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Abstract
The accuracy of support vector regression (SVR) procedure in modeling the percentage of shear force carried by walls in a 
rectangular channel with rough boundaries was investigated. The SVR model is extended, and the more appropriate kernel 
function and input combination are studied. Finally, the SVR model with an exponential kernel function and three influ-
ence parameters was selected as the best SVR model with the lowest error. The output of this more appropriate SVR model 
is presented as a program. Then, this most appropriate SVR model is compared with three equations presented by other 
researchers for rough and smooth channels. The SVR model with the highest accuracy and lowest statistical values (RMSE 
of 0.565) performed the best compared with the other equations.
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Introduction

Flow structure is affected by the shear stress distribution in 
open channels. The flow resistance and characteristics of 
sediment and deposition are influenced by the bed and wall 
shear stresses. These shear stresses play important role in 
the determination of the values of average shear force car-
ried by walls (%SFw). Although experimental studies are 
widely adopted to measure the shear stress, the exhaustive 
and laborious procedures of experimental work prompted 
different approaches such as numerical, analytical and semi-
analytical methods used to calculate the shear stress distri-
bution (Bonakdari et al. 2015; Hosseini et al. 2019; Sheikh 
Khozani and Bonakdari 2016; Sterling and Knight 2002; 
Yang et al. 2012). These new methods are cost efficient and 
eliminate the difficulties, in particular reducing the errors 
of experimental works. Using a new method based on the 
entropy approach and presenting equations for calculating 
shear stress distribution in open channels with different 
cross sections of circular and rectangular were investigated 

(Bonakdari et al. 2015; Sheikh Khozani and Bonakdari 
2018; Sheikh and Bonakdari 2016). Numerous researches 
used the soft computing methods to predict different phe-
nomena in the hydrology and hydraulic fields (Azamathulla 
and Zahiri 2012; Bonakdari et al. 2018; Sheikh Khozani 
et al. 2017, 2018, 2019). Sheikh Khozani et al. (2016a, 
b) estimated %SFw in the smooth and rough boundaries 
using genetic algorithm artificial (GAA) neural network 
and genetic programming (GP). Not only the genetic-based 
modeling technique, the support vector machine (SVM) 
has also been receiving attention in modeling the reference 
evapotranspiration (Sheikh Khozani and Bonakdari 2018), 
stage–discharge relation including the hysteresis effect 
(Sheikh Khozani et al. 2018), suspended sediment (Yilmaz 
et al. 2018) and shear stress estimation in circular channels 
(Sheikh Khozani et al. 2017). Utilizing the advantages of 
SVR that are not depending on the dimensionality input 
space for complex computations and excellent generaliza-
tion capability with high prediction accuracy, this research 
attempts to investigate the performance of SVR in mode-
ling the percentage of shear force in channels with rough 
boundaries.

The aim of this paper is to minimize errors in estimating 
the shear stress distribution. As such, the designing process 
of more stable channels is permissible by having a more 
accurate prediction of %SFw. To achieve this goal, the SVR 
model is extended and the effective parameters of %SFw are 
determined. To find the most effective parameters, varying 
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input combinations were considered and investigated. Since 
the kernel functions are very important in the performance 
of SVR model, different kernel functions were studied and 
the best kernel function in estimating %SFw is selected. 
Finally, the performance of the most appropriate SVR model 
prediction was assessed based on three different regression 
equations which proposed by Knight (1981), Knight et al. 
(1984) and Knight et al. (1994).

