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Abstract
It is important to have reliable information on various natural and anthropogenic factors responsible for influencing and 
shaping stream water quality parameters as long as water resource conservation and management planning are concerned 
from the local to global scale. Daunting environmental pressures at multiple scales makes this necessity more pronounced 
owing to the special role of stream ecosystems in providing regional services. Understanding how coupled effect of natural 
and anthropogenic factors controls stream water quality parameters and how the relationships change over space and time 
will help policy makers and resource managers to target appropriate scales at watershed level for the quality management 
of stream waters. This paper sums up the information on various natural and anthropocentric factors as major determinants 
responsible for conditioning and shaping stream water quality parameters and their simultaneous influence on biota and its 
use.
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Introduction

Various factors influence the composition of stream water, 
causing variation from place to place (Ahearn et al. 2005; 
Sharma et al. 2016). The quality of river and stream water is 
very sensitive to anthropogenic influences (urban, industrial 
and agricultural activities, increasing consumption of water 
resources) as well as natural processes (changes in precipita-
tion inputs, erosion, weathering of earths crustal material) 
degrade the surface waters and impair their use for drinking, 
industrial, agricultural, recreation or other purposes (Jarvie 
et al. 1998; Ramírez et al. 2014; Kim and An 2015). All of 
the constituents of river water originate from dissolution 
of the earth’s rocks. The dissolution of rocks in the catch-
ment area is a major determinant of river water chemistry 
locally as well, but this varies with geology and with the 
magnitude of inputs through the amount, type and distri-
bution of precipitation, surrounding vegetation, catchment 

hydrology and land use (Hynes 1975; Hornung et al. 1990; 
Salmiati et al. 2017). Spatial variation is a functional attrib-
ute of various ecological factors encompassing the incom-
ing tributaries, longitudinal changes in catchment land 
use, soil characteristics or geology (Townsend et al. 1983; 
Meyer et al. 1988; Schultz et al. 1993). However, a tempo-
ral fluctuation is mostly due to seasonal shifts in biological 
activity in the catchment, variation in weather and changes 
in the hydrological pathways by which runoff reaches the 
river (Likens et al. 1977; Sutcliffe and Carrick 1983; Burns 
et al. 1998). Materials are concentrated by evaporation and 
altered by chemical and biological interactions within the 
stream. Stream water is found to vary considerably in chemi-
cal characteristics contrary to seawater, which is quite con-
stant everywhere and can be approximated with an artificial 
standard (Livingstone 1963; Allan 1995; Collins and Jenkins 
1996; Hornbeck et al. 1997; Jarvie et al. 1997; Fraser and 
Williams 1997; Lovett et al. 2000; Nakagawa and Iwatsubo 
2000; Turner et al. 2003a, b; Ahearn et al. 2004; Davies 
et al. 2005). The present paper provides a detailed account 
of various natural and anthropogenic factors responsible for 
conditioning and shaping water quality in stream ecosys-
tems. Clear and concise information on water quality can 
help in other water assessments.
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Water quality parameters

Temperature

According to Smith (1981), the annual thermal regime of 
a river is one of the most significant water quality param-
eters, being a key component in determining the distribu-
tion of aquatic organisms. Furthermore, the author opined 
that most of the physical, chemical and biological prop-
erties of water are temperature dependent. Temperature 
being one of the most important ecological factors is of 
great importance in streams (van Vliet et al. 2011; Beechie 
et al. 2013). Several workers have kept a stretch of stream 
under observation for a period of time from seasonal to 
diurnal cycles and have found that superimposed upon the 
seasonal changes there are diurnal cycles in temperature 
(Edington 1966; Webb and Walling 1985). Annual tem-
perature range in temperate streams is usually between 0 
and 25 °C (Matthews and Zimmerman 1990). These may 
amount to 6 °C in small streams in summer time (Edington 
1966), with lower values in large rivers. Large rivers and 
streams at some substantial distance from their sources 
are usually at more or less in a proportional equilibrium 
with the mean monthly air temperature at the point of 
measurement (Hynes 1970). In winter time, however, ice 
and snow form an insulating layer, and even in extreme 
climates such as that of Alaska, the water temperature 
does not fall below 0 °C (Sheridan 1961). In spring sea-
son, snow melt water may keep the temperature below 
that of the air for quite some time (Sheridan 1961). Many 
workers have shown that the summer time temperature of 
water increases downstream in such a way that the rise is 
more or less proportional to the logarithm of the distance 
from the source (Hynes 1970). Minckley (1963) found 
that 5 km from its source in a large spring, the tempera-
ture of Doe Run, Kentucky, varied from 6.1 °C in winter 
to 20 °C in summer, while the temperature at the source 
remained between 13 and 13.5 °C at all seasons. Streams 
flowing underground or through man-made culverts may 
be cooled or warmed in the process according to the sea-
son, and wind or shade may cause considerable changes. 
Macan (1958) reported a fall from 21.6 to 14  °C in a 
small stream flowing through woodland on an east-flow-
ing slope during a period of easterly wind, and Edington 
(1966) observed that shaded reaches in streams in north-
ern England are warmer in winter and cooler in summer, 
and reach their maximum temperature later in the year, 
an exposed reaches. Numerous studies have demonstrated 
that the presence of riparian woodland can decrease diur-
nal variability, mean and maximum stream temperatures 
(Crisp and Howson 1982; Malcolm et al. 2008; Brown 
et al. 2010; Roth et al. 2010; Imholt et al. 2012; Garner 

et al. 2014a, b) or, conversely, that forest removal results in 
temperature increases (Poole and Berman 2001; Macdon-
ald et al. 2003; Rutherford et al. 2004; Danehy et al. 2005; 
Moore et al. 2005). Meier et al. (2003) while modeling the 
effect of water diversion on the temperature of mountain 
streams reported that the reduction in discharge from 15.5 
to 4.9 m3 s−1 causes a downstream temperature increase 
of up to 3.7 °C. The high positive correlation between air 
and water temperature in streams increasing with distance 
has been observed by other workers as well (Zappa et al. 
2000; Smith et al. 2001; Uehlinger et al. 2003).

