Vitousek and Howarth 1991). In freshwater and 
coastal marine ecosystems, nitrogen is removed in sediments 
through denitrification (Knowles 1982; Seitzinger et al. 
1984; Seitzinger 1988). Phosphorus is readily released from 
sediments through mineralization (Rowe et al. 1975; Boyn-
ton et al. 1982). In tropical waters of west Africa, nitrogen 
concentrations are mostly introduced through anthropogenic 
sources. The reduction of nitrogen and/or phosphorus inputs 
into aquatic systems can improve the quality of the water. 
Nutrient reduction effort can be challenging especially when 
it is introduced into the aquatic ecosystem through non-point 
sources such as agricultural run-off. The improvement of 
water quality may be slowed by internal loading of nutrients 
from sediments after external loading of nutrients is reduced 
(Søndergaard et al. 2003). Nutrient stoichiometry elaborates 
the role of resource availability in aquatic ecosystems (del 
Amo et al. 1997) as well as resource competition in phyto-
plankton (Tilman 1982). N/Si/P ratio of marine diatoms is 
about 16:16:1 (Redfield et al. 1963; Brzezinski 1985) and 
deviations from this ratio may result in nutrient limiting for 
phytoplankton (Hecky and Kilham 1988; Dortch and Whi-
tledge 1992). Silicate was limiting (Si/N < 1) at the study 
sites, possibly resulting from the absence of tidal sea water 
influence in Epe lagoon, introduction of organic nitrogen and 
phosphates by flood water and agricultural run-off. Nutri-
ent-laden influx from agricultural practices could result in 
increased levels of nitrate and phosphate, as well as rela-
tively low or declining silicate concentrations (Justic et al. 
1995b). Nwankwo (1996) attributed higher silicate values 
in the dry season to the cessation of flood water discharge 
and the influx of tidal sea water into the brackish Lagos 
lagoon. van Bennekom and Wetsteijn (1990) reported that 
Si concentration at the Rhine River remained constant dur-
ing a long-term study. Comparably, Si concentrations were 
reduced by 50% during 1955–1987 in the Mississippi River 
(Turner and Rabalais 1991). In this study, silicate values 
were higher than the threshold value 2 µM (Justic et al. 
1995a) at Imope (≥ 2.31 µM) in February 2013 and at Ikosi 
(≥ 4.24 µM) in March 2013. These values coincided with the 
lower cyanobacterial biomass at Imope in February 2013, 
the collapse of cyanobacterial bloom and the proliferation 
of diatoms (84.38%) at Ikosi in March 2013 after the bloom 
regime (Fig. 7).

Fig. 7   Temporal distribution and relative abundance of the six phyto-
plankton groups observed at the three stations
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NO3 values (≥ 1.45 µM) at the three sampling sites were 
higher than the threshold value 1 µM (Justic et al. 1995a). 
The increase in nitrate levels during the wet season could 
be attributed to the introduction of floodwaters that con-
tained organic materials from adjoining wetland and nutrient 
rich agricultural run-off due to poor farm practices. Of all 
the five seasonal partitions, low N/P was recorded during 
the dry season I (November 2012–February 2013), early 
wet I (March 2013–June 2013) and early wet II (March 
2014–April 2014) during this study. The observation during 
the dry season I might be a consequence of faster utilization 
of nitrate by phytoplankton in aquatic environments, while 
low N/P during early wet season I and early wet season II 
might be a sign of the effect of high flushing rate and low 
retention time during this period. N/P was high (≥ 16.72) at 
the three sites during the late wet season I (July 2013–Octo-
ber 2013) and dry season II (November 2013–February 
2014). PO4 values (≥ 0.18 µM) at the three sampling sites 
were higher than the threshold value 0.1 µM (Justic et al. 
1995a).