Materials and method

Data used

The data measured by Knight (1981) in rough rectangular 
channels were used in order to predict the %SFw using the 
SVR model. The experiments were conducted in a flume 
with 15 m long, 460 mm wide, on a constant bed slope of 
9.58 × 10−4. The wall and bed shear force were measured 
using the Preston tube technique, whereby the %SFw was 
measured at different flow depths. Based on the data, Knight 
then extracted nonlinear regression formula for calculating 
the %SFw as an exponential function as:

where the relationships of α and β are

where ksb and ksw are the bed and wall roughness, respec-
tively. Knight et al. (1984) analyzed their own data including 
the data in Knight (1981) and plotted onto a log–log scale. 
By assuming a simple relationship between %SFw and B/h, 
they derived the following equation

Equation (2) can be rewritten in another form as

Knight et al. (1994) presented another regression equation 
with a relative wetted perimeter factor as
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These are some parameters in shear stress that affects the 
percentage of shear force (%SFw) such as the geometry of 
the channel (b), flow depth (h), bed and wall roughness (ksb, 
ksw), energy slope (Sf), flow velocity (V), fluid density ( � ), 
gravitational acceleration (g) and hydraulic radius (R). Thus, 
%SFw can be considered as a function of

Using the Buckingham’s theorem, the dimensionless 
parameters influencing %SFw can be written as

where B
h
 is the aspect ratio, Fr is the Froude number, ksb

ksw
 is the 

relative roughness and Re is the Reynolds number.

Support vector machines

The support vector machine (SVM) method (Vapnik 2000) 
is one of the most common machine learning methods used 
for various classification and simulation problems. The 
simulation branch of SVM that is applied to regression prob-
lems is known as support vector regression (SVR). SVR is 
used to find a relation between the input variables of 
X =

{
��⃗x1, ��⃗x2,… , ��⃗xn

}
 and the observed variables of 

T = {t1, t2,… , tn} . Therefore, SVR can predict the output 
vector of O = {o1, o2,… , on} by using the input variables. 
When O is closer to T, the SVR model has higher perfor-
mance. The inputs of this study are B

h
, Fr,

ksb

ksw
, Re , and the 

output is the %SFw. The linear regression that predicts the 
output using the inputs is defined as

where w represents the weight vectors and b is the bias. In 
the SVR method, the model is penalized when the errors 
exceed a defined constant, denoted as epsilon (ε). Penaliza-
tion is done by the loss function defined as
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where ζi is a nonnegative slag variable, ti is the observed 
output and yi is the output of the regression process. In this 
equation, the loss function is equal to zero if the difference 
between the regression and observed outputs is less than ε. 
Otherwise, the loss function takes amount. By using Eq. (7), 
it can be concluded that −� − �−

i
≤ ti − yi ≤ +� + �+

i
 must 

be correct. With this equation, the new shape of the loss 
function could be written as

The SVR process attempts to find the optimum regression 
function that minimizes the loss function. Therefore, if the 
empirical risk (Remp) is minimized, then the most accurate 
regression is obtained. The Remp is defined as

where yi is the output of the regression model and n is the 
number of considered samples. However, in the process of 
finding the minimum value of Remp, there is a probability that 
the size of the model would increase undesirably. Therefore, 
the complexity term should be added to Eq. (9) to minimize 
the issue. The regularized risk function (Rreg) [Eq. (10)] is 
defined as the summation of Remp and the norm of w, ||w||. 
Minimizing Rreg is a two-objective minimization which finds 
the most accurate regression with the smallest model size.

The standard form of Rreg (Çimen 2008; Smola 1996) is 
obtained by using Eqs. (8) and (10) as

where C is a positive constant that serves as a trade-off 
parameter to determine the degree of Remp.

The following linear regression equation is obtained from 
the minimization process of Eqs. (11) and (12),
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Kernel functions are employed to transfer the linear 
regression function into a nonlinear one. Therefore, the ker-
nel function is added to Eq. (13) as

where K(xi,xj) represents the investigated kernel function. 
Selecting the appropriate kernel function directly affects 
SVR model performance. Nonetheless, there is no defini-
tive rule to define kernel functions. Therefore, eight different 
kernel functions were employed in this study and their indi-
vidual performance was compared. Details of the considered 
kernel functions are presented in Table 1.

