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Abstract
This study exclusively focused on the potential application of an inexpensive and sustainable waste macro-algal biomass 
as an adsorbent for biosorption of copper ions from aqueous medium. After extraction of agar from brown macro-marine 
algae Gelidiella acerosa, the residual biomass without any further treatment was used as an adsorbent for the expulsion of 
copper from wastewater. Physicochemical parameters of biosorption like initial pH, initial concentration of Cu(II) solution 
and biosorbent dosage were optimized using response surface methodology. The maximum copper biosorption potential 
of 96.36% was observed at optimum conditions of pH of 5.31, initial concentration of 23.87 mg/l and biosorbent dosage of 
0.41 g/l. Adopting FTIR and SEM techniques, the surface morphological features of biosorbent were studied. The pseudo-
second-order kinetic model was found to be a proper approach to describe biosorption kinetics. All these results confirmed 
that spent G. acerosa could be considered as an efficient, eco-friendly and economic alternative for Cu(II) removal from 
aqueous solution.

Keywords  Biosorption · Copper · Gelidiella acerosa · Kinetics · Optimization

Introduction

Enhanced industrial activities with technological innovations 
and anthropogenic activities with increased population had 
led to the excessive discharge of heavy metal contaminated 
wastewater into the aquatic systems. Industrial wastewater 
infused with heavy metal residues is known to be the most 
toxic to the aquatic environment and the health of living spe-
cies (Anantha and Kota 2016). Moreover, heavy metals are 
non-degradable and accumulate in the environment through 

the food chain. So, heavy metal-tainted wastewater should 
be treated before discharging into the aquatic environment.

Among the deleterious heavy metals, copper and its 
composites are the most common metal pollutants in the 
environment with the global annual discharge estimated at 
939,000 metric tons (Abdolali et al. 2017; Wuana and Okiei-
men 2011). The most common sources of origin are waste-
waters from refineries, metal plating facilities, tanneries, 
mining operators, etc. (Izquierdo et al. 2010; Calero et al. 
2018; Kumar and Chawla 2014). A trace amount of copper 
is an essential micronutrient for cell functioning. However, 
excessive intake leads to malfunctioning of liver and brain, 
mucosal irritation, intestine ulcers, renal system failure and 
nervous system damage (Kumar and Chawla 2014; Ekere 
et al. 2016). Persistent copper exposure can also cause Wil-
son’s disease (Thilagan et al. 2015; Krupanidhi et al. 2008). 
Hence, meticulous treatment of copper-contaminated water 
is indispensable before discarding into water systems in 
order to protect water sources and human health.

Several technologies for the treatment of copper-loaded 
wastewater have been employed by researchers across the 
globe. They included precipitation, cementation, membrane 
separation, oxidation, solvent extraction and ion exchange 
(Fu and Wang 2011; Dursun 2006). But the majority of 
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these methods are unfit for the treatment when metal con-
centrations in effluents are less than 100 mg/l (Benaissa and 
Elouchdi 2007). Moreover, these processes create sludge 
disposal problems by generating metal-bearing sludge. 
Over recent years, the removal of copper from wastewater 
by adsorption attracted the attention of researchers. Studies 
have been focused on the use of waste or byproducts of vari-
ous sources such as industries and agriculture as adsorbents, 
whose use can also eliminate the sludge disposal problem.

Various biological materials have been tested for effective 
metal recovery from wastewaters which include plant resid-
ual biochar, microorganism, activated sludge and micro- and 
macro-algae (Anastopoulos and Kyzas 2015; Awual 2015; 
Guang et al. 2012). Among these biomaterials, algae have 
been reported as most suitable biosorbents due to their abun-
dant availability, high metal-binding affinity, reusability and 
good surface characteristics (Sari and Tuzen 2008; Babu 
et al. 2018). Algae’s functionality is mainly attributed to 
their surface functional groups such as carboxylic, amino 
and hydroxyl, which binds with metal ions through different 
interactions like electrostatic forces, ion exchange or compl-
exation (Kiran and Thanasekaran 2011).