Rainfall values were high during the late wet season I 
which caused intense nutrient-laden flood water intrusion 
into the lagoon. However, the absence of rainfall in August 
2013 possibly slowed flushing and increased residence time 

of the lagoon during this period. Flood water inflow influ-
enced eutrophication in coastal waters because nitrate and 
phosphate from agricultural run-offs (fertilizers) are released 
(Qian et al. 2016). The resulting effect is the change in N/P, 
Si/P and Si/N leading to potential silicate limitation because 
of the increased nitrate and phosphate concentrations. The 
dry season II period was associated with reduced volume 
of freshwater inflow from adjoining river, less perturbation 
stress related to mixing, reduced flushing and higher resi-
dence time in the lagoon. This situation probably explained 
the high N/P ratio values and cyanobacterial bloom dur-
ing this period. Relationships between riverine nutrient 
input, land based flood water and eutrophication in coastal 
waters have previously been reported in the Chesapeake Bay 
(Officer et al. 1984), the northern Adriatic Sea (Justic et al. 
1987), some areas of the Baltic Sea (Andersson and Rydberg 
1988), Mississippi river (Turner et al. 1998), Neuse River 
Estuary (Paerl 2006), Pearl River Estuary (Yin and Harrison 
2008) and Kopački Rit floodplain (Mihaljevic and Stevic 
2011).

Sources of sulphate in aquatic environments can be either 
natural or anthropogenic. Industrialization, burning of fossil 
fuel and agricultural practices contribute to sulphate avail-
ability in coastal ecosystems (Rhode et al. 1995; Zhao et al. 

Table 1   Cyanobacterial species 
in Epe lagoon showing its 
occurrence frequency (F%) 
and the type of species (R, 
rare, F < 10%; C, common, 
10% > F <50%; CT, constant, 
F > 50%)

Cyanobacteria species Imope Ikosi Egbin Order

F% F% F%

Anabaena affinis Lemm. ─ ─ 5.6 R ─ ─ Nostocales
Anabaena azollae Strasburger ─ ─ 5.6 R ─ ─ Nostocales
Anabaena catenula Strasburger ─ ─ 11.1 C 5.6 R Nostocales
Anabaena circinalis Rabenhorst ex Bornet 

and Flahault
─ 22.2 C ─ ─ Nostocales

Anabaena flos-aquae (Lyng.) ─ ─ 22.2 C 5.6 R Nostocales
Anabaena limnetica Smith ─ ─ 11.1 C ─ ─ Nostocales
Anabaena sphaerica Bornet and Flahault ─ ─ 5.6 R ─ ─ Nostocales
Anabaena spiroides Lemm. 11.1 C 27.8 C 27.8 C Nostocales
Aphanocapsa delicatissima West and West 5.6 R 16.7 C 16.7 C Synechococcales
Chroococcus dispersus (Keiss) Lemm. ─ ─ ─ ─ 5.6 R Chroococcales
Chroococcus limneticus Lemm. 5.6 R 16.7 C 33.3 C Chroococcales
Chroococcus turgidus (Kützing) Nägeli ─ ─ ─ ─ 5.6 R Chroococcales
Merismopedia elegans Braun 5.6 R 5.6 R 5.6 R Synechococcales
Merismopedia glauca (Ehr) Nageli 11.1 C ─ ─ ─ ─ Synechococcales
Microcystis aeruginosa (Kützing) Kützing 38.9 C 33.3 C 27.8 C Chroococcales
Microcystis flos-aquae (Wittrock) Kirchner 11.1 C 44.4 C ─ ─ Chroococcales
Nostoc sp. 5.6 R 11.1 C 5.6 R Nostocales
Oscillatoria curviceps Agardh ex Gomont 5.6 C ─ ─ ─ ─ Oscillatoriales
Oscillatoria limosa (Roth) Ag. 22.2 C 16.7 C 27.8 C Oscillatoriales
Oscillatoria princeps Vaucher 5.6 R 5.6 R 11.1 C Oscillatoriales
Oscillatoria tenius Agardh 11.1 C 11.1 C 16.7 C Oscillatoriales
Spirulina laxa Smith 16.7 C ─ ─ ─ ─ Spirulinales
Spirulina major Kutzingii ─ ─ 11.1 C ─ ─ Spirulinales
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2003). Sulphate enters aquatic ecosystems through leachates 
from soil, precipitation, petroleum spill and ammonium sul-
phate fertilizers. Phytoplankton utilize sulphate for physi-
ological and metabolic processes (Giordano et al. 2005) 
although little is known about its role in phytoplankton 
bloom. Sulphate concentrations regulate the flux of phos-
phorus from sediment to an extent. At low sulphate levels, 
phosphorus is usually adsorbed to sediment while high sul-
phate levels support the release of phosphorus to the water 
column (Caraco et al. 1989, 1990). Sulphate concentrations 
in this study were generally higher in the dry than the wet 
season because of the reduced flood water influx and longer 
retention time during the dry season. The presence of petro-
leum products in this lagoon could be the source of observed 
SO4.