In contrast to lakes, rivers normally show little stratifica-
tion because of their turbulent flow (Hynes 1970). There are 
reports that streams may freeze altogether. Kamler (1965) 
reported freezing of streams in the Tatra Mountains in south-
ern Poland. Hynes (1970) reported the same in small streams 
on the Pennines in England. Underwater ice being of far 
greater biological importance forms during clear cold nights, 
and only in water which is not frozen over. Reports of the air 
temperature needed to cause its formation vary from − 15.6 
to − 23 °C (Needham and Jones 1959). Stream temperature 
is spatially and temporally variable (Hynes 1960; Biggs et al. 
1990) and is a function of the source water temperature and 
its transport time (Angelier 2003). Temperatures may be 
staying steady in large rivers with low flow speeds, but can 
go up and down quickly in steep shallow streams. Seasonal 
variation also results from changes in the hydrologic regime 
(Angelier 2003) and air temperature (Smith 1981). There is 
a proof that air temperature can be used to project influence 
of climate change on stream temperatures (Arismendi et al. 
2014). Smith (1981) found that stream temperatures in Great 
Britain were highly correlated to air temperature. In addi-
tion, other studies show that elevation, riparian vegetation 
and channel width effect stream temperature (Osborne and 
Wiley 1988; Gregory et al. 1991). These results indicate 
that readily available landscape variables, such as elevation, 
air temperature and riparian condition (Platts 1979; Van-
note and Sweeney 1980), may explain some variability in 
stream temperature. Change in river temperature is also in 
response to flow reductions (water abstractions) and releases 
below reservoirs have received increasing interest (Webb 
et al. 2008). Artificial reductions or increases in flow alter 
the assimilative thermal capacity of the river, resulting in 
an increased occurrence of high-temperature events and 
increases in temperature minima, respectively (Webb et al. 
2008; Hannah and Garner 2015).

Flow/discharge

The natural flow regime in rivers is now extensively con-
sidered essential to satisfy natural riverine ecosystems, as it 
maintains a wide range of abiotic and biotic environments 
and processes including material delivery, routing and 
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deposition that native ecosystems have adapted to (Naiman 
et al. 2000; Arthington et al. 2010). The flow regime is con-
sidered a ‘master variable’ as it affects riverine ecosystems 
directly (e.g., hydraulic habitat) and indirectly (physiology 
of individuals) (Resh et al. 1988; Kiernan and Moyle 2012). 
Indirect control mechanisms involve interactions with other 
environmental factors, such as sediment and air temperature 
(Caissie 2006; Yarnell et al. 2010), which are also vital to 
a river’s ecological functioning. Though the flow regime 
is only one factor influencing a river’s ecosystem (Olden 
and Naiman 2010), it is well established that the alteration 
of flow regimes often has negative consequences to native 
freshwater species and ecosystem functioning. The docu-
mented research suggested that the flowing water regime 
shows regional patterns that are determined primarily by 
river size and by geomorphic heterogeneity in climate, geol-
ogy, topography and vegetative cover (Poff et al. 1997; Gar-
nier and Mouchel 2013; Rheinheimer and Viers 2014). Both 
reservoirs and climate change alter flow regimes. The spe-
cific effects of reservoirs, dam operations and water diver-
sions on flow regimes vary widely (Grantham et al. 2010). 
The variability is dependent on not only the water manage-
ment scheme and specifics of the built infrastructure but 
also the antecedent environmental conditions and a range 
of context-dependent factors.

Hydrological variations play a major role in structuring 
the biotic diversity within river ecosystems as it controls key 
habitat conditions within the river channel, the floodplain 
and the hyporheic zones (Poff and Ward 1989; Lusardi et al. 
2016). Nakamura (1989) believed that local geomorphology 
has a marked effect on disturbance characteristics by influ-
encing temporal patterns in flow, discharge magnitude and 
substrate composition. The author suggested that through 
this effect on the frequency, intensity and severity of distur-
bance geomorphology can be expected to play an important 
role in the temporal persistence of invertebrate communities. 
Gregory et al. (1991) stated that the riparian vegetation is of 
prime importance in biodiversity conservation and aesthetic 
considerations in addition to its role in stabilizing channel 
and floodplains, and to control the amount of sediment, 
nutrients and agricultural pollutants reaching rivers from 
floodplains and hill slopes. The studies made by Kondolf 
(1997) suggested that in-stream mining directly alters the 
channel geometry and bed elevation and may involve exten-
sive clearing, diversion of flow, stockpiling of sediments 
and excavation of deep pits or gravel bar skimming. In all 
cases, the preexisting channel morphology is disrupted and 
a local sediment deficit is produced. Kondolf (1997) further 
emphasized that in-stream gravel mining may induce chan-
nel incision, bed coarsening and lateral channel instability, 
alteration of inter-gravel flow paths and thus degradation of 
salmonid habitat. Parfitt and Buer (1980) have concluded, 
while working on upper Sacramento River, California, as 

soon as the site was put to massive extraction of gravel from 
the riverbed, combined with trapping of bed load sediment 
behind Shasta Dam upstream and release of hungry water. 
These anthropogenic activities resulted in coarsening of the 
bed in such a way that spawning habitat of Chinook salmon 
was virtually eliminated in the reach. Poff et al. (1997) 
identified five critical components of stream flow regime’s 
process including magnitude, frequency, timing of flow (pre-
dictability) and the rate of change or flashiness that regulate 
ecological conditions. According to Sabater and Elosegi 
(2013) and Dynesius and Nilsson (1994), river flow has been 
subject to human modifications through increase in impervi-
ous areas in drainage basin, flood control of dikes, storage 
and abstraction of water for irrigation, drinking water and 
power production. Further, authors have enlisted various 
disturbing effects of river water diversion for the above-said 
purposes on biota and riparian vegetation, including pre-
vention and movement of biota, reductions in flow volume, 
changes in seasonal flow regimes, changes in downstream 
temperatures and nutrients, reduction in sediments and 
changes in downstream channel morphology, besides shift 
in species interactions and elimination of aquatic species, 
therefore altering the food web.