Most of the studies were focused on using pure and sur-
face-modified algae as biosorbents for recovery of heavy 
metals; use of algal waste biomass as biosorbents after 
extracting valuable products from it was not attempted. In 
this work, algal biomass after extraction of agar from Geli-
diella acerosa (G. acerosa) which is known to be a major 
source for agar extraction in India was selected as a biosorb-
ent for the expulsion of Cu(II) from aqueous solutions. The 
objective of the current investigation was to evaluate the 
feasibility of Cu(II) biosorption by spent G. acerosa and 
optimize the operational conditions for biosorption of Cu(II) 
from wastewater. The experimental data are analyzed using 
different kinetic and equilibrium isotherm models.

Materials and methods

Preparation of spent G. acerosa

Spent waste of marine macro-alga G. acerosa was selected 
as a biosorbent in the present study. Carmel G. acerosa 
plants were collected from Gulf of Mannar, Tamil Nadu, 
India. These algal strains were cleaned many times in tap 
and double distilled water to remove dirt, salts and external 
debris; then it was kept dried in open atmosphere for 3 days 
and further dried in an oven at controlled temperature of 
70 °C for another 2 days. Dried G. acerosa, 6 g, was trans-
ferred to 500 ml of 1 M NaOH and heated the mixture at 
80 °C for 4 h. The algal biomass was separated from the 
NaOH solution and washed several times with tap water. To 
extract agar, the algal biomass was taken in 200 ml distilled 

water and heated at 85 °C for 2 h. The mixture was homog-
enized in a blender and filtered using filter cloth. After filtra-
tion, the biomass was dried at 60 °C for 24 h (Kumar and 
Fotedar 2009; Villanueva et al. 2010). The dried biomass of 
algae was chopped into small pieces and ground in domestic 
grinder. The granulated biomass was sieved through a stand-
ard set of sieves and packed in an airtight container.

Reagents and chemicals

A standard copper solution (1000 ppm) was prepared by 
dissolving 3.91 g of analytical grade CuSO45H2O (Merck 
India Pvt. Ltd.) in 1000 ml of double distilled water. Work-
ing standards of initial Cu(II) concentrations between 20 and 
100 ppm were prepared by progressive dilutions of standard 
copper solution. The initial pH of working standards was 
normalized using 0.1 M HCl and 0.1 M NaOH

Surface characterization

FTIR spectra of fresh and Cu(II)-treated spent G. acerosa 
were recorded by following KBr pellet method using Bruker 
UK (ATR) FTIR spectrophotometer in the spectrum range 
of 4000–400 cm−1 and presented in Fig. 1. SEM images of 
fresh and Cu(II)-treated spent G. acerosa were taken using 
Hitachi S-3700 N SEM (at accelerating voltage 10 kV) and 
presented in Fig. 2.

Design of experiments

Response surface methodology (RSM) is a multivariable opti-
mization tool used to find the optimal response of a process 
which is a function of several independent variables through 

Fig. 1   FTIR spectrograph of spent G. acerosa (a) before biosorption 
and (b) after biosorption of Cu(II)
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fitting the experimental data to a second-order equation. The 
three major steps of RSM include design of experimental 
matrix, development of mathematical model and optimiza-
tion of response of interest (Chatterjee et al. 2012; Sadhu et al. 
2014). To assess the optimum biosorption of Cu(II) (Y) onto 
spent G. acerosa, three independent variables were followed: 
initial pH of Cu(II) solution (A), initial Cu(II) concentration 
in solution (B) and dosage of spent G. acerosa (C). Experi-
ments were designed using face-centered central composite 
design (FCCCD) of RSM. The ranges and levels (− 1, 0, + 1) 
of independent variables are presented in Table 1. The second-
order polynomial equation relating the independent process 
variables and the response of interest, i.e., percentage biosorp-
tion of Cu(II), is presented in the form of Eq. (1):

where Y is response of system, β0 is constant, �i is linear con-
stant, �ii is quadratic constant and Xi is independent variable.

Experimental procedure

All the experiments designed using FCCCD were performed 
in batch process. The reaction mixtures of each 30 ml as 

(1)Y = �0 +

n
∑

i=1

�iXi +

n
∑

i=1

�iiX
2
i
+

n−1
∑

i=1

n
∑

j=i+1

�ijXiXj

specified in design matrix were taken in 250-ml conical 
flasks and stirred in orbital shaker at 180 rpm. All the experi-
ments were conducted up to predetermined equilibrium con-
tact time of 40 min (not discussed here) and holding at ambi-
ent temperature. Samples were collected and filtered using 
Whatman filter paper (No. 1). The metal concentrations of 
filtrate were measured using atomic absorption spectroscopy 
(AAS PerkinElmer AAnalyst 400). All experiments were 
repeated thrice, and statistically analyzed values have been 
reported. The Cu(II) uptake by spent G. acerosa (mg of cop-
per per g spent G. acerosa) is calculated using Eq. (2):

where Co and Ct are the concentrations of Cu(II) ions (mg/l) 
before and after equilibrium contact time, V is the volume 
of Cu(II) aqueous solution taken (ml) and m is the weight of 
spent G. acerosa (g) added to Cu(II) solution.