Phytoplankton dynamics and controlling factors

Chlorophyll a followed a seasonal trend and was closely 
related to phytoplankton abundance. Similarly, Suzuki et al. 
(2002) reported that low chlorophyll a value implied limited 
phytoplankton growth in a turbid Mexican lagoon. The rise 
in chlorophyll a during the dry season may be related to 
increased insolation, photosynthetic depth, retention time 
as well as less perturbation stress from flood waters. Flush-
ing of planktonic microalgae by flood could lead to the low 
chlorophyll a values in the rainy season. A single major rain-
fall peak in the dry season (January–February) and a minor 
peak in the late rainy season (August–November) were docu-
mented at Ikpoba reservoir, Edo state, Nigeria (Kadiri 1993).

The dynamics and seasonality of chlorophyll a pointed 
to the interplay between phytoplankton growth and loss rate 
which are caused by multiple mechanisms in aquatic ecosys-
tem (Cloern 1996). Phytoplankton population dynamics are 
dependent on changes in the proportion of dissolved Si, N 
and P. Officer and Ryther (1980) hypothesized that decreas-
ing Si/N ratio may increase eutrophication by reducing the 
potential for diatom growth in favour of harmful phytoplank-
ton species. Long-term decline in Si/P ratios was responsi-
ble for significant blooms of non-siliceous algae in coastal 
waters worldwide (Smayda 1990).

Phytoplankton successional pattern at Ikosi showed a 
clear transition from diatom to cyanobacterial dominance 
in the dry season during the two annual cycles. The coin-
cidence of the cyanobacterial bloom in the dry season 
could be attributed to higher insolation, water tempera-
ture, photosynthetic depth and increased stability of water 
(Fig. 10). Anabaena catenula, A. circinalis, A. limnetica 
and A. spiroides which are nitrogen-fixing cyanobacteria 
dominated the phytoplankton community during the bloom 
episode in the dry season I and II at Ikosi. The bloom epi-
sode during the dry season I coincided with low N/P ratio, 
possibly due to improved water stability and phosphorus 

Fig. 8   Temporal distribution of cyanobacterial species composition 
observed at the three stations

Fig. 9   Cyanobacterial cell abundance (cells/ml) and total phytoplank-
ton (cells/ml) at Ikosi, Epe lagoon. Dashed line indicates alert level 1 
(Bartram et al. 1999)
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being more available as a result of biogeological process 
and mineralization (Rowe et al. 1975). The prevalence of N 
fixing cyanobacteria is a response to nitrogen limitation in 
aquatic ecosystems (Paerl et al. 2014). In this study, higher 
nitrogen concentration (N/P = 16.7:1) during the bloom epi-
sode in the dry season II may suggests an input from the 
surrounding wetland. In the tropics, rainfall controls physi-
cal, chemical and biological dynamics in aquatic ecosystem. 
Consequently, this might be the reason for the low nitrogen 
during the bloom episode I (January 2013) when there was 
no rainfall. However, rainfall values (≥ 80.1 mm) accounted 
for the nitrate availability during the bloom episode II (Janu-
ary and February 2014) which lasted longer because of the 
associated nutrient-laden river influx.

Despite the increased stability of the water column during 
the bloom episode I when there was no rainfall, the bloom 
duration was shorter than the bloom episode II. This sug-
gests that in addition to optimal environmental conditions 
(light, temperature, stability etc.), riverine and land-based 
nutrient influx might be an important factor that influenced 
the bloom duration in the tropical aquatic environments.