Light

Light is one of the most prominent abiotic factors that 
limit primary production in lotic ecosystem (Elwood et al. 
1981). Primary production in many lotic systems that are 
bounded by well-developed plant communities appears to 
be affected by low light levels and can intercept > 95% of 
incoming solar radiation, reducing photon density (Fisher 
and Likens 1973; Vannote et al. 1980). Minckley (1963) 
made a series of light measurements at the surface of Doe 
Run, Kentucky, a stream whose banks were still in fairly 
natural state. He further emphasized that the illumination 
reached a maximum in April as the sun rose higher in the 
sky, but it then fell steadily, as the leaves opened on the 
trees, to levels compared with those of midwinter. Indeed, 
in the narrow wooded gorge at the head of the stream the 
intensity of light at the stream surface was at its minimum 
during the summer, and it rose during the late autumn after 
leaf-fall. Hynes (1970) concluded that in unaltered streams, 
the periods of maximum illumination are spring and fall 
and that in the tropics the stream bed was always a fairly 
dark place before man cleared the riparian vegetation. He 
emphasized that it should not be forgotten that these are the 
conditions under which the biota of running water evolved. 
Hill et al. (1995) who studied the response of periphyton 
and grazing snails (Elimia clavaeformis) to summer shade 
in White Oak Creek in Tennessee deciduous forest observed 
that snails at normal densities harvested periphyton biomass 
to low levels irrespective of light regimes, but periphyton 
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was higher at the open sites where snails grew faster and 
accrued more lipid. Hornbach et al. (2015) while examin-
ing the impact of riparian vegetation and season on stream 
metabolism of Valley Creek, Minnesota, viewed that the 
stream was heterotrophic regardless of the kind of riparian 
vegetation. However, the nearness of a forested buffer zone 
support discouraged gross primary production (GPP) and 
furthermore brought about lower (less negative) ecosystem 
respiration (ER) and net biological system respiration (ER) 
and net ecosystem production (NEP).

Conductivity

Conductivity is a good measure of concentration of charged 
ions in waters and is strongly influenced by landscape-scale 
conditions. The geology in the catchment is the source of 
the ions that act as conductors of electricity (Cunningham 
et al. 2010; Olson 2012). Rock weathering, other natural 
sources and anthropogenic drivers account for majority of 
the dissolved ions in river water (Berner and Berner 1987). 
According to Golterman (1975), dissolved ions exhibit two 
patterns 1. It may decline with the increase in discharge and 
2. or it may not change greatly with fluctuations in discharge. 
In addition to the above-described patterns, ions have been 
found to increase the concentration with the increase in dis-
charge. Urban and agricultural land uses have been shown 
to increase conductivity levels (Wang and Yin 1997; Gray 
2004). In addition to urbanization, agriculture is also a sig-
nificant human activity that affects water quality, because 
it culminates in an increased input of sediments, nutrients 
and pesticides, which beyond water quality also affect the 
habitat structure and biological community (Allan 2004). It 
has been established that there are seasonal differences in 
conductivity that generally result from a negative relation-
ship with discharge volume (Caruso 2002; Gray 2004). The 
higher values of EC and TDS are the indicators of higher 
ionic concentrations, probably due to the high anthropogenic 
activities in the region and geological weathering condi-
tions acquiring high concentrations of the dissolved miner-
als (Costello et al. 1984). The local anthropogenic activi-
ties could be the discharges from intensive and prolonged 
agricultural activities (fertigation and chemigation) and dis-
charges from industrial and domestic wastes. Agricultural 
activities introduce ions and metals from fertilizers and other 
agrochemicals (Clenaghan et al. 1998; Laar et al. 2011a, b).

In most rivers and streams, the turbulent mixing ensures 
a uniform distribution of dissolved substances, although 
small, temporary discontinuities may occur in pools and 
deep places. In some large rivers, however, lateral differ-
ences caused by the entry of tributaries often persist over 
long distances as the inflowing water tends to follow the 
bank on which it entered. This has been observed in sev-
eral rivers in former USSR (Shadin 1956). The water of 

the Amazon, which is rich in electrolytes and has a high 
electrical conductivity, except at times of high water caused 
by heavy rains, is distinguishable from the water of the 
Rio-Negro, which is always poor in electrolytes, for about 
100 km below the confluence of these two great rivers, and 
the same applies to the Apuro and Caroni Rivers for 40 km 
below their conjunction to form the Orinoco (Gessner 1961). 
Total concentration of dissolved salts varies with discharge 
and is generally higher at times of low flow. It also generally 
increases downstream as larger and more varied landscape 
drain into the water course. This has been shown to occur in 
the Great Berg River in South Africa (Harrison and Elsworth 
1958) and the Ohio (Woods 1965), and it doubtless occurs 
in most rivers (Livingstone 1963; Hynes 1970; Allan 1995).

Glacier-fed streams and rivers are consistently cloudy 
and appear as pale-colored streaks on distant mountain land-
scapes and in heavily cultivated areas such as East Africa, 
the American Middle West and southern Ontario. Small 
streams are slightly turbid even at times of very low dis-
charge (Hynes 1970). At times of low water, however, most 
streams and rivers are normally fairly clean, although never 
as lakes, and they become turbid during floods when great 
amounts of suspended matter may be carried. In the middle 
Mississippi, for example, Dorris et al. (1963), who made 
a long series of measurements, found a good relationship 
between the discharge and the turbidity, and this is a fairly 
general phenomenon (Hynes 1970).

Dissolved gases

Oxygen and carbon dioxide occur in river water in signifi-
cant amounts. Occurrence of these major dissolved gases is 
influenced by partial pressure, temperature, salinity, respi-
ration and photosynthesis (Allan 1995; Wetzel and Likens 
2000). In addition to the above given factors, carbon dioxide 
concentration is influenced by groundwater inflows which 
are substantially enriched with carbon dioxide (Allan and 
Castillo 2007; Wetzel and Likens 2000). Diffusion of oxy-
gen across air–water interface tends to moderate changes 
in dissolved oxygen concentrations in streams. For streams 
having high surface area-to-volume ratio, diffusion becomes 
the major component in the regulation of in-stream oxygen 
concentration (Wilcock et al. 1995). The solubility of oxy-
gen is reduced at higher elevations due to lower atmospheric 
pressure and also due to increase in salinity, by about 20% 
in normal seawater (Allan 1995).