Kinetic models

Kinetic modeling of biosorption is very much essential to 
scale up the process for industrial-scale operations. Moreo-
ver, kinetics of a reaction describes the nature of the process, 
reaction pathways and exact interface resistance for mass 
transfer. Hence, in the present study fresh experiments were 
conducted for kinetics analysis with different initial Cu(II) 
concentrations ranging from 20 to 100 mg/l at optimum pH 
and temperature of 30 °C, and the data were fitted to various 
kinetic models such as pseudo-first-order, pseudo-second-
order, intra-particle diffusion (Weber and Morris 1964), 
Boyd (Boyd et al. 1947) and Elovich models (Kellner et al. 
2004):

(2)qe =
V
(

Co − Ct

)

1000m

Fig. 2   SEM of spent G. acerosa, a before biosorption and b after biosorption of Cu(II)

Table 1   Levels of different process variables used in FCCCD for 
biosorption of Cu(II) onto spent G. acerosa 

Factors Range and levels

− 1 0 1

A: pH range 2 4.5 7
B: Initial Cu(II) concentration (mg/l) 20 60 100
C: Spent G. acerosa dosage (g/l) 0.1 0.3 0.5
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where k1 and k2 are the first- and second-order rate constants, 
qe (mg/g) and qt (mg/g) are Cu(II) uptake at equilibrium and 
time t(min), respectively, kid is diffusion constant, C is the 
constant related to film thickness, F is relative Cu(II) uptake, 
�t is a mathematical equation, ‘a’ is initial rate of biosorp-
tion and ‘b’ is the constant related to activation energy for 
chemisorption.

Results and discussion

Characterization of spent G. acerosa using FTIR 
and SEM

Algal cell wall is composed of many functional groups like 
hydroxyl, carboxyl, amine, sulfate and phosphate, which 
play a major role in metal binding (Jerold and Sivasubrama-
nian 2016). FTIR is a valuable tool to exploit chemical con-
stituents present on the surface of a material, and it is used to 
disclose qualitative information regarding the organic com-
pounds (Lammers et al. 2009; Kannan 2014). FTIR spectra 
of spent G. acerosa before and after biosorption of Cu(II) 
were recorded at frequencies from 4000 to 400 cm−1 and 
presented in Fig. 1. Several peaks (Fig. 1a) were observed 
on the surface of G. acerosa before biosorption, indicat-
ing the presence of various functional groups which are 
responsible for the binding of copper. The medium peak at 
3319 cm−1 represents N–H stretching vibration that showed 
the presence of amine group on the surface of biosorbent. 
The peaks at 3003 and 2899 cm−1 represent C–H bonds that 
indicate the presence of carboxylic groups (Jerold and Sivas-
ubramanian 2016; Dulla et al. 2018). In most of the brown 
algae, 70% of cell wall functional groups are carboxylic and 
amino groups; these groups play a vital role in metal binding 
(Meseguer et al. 2016). The peaks at wave numbers of 1730 
and 1531 cm−1 are indicative of the presence of S, C=O, 
NO2 groups (Khan et al. 2016). Strong stretching vibrations 
in the range of 1250–970 cm−1 are indication of the presence 
of alcohols and phenols. The peak at 830 cm−1 is associated 

(3)log
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b

)
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1

b
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with the absorbance of O–H group indicating the presence 
of carboxylic groups. Therefore, it is inferred that the sur-
face of spent G. acerosa comprises functional groups like 
carboxylic acids, amino, alkenes and alkyl groups.