The optimum selection of the C and ε constants has a 
significant effect on SVR model performance. According 
to Table 1, despite the linear kernel function, other kernel 
functions have another constant that must be determined. 
Therefore, the results of each SVR model with the second 
to eight kernel functions are needed to determine the three 
parameters of C, ε and the kernel constant. In this study, 
these parameters are determined via trial-and-error method. 
In the trial-and-error approach, some loops are added to 
the main SVR program. Each constant was changed in 20 
stages; therefore, for each kernel function, nearly 8000 (that 
is 20 × 20 × 20) runs were performed.

Results

Goodness fit of model

Three statistical evaluation criteria were used in this study to 
assess the model performance, i.e., root-mean-square error 
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Table 1   Used kernel function equations

Kernel name Kernel equation Kernel 
constant
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(RMSE), mean absolute error (MAE) and average absolute 
deviation (%δ). The RMSE measures the goodness of rele-
vant fitted to %SFw values, and MAE yields a more balanced 
perspective of the goodness of fit at moderate prediction val-
ues. The %δ is a parameter that compares the error between 
experimental data and the SVR model results. These statisti-
cal parameters were utilized to identify the accuracy of dif-
ferent soft computing methods (Sheikh Khozani et al. 2016, 
2017). The selected statistical parameters are defined as:

where xim and xip are the measured and predicted values of 
%SFw, respectively.

Selection of the most appropriate kernel function

There is the possibility of using a nonlinear function in the 
input space for changing to a linear function in the character-
istics space if we can select an appropriate kernel function. 
Selecting the most appropriate kernel function was inves-
tigated through eight standard conversions of kernel func-
tions that are most used. In modeling using SVR, four non-
dimensional parameters of B/h, Fr, Re and kb/kw were used 
as inputs. As shown in Table 2, the exponential kernel func-
tion (RMSE = 0.0916, MAE = 0.0772 and %δ = 14.9238) is 
the most appropriate kernel, and the Laplacian functions 
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with RMSE of 0.0925 showed good results in predicting 
%SFw after the exponential function. The multiquadratic 
kernel function predicts the worst %SFw with the highest 
error values obtained, i.e., RMSE = 0.3189, MAE = 0.2613 
and %δ = 65.0621.

Figure 1 shows the results of different kernel functions 
for testing and training datasets as scatter plots. The trend 
line for the testing data is illustrated in Fig. 1. The coefficient 
of determination (R2) value shows how well the data fit the 
experimental results. The exponential kernel function with 
R2 of 0.9547 shows the highest adaption of predicted %SFw 
on its experimental value. For the test dataset, nearly all ker-
nel functions predicted underestimated values for %SFw. The 
sigmoid and multiquadratic kernel functions predict the least 
convincing results with R2 of 0.7705 and 9 × 10−8, respec-
tively. Obviously, when the multiquadratic kernel function 
was used, the model predicted a constant value of 0.4016 
for %SFw for all different aspect ratios. The straight line 
obtained for the trend line indicates that this model could not 
predict reasonable values for %SFw. Therefore, the exponen-
tial kernel function was selected as the more accurate Kernel 
function in the following step.

Selection of the most appropriate input 
combination

In this step, the parameters with less impact on the modeling 
output and increased the model complication are recognized 
and omitted from the model. The most important stage in the 
construction process of intelligent modeling is selecting the 
most appropriate input combination. To identify the most 
important parameters in modeling with SVR, eight different 
input combinations were studied to find the most important 
parameters in estimating the values of %SFw. Some of input 
combinations contain two variables since with increasing 
number of input variables; few soft computing methods can 
handle the modeling procedure. These input combinations 
are shown in Table 3.