Welch (1952) pointed out that under natural conditions, 
the running waters typically contain relatively high con-
centration of dissolved oxygen tending toward saturation. 
According to the documented research, the concentration 
of dissolved oxygen in the rivers is perhaps of the greatest 
importance to the survival of the aquatic organisms (Wet-
zel and Likens 2000; Allan and Castillo 2007). Dissolved 
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oxygen (DO), a regulating parameter in stream ecology 
(Hynes 1960; Dauer et al. 2000; Chang 2002), is related 
to the biological oxygen demand in the stream. As organic 
matter increases, decomposition rates rise. Microbial bio-
mass increases in response to the addition of nutrients, and 
more oxygen is consumed. Oxygen is slowly replenished 
by atmospheric uptake, photosynthetic additions and the 
turbulent mixing of oxygen and water and in unpolluted 
headwater streams. DO concentration in water is inversely 
related to water temperature (Hynes 1960). Inputs from 
agricultural areas, such as fertilizers and animal manure, 
as well as sewage effluents from urban areas, are a com-
mon source of nutrients in streams (Sheets 1980). In small 
turbulent streams, the oxygen content is normally near or 
above saturation. Hall (1955), during his lengthy study of 
the chemistry of small forest streams, recorded the values 
that ranged from 100 to 129% saturation. In fact, even in tor-
rential stream the oxygen content varies seasonally and from 
source to mouth. DO levels as low as 2.35 mg L−1 (at 0 °C) 
have been recorded in the River Oka in March, although they 
rise somewhat before the ice breaks up, presumably because 
of increasing photosynthesis caused by increasing light in 
the spring (Shadin 1956). In many streams, there is like-
wise a diurnal variation in oxygen content. In many places 
where extensive diurnal variation has been observed, there 
were dense growth of aquatic plants, e.g., in several rivers in 
England where the phenomenon was first described (Butcher 
et al. 1937; Butcher 1940), and it is often particularly asso-
ciated with pollution which encourages algal growth in the 
presence of a fairly high oxygen demand (Schmassmann 
1951). But even in the absence of pollution, as in the English 
River Yare, variations up to 10 mg L−1 during 24 h have been 
observed (Owens and Edwards 1964). In large rivers, like 
the Mississippi and the Amazon, high water is accompanied 
by lowered oxygen concentrations, and these are brought 
about by the wash-in of organic matter and the decrease in 
photosynthesis caused by turbidity (Gessner 1961). High 
dissolved oxygen was recorded during winter season which 
may be due to high photosynthetic rate of phytoplankton 
communities in clear water that results in higher values of 
dissolved oxygen (Sharma and Rathore 2000; Ravindra et al. 
2003). Higher dissolved oxygen in winter season and lower 
oxygen in monsoon were also recorded in Haraz River in 
Iran (Pejman et al. 2009), many rivers of Gangetic plain, 
India (Rani et al. 2011), and several rivers of the Central 
Himalayas including the Chandrabhaga River (Sharma and 
Sharma 2007) and the Tons River (Sharma et al. 2009).

Carbon dioxide (CO2) concentrations in stream water 
are predisposed not only by atmospheric diffusion and in 
stream metabolism but also by groundwater inflows, which 
commonly are enriched with CO2 due to soil respiration 
throughout catchment (Allan and Castillo 2007). In addition 
to physical processes, two important biological processes 

including photosynthesis and respiration alter the concentra-
tion of CO2. Carbon dioxide (CO2) in high concentrations 
is fairly rapidly lost both to the atmosphere and by interac-
tions with calcium carbonate. In Walker Branch, Tennes-
see, stream water was always supersaturated with respect 
to the atmosphere and so outgassing occurred at all times 
(Jones and Mulholland 1998). Diel shifts in dissolved CO2 
can be large in highly productive lowland streams that sup-
port dense growths of macrophytes and microbenthic algae 
(Rebsdorf et al. 1991). Midday pH can increase by as much 
as 0.5 units owing to CO2 and pH interdependence. Rivers 
receiving significant amount of organic load, outgassing of 
CO2 is unable to compensate for excess CO2 generated by 
microbial respiration because the partial pressure of CO2 
(pCO2) in the water column can exceed that of the atmos-
phere by as much as 2–5 times (Small and Sutton 1986; 
Rebsdorf et al. 1991).

Neel (1951) and Minckley (1963) showed that in small 
streams in Kentucky, pools and small man-made impound-
ments reduce the oxygen and increase the carbon dioxide 
content in water as it passes through them. We can, there-
fore, assume that the rougher the stream bed, the more rapid 
the restoration of equilibrium and the more stable the envi-
ronment in respect of dissolved gases (Hynes 1970). Higher 
levels of free carbon dioxide (free CO2) throughout the study 
period, possibly because of groundwater inflows, are con-
siderably enriched by CO2 due to soil respiration through-
out the catchment (Mulholland 2003). The lower free CO2 
concentrations are related to higher pH, shallow depth and 
clear water (Allan and Castillo 2007). Summer high and 
winter low free CO2 concentrations attested to the typical 
inverse relationship of pH and free CO2 (Tucker 1984; Sar-
bar 1992). Free carbon dioxide present in water is chiefly 
begun from the respiration of aquatic biota, decomposition 
of organic matters and infiltration through the soil. Free CO2 
is an important parameter of the buffer system and impacts 
the concentration of carbonates, bicarbonates, pH and total 
hardness in water. Higher level of free carbon dioxide during 
winter season may be attributed to increased decomposition 
rate under the river bed following slowdown of river water 
current. In the findings of Gupta et al. (1996) and Gupta and 
Mehrotra (1991), maximum value of free CO2 was found in 
the month of January and minimum in August.