Comparison of FTIR spectra of spent G. acerosa loaded 
with copper (Fig. 1b) with that of unloaded revealed sig-
nificant changes. Formation of new peaks at 1438 and 
1248 cm−1 and disappearance of peak at 1724 cm−1 are the 
clear indications of a possible chemical reaction between 
copper ions and surface functional groups. Further shift-
ing of peaks in the range of 3500–2800 cm−1 pertaining to 
carboxylate group reveals the involvement of C–H group in 
the adsorption of copper ions onto the biosorbent. Moreover, 
shifting of peak at 830 cm−1 before biosorption to 850 cm−1 
after biosorption also discloses the binding of copper ions 
to amine group present on the surface of spent G. acerosa.

The SEM analysis of spent G. acerosa was carried out to 
study the surface texture and its modification derived from 
sorbate interactions, and the result obtained is shown in 
Fig. 2. It is apparent from the SEM image shown in Fig. 2a 
that spent G. acerosa has a very rough surface with a good 
number of pores where there is a good possibility for biosorp-
tion of heavy metals ions. A decrease in the number of pores, 
the presence of shiny particles over the surface and apparent 
smooth surface after biosorption as shown in Fig. 2b indicate 
the sorption of copper onto the surface of biosorbent.

Response surface methodology (RSM)

Face-centered central composite design (FCCCD) was used 
for the optimization of Cu(II) biosorption onto spent G. ace-
rosa by taking input variables as shown in Table 1. A total 
of 20 experiments designed by FCCCD were conducted, and 
the obtained results were used for the analysis. Complete 
design matrix generated using FCCCD with coded variables, 
response reported from experiments and predicted response 
for biosorption of Cu(II) onto spent G. acerosa is given in 
Table 2.

ANOVA for response surface quadratic model

Significance of each individual process variables and overall 
model significance was studied using analysis of variance 
(ANOVA), and the results are presented in Table 3. The 
ANOVA results showed very small “model P value” 
(< 0.0001) and large “lack of fit P value” (0.989), which 
discloses the statistical significance of the model. The results 
also showed that R2

adj
 value (0.989) is in good agreement 

with R2
pred

 value (0.999), indicating that there is well-line-
arized fitness between the experimental values and model-
predicted values. Overall, the ANOVA analysis suggests that 
the model can be used to navigate the design spaces on 
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biosorption of Cu(II). The probable P values of each indi-
vidual factors and their interactive terms suggest that A, B, 
C, AB and A2 were significant model terms. Though the 
individual parameter effects namely pH, initial concentration 
and biosorbent dosage were significant, combined effect of 
pH and initial concentration was more significant. Square 
effect of pH has also shown moderate significance on 
biosorption. Similar results were reported by Liu et  al. 
(2018) for biosorption of copper using rape straw powder.

The mathematical equation of relationship between the 
response of system and independent input variables in terms 
of coded factors is:

From the above equation, it could be observed that fac-
tors A and C had a positive effect, i.e., proportional effect, 

(8)
%Removal = +84.83 + 23.22 × A − 7.63 × B + 1.82 × C

+ 0.83 × A × B − 0.21 × A × C − 0.21

× B × C − 23.70 × A
2 − 0.81 × B

2 − 1.88 × C
2

Table 2   Experimental design 
(FCCCD) in coded values of 
observed and predicted response 
for biosorption of Cu(II) onto 
spent G. acerosa 

Standard order pH Initial concentra-
tion (mg/l)

Biosorbent 
Dosage(g)

% Removal

Experimental RSM predicted

1 − 1 − 1 − 1 41.35 41.44
2 1 − 1 − 1 86.55 86.65
3 − 1 1 − 1 24.84 24.94
4 1 1 − 1 73.36 73.45
5 − 1 − 1 1 45.84 45.93
6 1 − 1 1 90.20 90.30
7 − 1 1 1 28.49 28.59
8 1 1 1 76.18 76.27
9 − 1 0 0 38.27 37.91
10 1 0 0 84.72 84.36
11 0 − 1 0 92.01 91.65
12 0 1 0 76.75 76.39
13 0 0 − 1 81.49 81.12
14 0 0 1 85.14 84.77
15 0 0 0 84.75 84.83
16 0 0 0 83.55 84.83
17 0 0 0 85.16 84.83
18 0 0 0 84.28 84.83
19 0 0 0 84.69 84.83
20 0 0 0 85.11 84.83

Table 3   ANOVA for quadratic surface model for biosorption of Cu(II) onto spent G. acerosa 