Eutrophication, cyanobacteria bloom 
and consequences

A visible greenish colouration was seen on the surface water 
at Ikosi on three sampling occasions. The two cyanobacterial 
bloom regimes occurred in the dry season and were related 
to environmental conditions. The duration of the bloom was 
determined by the rainfall pattern which controlled nutrient 
influx, flushing rate and residence time. Higher insolation 
and improved stability of the lagoon during the dry months 
probably favoured the proliferation of N fixing cyanobacte-
ria. Domestic waste discharge, agricultural run-off and poor 
sewage systems are sources of organic nutrient enrichment in 
coastal waters of Nigeria. Coastal lagoons are residual sink 
for large nutrient loading associated with anthropogenic and 

agricultural activities. These introductions cause an imbal-
ance in the aquatic ecosystem which alter food chain that 
lead to loss of biodiversity and productivity (Nwankwo 
and Akinsoji 1992; Kevin et al. 2003). Nutrient loading 
has led to intensified eutrophication causing reoccurring 
algal bloom episodes including harmful species, accrual of 
organic matter and oxygen depletion (hypoxia and anoxia). 
In addition to eutrophication, climatic and hydrogeologi-
cal factors such as rainfall pattern, flood, temperature rise, 
flow rate, river and storm water discharge influence anoxia 
and hypoxia conditions in aquatic ecosystems. The complex 
interactions of these environmental factors determine the 
magnitude of the temporal and spatial dynamics of algal 
blooms and oxygen depletion (Cloern 2001, Thomas and 
Litchman 2016). The complexity of these systems affects 
the physical, chemical and biological processes controlling 
the production and accumulation of organic matter, oxygen 
dynamics and nutrient cycling (Paerl 2006). DO depletion 
(anoxia and hypoxia) is one of the major consequences 
of eutrophication in coastal waters (Harrison et al. 2008). 
The variation between relatively high rates of oxygen con-
sumption and low rates of oxygen introduction results in 
a decrease in DO levels. Very low or hypoxic conditions 
(DO ≤ 2.6 mg/L) were observed at the three sites in Janu-
ary 2013 and at Ikosi (DO ≤ 5 mg/L) in January 2014 due 
to the bloom episode and subsequent oxygen utilization by 
microbial degradation of organic matter.

Anabaena catenula, A. circinalis, A. limnetica and A. 
spiroides were the bloom species observed in the lagoon. 
Some of these species have been reported to be potentially 
toxic. For instance, potentially toxic cyanobacteria Snowella 
fennica, Microcystis aeruginosa, Planktothrix agardhii and 
Anabaena circinalis were reported in Paso de las Piedras 
reservoir, Buenos Aires, Argentina (Fernández et al. 2015). 
Furthermore, blooms of Aphanizomenon, Dolichospermum, 
Nodularia and Phormidium have been documented in eco-
logical studies of the Eurasian Arctic and Hypoarctic large 
river estuaries (Davydov and Patova 2017). In reference 
to the alert framework for cyanobacteria in coastal waters 
(Bartram et al. 1999), alert level 1 (≥ 2000 cells/ml) was 
exceeded at Epe lagoon (Ikosi). Cyanobacterial biomass 
was high (40,000 cell/ml), almost reaching alert level 2 
(≥ 100,000 cells/ml). These observations call for an alarm-
ing concern and demand continuous environmental monitor-
ing and management of this coastal lagoon.

Conclusion

The factors regulating the severity of algal blooms in aquatic 
ecosystems are complex. In this study, rainfall, anthropo-
genic activities along bordering wetlands and hydrody-
namics are forcing factors which influence phytoplankton 

Fig. 10   Cyanobacterial blooms (cells/ml) and rainfall (mm) at Ikosi 
part of Epe lagoon
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communities, nutrient dynamics and bloom development. 
The hypoxic conditions observed during the two bloom epi-
sodes reflect the vulnerability of the biological component 
of this lagoon. Rainfall controlled nutrient dynamics which 
triggered cyanobacterial bloom development and influ-
enced the bloom duration. Nitrate, phosphate, sulphate and 
other environmental factors were related to the seasonality 
whereas silicate was relatively low. Blooms were dominated 
by potentially toxic species: Anabaena circinalis, A. flos-
aquae, A. limnetica and A. spiroides, and were related to 
nitrate dynamics. This study provides an important scientific 
information to the development of tools to assess, manage 
and mitigate risk of noxious bloom occurrences in tropical 
lagoons.
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