pH and alkalinity

Acidification of stream water, which is one of the major 
problems of stream ecosystems worldwide, can result from 
anthropogenic stresses such as acid mine drainage (Her-
lihy et al. 1990) or the atmospheric deposition of nitric and 
sulfuric acids (Angelier 2003). However, naturally acidic 
streams can further be found in areas with considerable 
humic inputs (Allan 1995). pH has been recognized as a 
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regulating factor in aquatic systems, and the biological 
components are severely affected at extremes of their pH 
tolerance. In aquatic ecosystems, photosynthesis and res-
piration often are the most important metabolic processes 
affecting pH. Photosynthesis produces oxygen and raises pH; 
aerobic respiration consumes oxygen and lowers pH. Tem-
perature regulates the rates of photosynthesis, community 
respiration, and other metabolic processes, and these rates 
are strongly influenced by inter-annual climate variation and 
also changes in climate over longer periods of time. Rates 
of photosynthesis and respiration in running waters also are 
influenced by hydrologic changes, including those associated 
with climate variation or water management (Cronin et al. 
2007). Nitrogen and sulfur emissions are secondary products 
of industrial fuel combustion, and atmospheric deposition 
of these constituents can cause significant acidification of 
soil and stream water (Driscoll et al. 2001). Nitrate may 
also add to acidification and is made by natural sources such 
as coniferous forests (Thomsen and Friberg 2002) or from 
anthropogenic sources such as agricultural areas (EHMP 
2004). As a result, streams that drain catchments dominated 
by coniferous forests or agricultural land uses tend to be 
acidic (Kawakami et al. 2001; Thomsen and Friberg 2002). 
The variation in pH is due to the presence or absence of free 
carbon dioxide and carbonate and periphytic algal density 
during various months (Lashari et al. 2009). The highest 
pH value was recorded during summer; this might be attrib-
uted to high photosynthetic rate due to the abundance of the 
algal population and increase in carbonate and due to the 
decomposition of organic matter (Kim et al. 2003; Kim and 
Kim 2006). The low pH values in autumn could be related 
to the overturn period and increase in rainfall both of which 
lead to reduction in pH value. The other factors responsible 
for variation in pH values include the combined effect of 
decrease in temperature and carbon dioxide concentration in 
water due to conversion of bicarbonate into carbonate (Sar-
bar 1992). Similar conclusion was made by Shaban (1980) 
and Toma (2000).

The weathering of parent material in the watershed is 
the key source of buffering substances found in the stream, 
which indicate that geology and climate expressively influ-
ence pH. The carbonate system, which consists primarily 
of calcium- and magnesium-bearing carbonates and solu-
ble nonresistant silicate minerals, is the key reason affecting 
the acid-neutralizing capacity (ANC) (Kang et al. 2001). 
If a sufficient amount of base cations, such as calcium, are 
present in the system, the hydrogen ions are removed from 
the solution, and the pH of the water remains stable (Kang 
et al. 2001). A number of research studies have indicated that 
ANC is strongly correlated to landscape variables and that 
statistical models can be used to make predictions in streams 
(Herlihy et al. 1998; Shirazi et al. 2001; Kellum 2003). 
Shirazi et al. (2001) investigated the relationship between 

catchment soil characteristics and water quality in the Mid-
Atlantic region and found that the mean ANC increased as 
the soil particle size decreased. The geology (Shirazi et al. 
2001; Kellum 2003; Cooper et al. 2004) and soil type (Shi-
razi et al. 2001) are related to ANC because the parent mate-
rial in the catchment is a significant source of carbonates 
(Jenny 1941), while the climate, elevation (Kellum 2003) 
and aspect of the catchment affect the rate at which the par-
ent material weathers. ANC tends to be lower in headwaters 
compared to larger streams that drain the watershed (Ward 
1992). Increased levels of ANC have been associated with 
catchments containing agricultural and urban land uses 
(Johnson et al. 1997; Herlihy et al. 1998; Kellum 2003), 
while forested watersheds tend to yield lower ANC values 
(Herlihy et al. 1998; Cooper et al. 2004). Streams with high 
alkalinity from limestone dissolution are considered to be 
highly productive than streams draining more inert bedrocks 
such as granite massifs (Krueger and Waters 1983). The 
presence of limestone rocks results in higher pH (Ormerod 
and Gee 1990). Alkaline water promotes high primary pro-
ductivity (Kumar and Prabhahar 2012). Alkaline nature 
of water was also reported in Greater Zab River, Iraq (Ali 
2010). Alkalinity (20–200 mg L−1) is common in most of the 
freshwater ecosystems including ponds, lakes, streams and 
rivers (Hem 1985; Ishaq and Khan 2013). Natural water is 
mostly alkaline in nature due to the presence of carbonates 
in sufficient quantities (Todd 1995).

Cations and anions

The major cations including calcium (Ca2+), magnesium 
(Mg2+), sodium (Na+) and potassium (K+) exhibit slightly 
different seasonal patterns in their behavior and make up 
most of the cationic content of freshwater ecosystems. Four 
major anions, bicarbonate (HCO3

−), carbonate (CO3
2−), sul-

fate (SO4
−) and chloride (Cl−), make up most of the ionic 

content of freshwater ecosystems. Other ions including 
phosphorus, nitrogen and iron make a minor contribution to 
total ions (Wetzel 2001). Concentrations of individual ani-
ons vary considerably on a spatial basis, owing to variability 
in natural and anthropogenic inputs (Allan 1995). Majority 
of the lotic systems across the different continents contain 
more than 50% HCO3

− and, from 10 to 30% (SO4
− + Cl), 

reflect the dominance of sedimentary rock weathering par-
ticularly carbonate minerals (Berner and Berner 1987).

In natural water bodies, calcium (Ca2+) is known to 
decrease the noxiousness of many chemical compounds 
(NO2) on fish and other aquatic life (William et al. 1986). 
Ca2+ occurs often in the form of calcium salts (CaCl2 or 
CaCO3). Ca2+ is removed by either ion exchange or calcite 
(CaCO3) precipitation. Calcite precipitation occurs when 
CO2 content (in balance) is low, causing chemical reaction 
process to reverse the direction (Nikanorov and Brazhnikova 
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2012). The magnesium ion (Mg2+) occurs as a result of 
chemical weathering and dissolution of dolomite, marls and 
other rocks. The Mg ion is rarely dominant in natural waters. 
This is due to the fact that Mg has weak biological activity 
and the highest solubility. The dissolution of Mg-rich min-
erals is usually a slow process (Ramesh and Jagadeeswari 
2012). The Ca:Mg ratio reduces in waters undergoing a 
medium-to-high water mineralization. Erosion of rocks 
(limestone and dolomite) and minerals (calcite and mag-
nesite) is the most common source of Ca and Mg. Leach-
ing of soil by erosion, pollution from sewage and indus-
trial waste can also contribute to Ca and Mg (Nikanorov 
and Brazhnikova 2012). The concentration of CO3

2− ions 
is insignificant compared to HCO3

− ions. Both CO3
2− and 

HCO3
− ions typically occur in the form of carbonate system 

of chemical equilibrium, usually related to the alkalinity 
(pH) and hardness of water which gives an unpleasant taste 
to water. HCO3