Table  4 presents the results of the comparison 
between these input combinations. Input combination 

Table 2   Selection of the more 
appropriate kernel function

Kernel function Training Testing

RMSE MAE %δ RMSE MAE %δ

Linear 0.0662 0.0542 13.7508 0.1091 0.0854 16.4614
Polynomial 0.0406 0.0371 9.7428 0.0994 0.0824 15.5218
Radial basis function (RBF) 0.0445 0.0418 10.7680 0.1698 0.1334 27.5025
Exponential 0.0427 0.0393 9.8857 0.0916 0.0772 14.9238
Laplacian 0.0428 0.0394 9.9035 0.0925 0.0783 15.5444
Sigmoid 0.1091 0.0795 20.7184 0.1751 0.1286 27.4261
Rational quadratic 0.0421 0.0386 9.8336 0.1213 0.1029 20.2756
Multiquadratic 0.2627 0.2139 53.2506 0.3189 0.2613 65.0621
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Fig. 1   Scatter plot of the SVR 
model with different kernel 
functions
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(ii) produced the lowest values of statistical parameters, 
with RMSE = 0.087, MAE = 0.0674 and %δ = 12.6250. 
By ignoring the Re number, the model does not present 
accurate results and the error values evidently increased 
when this parameter was omitted. Input combination (viii), 
by ignoring the aspect ratio and Re, produced the worst 
predicted values with RMSE = 0.3181, MAE = 0.256 and 
%δ = 64.5425. Therefore, the Re and aspect ratio are the 
most influential parameters on estimating accurate shear 
force percentage values.

The results of selecting the most appropriate input func-
tion are illustrated in Fig. 2 as a scatter plot. The trend line 
for the dataset is also plotted in this figure to provide visuali-
zation on the prediction ability. Input combinations (ii) and 
(v) showed closer results to the fitted line while the equa-
tions of their trend lines indicate the goodness fit of these 
input combinations. The results of input combination (v) are 
better than input combination (ii). This is due to the omis-
sion of aspect ratio parameter in the input combination (v), 
which it plays an effective role in values of %SFw, and then, 
the input combination (ii) was selected as the most appro-
priate input combination. For input combination (viii), with 
omitting the influence of the aspect ratio and Re, the model 
could not estimate accurate results especially for testing data 
and this is supported by R2 of 0.0926. Also, by ignoring the 

Re values as an input parameter in modeling procedure, the 
model did not show a good performance in estimating the 
percentage of shear force carried by walls either.

The output of the best SVR model is presented in Fig. 3 
as a program for estimating the %SFw. This program was 
prepared in MATLAB software, and the exponential kernel 
function and input combination (ii) were used in the struc-
ture of this program. This program is simple, which is rarely 
seen in modeling with the SVR method. In this program, the 
three inputs in input combination (ii) consist of B/h, Fr and 
Re and were taken from the user. After using the exponential 
kernel function in calculations, the %SFw was obtained.

Comparison between the proposed model 
and regression equations

The SVR model was compared with some regression equa-
tions in predicting the percentage of shear force carried by 
walls. In modeling with the most appropriate SVR model, 
the exponential kernel function was used with input com-
bination (ii). Table 4 presents the results of this compari-
son. The SVR model with RMSE of 0.0565 performed 
the best compared to the regression equations obtained by 
other equations which proposed by researchers in this study. 
Knight’s (1981) equation presented for rough boundaries 
had good results with RMSE of 0.0641. On contrary, the 
other two equations which presented for smooth rectangular 
channels, shown in Table 5, did not have accurate results 
even with the highest values of statistical parameters. Since 
the equations presented by Knight (1981) showed the worst 
results of predicting %SFw, then it can be deduced that the 
roughness parameter has high influence on predicting %SFw. 
On the other hand, although the roughness ratio was omitted 
in input combination (ii), this model still could predict an 
accurate result for %SFw.