Source Sum of squares df Mean square F value P value prob. > F

Model 9235.62 9 1026.18 3410.04 < 0.0001 Significant
A—pH 5392.61 1 5392.61 17,919.86 < 0.0001
B—Initial metal ion concentration 582.63 1 582.63 1936.09 < 0.0001
C—Biosorbent dosage 33.34 1 33.34 110.80 < 0.0001
AB 5.53 1 5.53 18.37 0.0016
AC 0.35 1 0.35 1.16 0.3071
BC 0.35 1 0.35 1.16 0.3071
A2 1544.41 1 1544.41 5132.14 < 0.0001
B2 1.82 1 1.82 6.04 0.0338
C2 9.70 1 9.70 32.24 0.0002
Residual 3.01 10 0.30
Lack of fit 1.20 5 0.24 0.66 0.6680 Not significant
Pure error 1.81 5 0.36
Cor. total 9238.63 19



	 Applied Water Science (2020) 10:56

1 3

56  Page 6 of 10

while factor B had a negative effect, i.e., inverse effect on 
biosorption of copper.

Optimization and substantiation of biosorption

To estimate the maximum Cu(II) removal by spent G. ace-
rosa and optimum processing conditions, optimization tool 
of RSM was used and predicted solution was shown in con-
tour plot (Fig. 3). The maximum Cu(II) removal predicted is 
96.362% at optimum process conditions of pH of 5.31, initial 
Cu(II) concentration of 23.87 mg/l and G. acerosa dosage of 
0.41 mg/l. The validity of optimization process was exam-
ined by conducting a fresh experiment at the above-predicted 
values and reported 94.25% Cu(II) removal, which was in 
the vicinity of RSM predicted value. Hence, the predicted 
values of independent variables at maximum Cu(II) removal 
were considered as optimum process conditions for biosorp-
tion of Cu(II) onto spent G. acerosa.

Analysis of interactive effects of two variables

Response surface plots were used to investigate the interac-
tion effects of any two variables on biosorption. Figure 4a 
shows the interactive effect of metal ions concentration and 
pH of the solution on biosorption of Cu(II). In contrast to 
a decrease in biosorption with an increase in concentration, 
a moderate increase was noticed with an increase in initial 
concentration, which clearly manifests the impact of pH over 
initial concentration on metal removal. Three-dimensional 
plot of effect of pH and biosorbent dosage on biosorption 
of Cu(II) is shown in Fig. 4b. It clearly shows the effect of 
pH over effect of biosorbent dosage. It could be observed 

that at higher biosorbent dosage, the % biosorption of Cu(II) 
was high, and a possible reason for this is that the increase 
in binding sites with dosage and the increase in negative 
charge on surface of biosorbent with pH together must have 
contributed for an increase in biosorption of Cu(II). The 
interactive effects of the biosorbent dosage and initial metal 
ions concentration can be inferred from the response plot 
(Fig. 4c), holding pH at central values. From Fig. 4c, it could 
be observed that there are no significant inferences. Since 
dosage and initial concentration have no significant effect 
on biosorption, the interaction effect of these two variables 
was also found to be insignificant. As shown in Table 3 of 
ANOVA, the P value of the factor BC is very high, which 
also confirms the insignificance effect of that factor.

Kinetic studies

Kinetic modeling is fundamental in order to determine the 
affinity or capacity of the sorbent which in turn governs the 
residence time in the design of biosorption process. The 
fitness of kinetic data to pseudo-first- and second-order 
rate equations is described in Fig. 5, and corresponding 
rate constants, predicted copper uptake and R2 values are 
reported in Table 4. Though the regression coefficient val-
ues of first-order model are in the range of 0.99–0.98, the 
predicted metal uptakes are not in good agreement with the 
experimental values. Hence, pseudo-first-order rate equa-
tion is not appropriate for determining kinetics. In the case 
of pseudo-second order, high correlation coefficients and 
very closely predicted and experimental metal uptake values 
show the significance of the model for representing kinetics 
of biosorption of copper. Therefore, biosorption of copper 
onto spent G. acerosa follows pseudo-second-order model 
with chemisorption as a rate-limiting step. Further kinetic 
data were fitted to the Elovich model to investigate the 
biosorption mechanism, and the results are plotted in Fig. 5. 
The plots are linear with good correlation coefficients (R2 in 
the range of 0.985), indicating that the kinetic data follow 
the Elovich model. The intra-pore diffusion of copper ions is 
investigated by fitting the kinetic data to intra-particle diffu-
sion model. Figure 6a shows that the kinetic data are not well 
correlated with the intra-particle diffusion model and also 
plots are not passing through origin. Hence, the same data 
are fitted to the Boyd model to find out exact rate-limiting 
step. Bt values were calculated from the data and then plot-
ted against contact time, as shown in Fig. 6b. It is clear that 
the plots are linear but not passing through the origin.