− and CO3
2− ions are the key ions in waters 

having pH > 8.2. The sources of CO3
2− and HCO3

− ions are 
the erosion of carbonate rocks (limestone, dolomite, magne-
site), which results in precipitation of CO2 (Nikanorov and 
Brazhnikova 2012). Bouwer (1978) indicated that HCO3

− is 
mainly produced due to the action of CO2 from the atmos-
phere and released from organic decomposition. Dissolution 
of carbonic acid (H2CO3) is also the source of HCO3

− ions 
(Ramesh and Jagadeeswari 2012). HCO3

− ions are usually 
prevailing in waters with low mineralization, often in waters 
with moderate mineralization (Anonymous 2013). The high 
values of hardness recorded amid winter season in the Baldi 
stream may be ascribed to the increased mobilization of 
hardness causing components like calcium and magnesium 
to be discharged from the subsurface ground waters having 
higher hardness (USEPA 2000; Badrakh et al. 2008; Sharma 
et al. 2016). Higher values of hardness were also reported 
in Haraz River, Iran (Jafari et al. 2011). The concentration 
of calcium ranged from 68.33 mg L−1 (S1) to 60.35 mg L−1 
(S3) in the Baldi stream (Sharma et al. 2016). As compared 
to calcium concentration, a low concentration of magnesium 
was observed in Baldi stream (Sharma et al. 2016).

Potassium minerals have a weak migratory ability (Nika-
norov and Brazhnikova 2012) and are resistant to decompo-
sition by weathering (Pradhan and Pirasteh 2011). Moreover, 
most salts of Na are not active in chemical reactions even 
if they are readily soluble in water (Pradhan and Pirasteh 
2011). Weathering of Na–K-bearing minerals/rocks (halite, 
feldspar and montmorillonite), ion (cation) exchange pro-
cess, pollution from industrial effluent and domestic sewage, 
and/or agricultural activities are responsible for the domi-
nance of Na–K in water bodies. Halite (NaCl) dissolution 
can also be the source of Na. The main source of K in the 
watershed would be weathering of potash silicate minerals 
and agrochemicals (potash fertilizers). The source of Na ion 
may be due to deposition of rock salts, weathering of rocks 

(limestone), and its displacement from absorbed complex of 
rocks and soils by Ca and Mg.

Chloride ion typically exists in the form of chlorine salts 
(NaCl, CaCl2 and MgCl2) and is highly soluble in water. 
Their presence in water is generally related to leaching from 
minerals (gallite, sylvite, carnallite and bischofite), rocks 
(nephelines) and saline deposits. It also results in industrial 
and municipal wastes and irrigated agricultural activities 
(Anonymous 2013). The natural sources of Cl− ions include 
sedimentary rocks and other common evaporate minerals 
(chloride salts) (Pradhan and Pirasteh 2011; Ramesh and 
Jagadeeswari 2012).

Sulfur, an important constituent of natural waters, origi-
nates from natural sources including mineral weathering 
(Alewell et al. 1999), volcanoes, decomposition of organic 
matter and sea salt from the ocean surface (Kellogg et al. 
1972; Nikanorov and Brazhnikova 2012; Herojeet et al. 
2013). However, sulfur is also produced by industrial 
sources, such as mining, paper mills, textile mills and tan-
neries (Singleton 2000a, b). Atmospheric emissions of sulfur 
from the burning of fossil fuels result in bulk precipitation 
and dry deposition of SO4

2− (Alewell et al. 1999). Agricul-
tural fertilizers have also been shown to produce elevated 
SO4

2− levels in stream water (Kellogg et al. 1972).

Nutrients

Dissolved inorganic phosphorus, inorganic nitrogen as 
nitrate and ammonia, silica and iron are generally regarded 
as critical nutrients to the aquatic ecosystem functioning 
(Dodds 2002; Allan and Castillo 2007). Nitrogen, phospho-
rus, silica and iron are the nutrients most often studied by 
aquatic ecologists (Dodds 2002). Nutrients in dissolved inor-
ganic forms enter the streams from upstream, groundwater, 
surface runoff and atmospheric inputs (Allan 1995; Allan 
and Castillo 2007). Nitrogen and phosphorus are the major 
nutrients, and their sources and supplies vary considerably 
with geology, soil, climate and vegetation (Dodds 2006). 
Nitrogen and phosphorus concentrations are often elevated 
owing to the anthropogenic inputs (Carpenter et al. 1998). 
Significant anthropogenic inputs of nitrogen and phospho-
rus to streams include agricultural fertilizers, atmospheric 
deposition, nitrogen fixing crops and human and animal 
wastes (Boyer et al. 2002). Anthropogenic sources include 
municipal and industrial wastewaters, termed point source 
pollution, because it enters surface waters at a point, usu-
ally through a pipe; fertilizers and manure from farm fields 
referred to as nonpoint sources because of their diffuse entry 
into streams via surface and subsurface runoff (Edwards 
et al. 2000; Goller et al. 2006). Dissolved nutrients are 
incorporated into organic form by biological uptake and 
assimilation, moving through food web by consumption, and 
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subsequently mineralized to inorganic form by excretion and 
decomposition of organic matter.

The principal dissolved form of silica is silicic acid, origi-
nating from the weathering of aluminosilicate minerals and 
from anthropogenic inputs, mainly sewage discharges (Allan 
1995). Silica in rivers rarely is in short supply, and concen-
trations of silicon in rivers and streams remain remarkably 
constant over time (Wetzel 2001). The occurrence of iron in 
aquatic ecosystem is dependent on oxidation and reduction. 
Iron occurs as ferric and ferrous ions in oxic and anoxic 
habitats, and process is strongly influenced by microbiologi-
cal activity. It also occurs as a metal pyrite (FeS) in anoxic 
habitats and a flocculent precipitate (Fe (OH)3) in oxic con-
ditions (Hem 1985; Dodds and Welch 2000).