Table 3   The variables of each 
input combination

Number Input combination

(i) B/h, Fr, Re, ksb/ksw
(ii) B/h, Fr, Re
(iii) B/h, Fr, ksb/ksw
(iv) B/h, Re, ksb/ksw
(v) Fr, Re, ksb/ksw
(vi) B/h, ksb/ksw
(vii) B/h, Fr
(viii) Fr, ksb/ksw

Table 4   Statistical parameters 
for selection of the more 
appropriate input combination

Input  
combination

Training Testing

RMSE MAE %δ RMSE MAE %δ

(i) 0.0427 0.0393 9.8857 0.0916 0.0772 14.9238
(ii) 0.0392 0.0345 8.7039 0.0870 0.0674 12.6250
(iii) 0.0449 0.0428 10.9996 0.1746 0.1475 32.2359
(iv) 0.0437 0.0407 10.3011 0.1348 0.1174 23.6284
(v) 0.0411 0.0373 9.4435 0.0860 0.0718 13.7927
(vi) 0.0464 0.0446 11.5087 0.2029 0.1771 41.0301
(vii) 0.0439 0.0411 10.4538 0.1746 0.1369 28.7079
(viii) 0.0459 0.0439 11.1116 0.3181 0.2560 64.5425
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The results of testing are illustrated in Fig. 4 as scatter 
plots and hydrographs for the entire dataset. The figure 
shows a good agreement between the observed and pre-
dicted SVR model values. Moreover, the predicted %SFw 
values were close to the measured values; the results were 

closer to the line of agreement in the scatter plot than the 
other equations. The trend line for the SVR model and 
each equation is shown in scatter plots, where the gray 
straight line is for the SVR model and the black dash line 
represents other models. Interestingly, only the equation 

Fig. 2   SVR model with various 
input combinations for test data
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of Knight (1981) was able to estimate a more close predic-
tion values, and other equations were not able to accurately 
predict %SFw values. The performance of Eq. (2) is good 
for the data between the ranges of 1–20, but for the other 
data, the model overestimated predicted values for %SFw. 
As seen in Fig. 4, the values of %SFw which calculated 
using Eq. (3) provide similar findings with Eq. (2) and 
present low performance for estimating %SFw. The hydro-
graphs show the residual of experimental data and data 
predicted by the models. Evidently, the SVR model graph 
has lower deviation from the straight line, but the other 

equations which presented for smooth channels [especially 
Eqs. (2) and (3)] demonstrated higher deviation from the 
straight line.

Conclusion

The SVR model was used to predict %SFw in a rectangular 
channel with non-homogeneous boundary roughness. The 
SVR model was extended in two phases. The best kernel 
function was selected after investigating eight different ker-
nel functions, whereby the exponential kernel function was 
found to be the most appropriate. To study the amount of 
influence of different parameters on the %SFw values, four 
parameters were assumed and eight input combinations were 
selected for this purpose. The results showed that the influ-
ence of aspect ratio and relative roughness is higher in pre-
dicting the %SFw. Input combination (ii) containing B/h, Fr 
and Re was selected as the best input combination. Although 
the relative roughness was not included in the input combi-
nation (ii), the proposed model was able to present accurate 
results in predicting %SFw. A simple MATLAB code was 
presented as the output of the more appropriate SVR model. 

Fig. 3   Output of the more 
appropriate SVR model

Table 5   Statistical parameters of comparison between SVR and other 
equations

Models Statistical parameters

RMSE MAE %δ

SVR 0.0565 0.0430 10.0671
Knight (1981) 0.0641 0.0512 15.9240
Knight et al. (1984) 0.2413 0.1798 36.4885
Knight et al. (1994) 0.4048 0.3092 61.0681
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Finally, the best SVR model was compared with three equa-
tions presented by other researchers. It can be deducted that 
the equation for rough rectangular channels presented by 
Knight (1981) demonstrated good results of prediction of 
%SFw, but the SVR model with RMSE of 0.0565 performed 
better than Knight’s equation with RMSE of 0.0641. The 
equations for smooth channels derived by Knight et  al. 
(1984) and Knight et al. (1994) showed the worst results for 
predicting %SFw with RMSE of 0.2413 and 0.4048, respec-
tively. The smooth channel equations overestimated the val-
ues for %SFw in channels with rough boundaries. As such, 
these equations are not applicable for predicting %SFw in 
these channels. The SVR presents a high-performance model 
in predicting the hydraulic parameter of %SFw in rectangular 
channels with rough boundaries.
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