Good kinetic properties are very much essential for 
good adsorbents, i.e., they must be capable of transferring 
adsorbing molecules rapidly to adsorption sites. The kinetic 
parameters of this experiment are similar to the biosorp-
tion of kinetics of Cu(II) by other biosorbents derived from 
algal species like Halimeda gracilis (Jayakumar et al. 2015), 

Fig. 3   Contour plot of optimum prediction of biosorption of Cu(II) 
onto spent G. acerosa by RSM
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Euglena gracilis (Winters et al. 2017) and Arthrospira plat-
ensis (Markou et al. 2015). The fitness of data to second-
order model suggests that biosorption of Cu(II) onto the 
spent G. acerosa was controlled by chemisorptions and 
probably took place through surface exchange reactions until 
the surface active sites are fully occupied by metal ions. 
Moreover, fitness of data to the Elovich model reiterates 
the above-mentioned argument that the biosorption of cop-
per follows chemisorptions. Fitness of kinetic data to intra-
particle diffusion model (Fig. 6a) reveals that the linear plots 
are not passing through the origin which indicates that the 
biosorption of Cu(II) onto spent G. acerosa is controlled by 
external pore diffusion. Further investigation by fitting the 
data to Boyd model (Fig. 6b) with high correlation coef-
ficient (R2 = 0.998) confirms that the film resistance is the 
rate-controlling step. Many researchers reported the simi-
lar results on biosorption of Cu(II) using other adsorbents 
(Kumar and Chawla 2014; Ofomaja et al. 2010; Yahaya et al. 
2009).

Conclusions

In conclusion, the results of the present investigation 
indicate that biosorbent prepared from spent marine 
macro-algae G. acerosa, after extraction of agar, seems 
an efficient, most economic and eco-friendly adsorbent 
for biosorption of Cu(II) present in industrial wastewater. 
FTIR and SEM analysis established the presence of vari-
ous functional groups on biosorbent surface and biosorp-
tion of Cu(II) ions onto G. acerosa. FCCCD of RSM was 
used to optimize the process conditions and maximize the 
Cu(II) removal. ANOVA showed a correlation coefficient 
(R2 = 0.99) significant P value, thus ensuring significant 
adjustment of quadratic model with experimental values. 
Biosorption kinetics followed pseudo-second-order model 
with film resistance as rate-controlling mechanism. The 
findings of the present investigation indicated that spent G. 
acerosa can be successfully used for biosorption of Cu(II) 
from aqueous and industrial wastewater.

Fig. 4   Response surface plot for interactive effects of a initial concentration and pH, b biosorbent dosage and pH, c initial concentration and 
biosorbent dosage on biosorption of Cu(II) onto spent G. acerosa 
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Fig. 5   Biosorption of Cu(II) 
kinetics onto spent G. acerosa, 
a pseudo-first-order, b pseudo-
second-order, c Elovich’s 
models

Table 4   Pseudo-first- and 
second-order kinetic constants 
for biosorption of Cu(II) onto 
spent G. acerosa 

Initial con-
centration 
(mg/l)

Pseudo-first order Pseudo-second order

Rate 
constant 
[

k
I
(1∕min)

]

Cu(II) 
uptake 
[

q
eq (mg/g)

]

Correlation 
coefficient 
(

R2

1

)

Rate 
constant 
[

k
II
(g/min)

]

Cu(II) 
uptake 
[

q
eq (mg/g)

]

Correlation 
coefficient 
(

R2

2

)

20 0.227 3.321 0.998 0.0520 06.329 0.997
40 0.232 5.652 0.985 0.0221 12.50 0.997
60 0.192 6.727 0.997 0.0128 18.181 0.996
80 0.208 8.415 0.987 0.0094 22.727 0.996
100 0.186 9.292 0.991 0.0063 27.027 0.995

Fig. 6   Biosorption of Cu(II) kinetics onto spent G. acerosa, a intra-
particle diffusion and b Boyd model
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