Odum (1956) concluded that polluted streams, which are, 
of course, greatly enriched by nutrients, are possibly the 
areas of highest primary production on the planet. It is per-
tinent to maintain here that running water, simply because it 
is running, is a richer habitat than still water. This has been 
pointed out long ago by Ruttner (1926), who stressed that 
current, by preventing the accumulation of a shell of depleted 
water round an organism, constantly presents fresh material 
to its surface to replace that used by metabolism. Phospho-
rus occurs primarily as phosphates in natural waters, which 
can be separated in inorganic and organic forms. Phosphate 
concentration depends on natural weathering of minerals in 
drainage basin, biological decomposition of organic matter 
and as runoff from human activities in urban and agricul-
tural areas (Dodds et al. 1998; Sharpley 1995). Phosphorus 
levels are generally higher in areas draining sedimentary 
rock deposits (Dillon and Kirchner 1975). Anthropogenic 
sources include municipal sewage (point source pollu-
tion) and fertilizers and manure from farmlands (nonpoint 
sources) because of their diffuse entry into streams via sur-
face and subsurface runoff (Edwards et al. 2000; Goller et al. 
2006). Inorganic phosphorus, as orthophosphate (PO4

3−), is 
biologically accessible to primary producers that depend on 
phosphorus for production and has been established to be 
a significant nutrient limiting maximum biomass of these 
organisms in many inland systems (Allan 1995; Dodds and 
Welch 2000; Dodds 2002). Phosphorus concentration var-
ies seasonally considerably owing to changes in hydrology, 
growing season and the changes in anthropogenic inputs 
(Allan and Castillo 2007). Phosphorus generated from plant 
breakdown and stored in the soil organic layer is an impor-
tant input, entering streams by surface runoff and subsurface 
pathways (McDowell et al. 2001).

Sharpley and Syers (1979) from their study have con-
cluded that the animal waste and fertilizers are the major 
source of nutrient enrichment to the streams from runoff 
events, subsurface flow and point sources such as farm 
ponds. The main sources of nitrate and phosphate in natu-
ral streams are rainfall and the land surface (Hynes 1970; 

Schuetz et al. 2016). It is also known that drainage from 
agricultural land produces large amounts of nitrate and phos-
phate. Turner et al. (2003a, b) in their study on Widdybank 
Fell, Upper Teesdale National Nature Reserve, an upland 
area of northern England found occurrence of highest con-
centrations of organic P in ‘pulses’ during the spring. These 
pulses were attributed to have originated in the soil follow-
ing drying and; rewetting cycles, and appeared to demon-
strate hydrochemical connectivity between soils and streams. 
In Wisconsin, it was found that runoff constituted about 
7.7 kg of nitrate nitrogen and 0.38 kg of phosphorus per 
hectare per year (Sawyer 1947). Similar figures have been 
given by Owen and Johnson (1966) for phosphate draining 
into streams in southern Ontario. Madler (1961) made an 
extensive study of phosphate in streams, and he found that it 
was soon eliminated from the water. Neel (1951) noted that 
the concentration of both nitrogen and phosphorus nutrients 
decreased as the water passed over riffles. Minckley (1963), 
while working on Doe Run, recorded that the water was 
exceptionally rich in nutrients from the limestone feeding 
spring source; however, the concentration decreased during 
periods of low flow. The observations in Volga show that the 
nitrate content of the water may fall to zero in the summer 
and rise to well over l mg L−1 in the winter when plants are 
not active (Shadin 1956). Exceptional areas of plant growth, 
such as the Sudd on the White Nile, act as traps for nutrients 
(Talling 1957). Nitrogen, phosphorus and silicon are most 
heavily utilized nutrients and are of primary importance. 
These inorganic material forms that are necessary for life 
are referred to as macronutrients (Allan 1995).

The dissolved inorganic forms of nitrogen are always in 
a dynamic state in aquatic ecosystems. Nitrogen occurs in 
a variety of inorganic and organic forms, and concentra-
tion of each form is biologically mediated depending on 
temperature profile of the environment (Wetzel 2001; Kay-
ranli et al. 2010). The sources of these various forms of 
nitrogen include atmospheric diffusion, runoff and anthro-
pogenic inputs from sewage discharge and agricultural fer-
tilizers (Bernhardt et al. 2002; Juhair et al. 2011; Swaney 
et al. 2012). Ammoniacal nitrogen is one of the important 
bioavailable forms of nitrogen and is generally used prefer-
entially over nitrate and nitrite by autotrophs, bacteria and 
fungi (Kemp and Dodds 2001; Bernot et al. 2006). Natural 
concentrations of NO3 in stream water are small compared 
to streams pretentious by anthropogenic inputs (Meybeck 
1982), which are generally responsible for elevated NO3 
levels in stream water (Chapin et al. 2002). Agricultural 
fertilizers may be flushed from fields during storm events 
and are a source of NO3

− in stream water. Feed lots also 
act as agricultural point sources because animal manure 
contains NO3 (Sheets 1980; Ding et al. 2015). Inputs from 
urban areas, such as NO3-rich municipal waste water (Allan 
1995) that comes from residential fertilizers, septic systems, 
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and garbage dumps are important sources of nutrients in 
streams (Sheets 1980). Therefore, it is important to correlate 
NO3

− with percent agriculture (Osborne and Wiley 1988; 
Herlihy et al. 1998; Kebede et al. 2014) and percent urban 
land use in the watershed (Herlihy et al. 1998; Arango and 
Tank 2008; Huang et al. 2014). NO3

− has been found to 
exhibit higher concentrations under storm-flow conditions 
in certain rural catchments, suggesting diffuse (catchment) 
sources, possibly derived from agricultural runoff (Jarvie 
et al. 1997; Ding et al. 2015). Leira and Sabater (2005) 
recorded an increased concentration of nutrients down-
stream in many Catalan rivers, North Eastern Spain, which 
varied more spatially than did other major variables. Liera 
and Sabater (2005) believed that such variations result from 
extensive applications of chemical fertilizers in agricultural 
areas and diverse sewage inputs. Wakida and Lerner (2006) 
believed that there are nitrate sources, other than agricultural 
fertilizer additions, related to urban development that can 
increase nitrate concentrations in water. Xue et al. (2016) 
using isotopic and hydrochemical approaches recorded that 
domestic sewage and agricultural activities are the main 
sources of nitrate in the Weihe River watershed, China.

Silica is exclusively derived from the weathering of sili-
cate rocks. Concentrations of silica, a micronutrient, thus 
vary considerably with underlying geology and also increase 
substantially with the increase in temperature (Wetzel 2001). 
Depletion of silica tends to occur more often in lakes and 
reservoirs than in running waters (Cambers and Ghina 2005). 
The occurrence of iron in aquatic ecosystems is primarily 
dependent on environmental conditions, especially oxida-
tion and reduction. Flowing waters, fully aerated, should 
not contain more than a few micrograms of uncomplexed 
iron at equilibrium in the pH range of 6.0–8.5 (Chapman 
and Kimstach 1992; Dodds and Welch 2000; Dodds 2002).

Land‑use/land‑cover change

Human activities are responsible for a great extent in the 
modification of land use/land cover (LULC) worldwide, 
thereby affecting lotic systems and their watersheds (Schnai-
berg et al. 2002). LULC in a watershed can influence the 
overall quality of stream ecosystems by directly altering 
hydrology, physicochemical conditions, and benthic habitat 
conditions, which, in turn, alters assemblage composition 
(Clements et al. 2000; Bledsoe and Watson 2001; Riis and 
Sand-Jensen 2001; Boyer et al. 2002; Schuetz et al. 2016). 
Hynes (1975) argued with a lasting impact that ‘In every 
respect, the valley rules the stream.’ Streams are progres-
sively investigated from a landscape perspective, both as 
landscapes in their own right and as ecosystems that are 
being strongly influenced by their catchment characteris-
tics at multiple scales (Allan et al. 1997; Townsend et al. 
2003). Effect of land use on a stream ecosystem can vary 

depending on many factors, including riparian forest buffer 
quality, watershed size, reach location within its watershed, 
the presence of other pressures, and the scale on which land 
use is measured (Roy et al. 2003).

Ecologists have documented that rivers and streams are 
influenced by the land use/land cover through which they 
flow (Hynes 1975; Vannote et al. 1980; Schuetz et al. 2016). 
Land-use patterns in a watershed influence the delivery of 
nutrients, sediments and contaminants into receiving waters 
through surface flow, groundwater flow, organic inputs and 
atmospheric deposition (Jordan et al. 1997; Arango and 
Tank 2008; Huang et al. 2014). Streams are progressively 
investigated from a landscape perspective, both as land-
scapes in their own right and as ecosystems that are being 
strongly influenced by their catchment characteristics at mul-
tiple scales (Allan et al. 1997; Fausch et al. 2002; Townsend 
et al. 2003). Percentage of agricultural land use/land cover at 
catchment scale is a prime predictor for nitrogen and phos-
phorus (Hill 1981; Liu et al 2004; Johnson et al. 1997; Smart 
et al. 1998; Ferrier et al. 2001; Ahearn et al. 2005). Never-
theless, bare lands coverage is the key variable to predict 
nitrogen concentrations (Hunsaker and Levine 1995) that 
indicates a pronounced effect of weathering of bare rocks 
and gravels on nitrogen contents in the fluvial system (Hol-
loway et al. 1998; Sliva and Williams 2001). Research has 
validated that changing land use/land cover may affect in-
stream habitat and macroinvertebrate communities in num-
ber of ways. According to Quinn et al. (1997), the removal of 
streamside vegetation and subsequent increased solar radia-
tion reaching the stream channel can elevate temperatures 
and alter thermal regimes that are critical to the life history 
and ecology of macroinvertebrates. Allan (2004) reported 
that the flow pathways and nutrient inputs are governed 
by integrated effects of land use. According to Allan et al. 
(1997), increase in the concentration of nitrogen and phos-
phorus in stream water is the direct result of the increase 
in agricultural and urban land use, while as a decrease in 
the concentrations of both the nutrients is because of the 
increase in forest land cover. Johnson et al. (1997) reported 
that land use within the riparian zone and throughout the 
catchment was equally effective in prediction of total nitro-
gen, nitrate, orthophosphate and alkalinity. Numerous 
studies have documented that the decline in water quality, 
habitat and biological assemblages as the extent of agricul-
tural land increases within catchments (Wang et al. 1997; 
Ding et al. 2015). Majority of the studies have concluded 
that agricultural land use strongly influences stream water 
nitrogen (Arheimer and Liden 2000; Poor and McDonnell 
2007; Kebede et al. 2014), phosphorus (Arheimer and Liden 
2000), and sediments (Allan et al. 1997; Johnson et al. 1997; 
Schuetz et al. 2016).

Roth et al. (1996) found higher index of biotic integrity 
(IBI) scores in areas of higher forest and lower agriculture. 
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Similarly, Wang et al. (2000) reported the IBI increase with 
the increase in forest cover than agricultural and urban land 
cover. The forest cover in the Vishav catchment is declining 
at a faster rate as a result of deforestation for the conver-
sion to agricultural purposes and extraction of timber for 
construction purposes. According to Allan (2004), decline 
in forested land and increase in agriculture and urban lands 
frequently are predictors of a degraded state of the habitat 
and biota. Forest cover is an important aspect of good health 
(ecological conditions) of stream ecosystems as even mod-
est riparian deforestation in highly forested catchments can 
result in degradation of stream habitat owing to sediment 
inputs (Sutherland et al. 2002).

Urbanization

Recent expansion of urban land areas all over the world has 
affected the chemistry and biology of streams in number of 
ways (Paul and Meyer 2001; Walsh et al. 2005a, b). With the 
increase in impervious surface cover (ISC), the infiltration 
of precipitation into soil decreases, resulting in earlier peak 
stream discharges and have short duration (Paul and Meyer 
2001; Walsh et al. 2005a, b). Urbanization exerts profound 
effects on the landscape and associated aquatic systems, such 
as redirection of rainfall by impervious surfaces and increase 
in surface runoff (Mcmahon and Cuffney 2000), increase in 
sediment load, and decrease in sediment particle size (Chad-
wick et al. 2006; Brown et al. 2009). Urban land use also has 
adverse effects on the stream and water quality, especially 
when present in critical amounts and close to the stream 
channel (Wang et al. 2000, 2001). Major changes associ-
ated with increased urban land area include increases in the 
amounts of pollutants in runoff conveyance, increased water 
temperatures owing to the loss of riparian vegetation and 
warming surface runoff on exposed surfaces, and reduction 
in channel and habitat structure owing to sediment inputs, 
bank stabilization and restricted interaction between the 
river and its margin (Paul and Meyer 2001). From the docu-
mented research, the catchment analysis revealed that urban 
land contributed much lesser (1.5%) to the total catchment 
area, suggesting that this area may not cause many changes 
to the natural functioning of the fluvial system. According to 
Paul and Meyers (2001), range of 10–20% impervious area 
or urban land provides a threshold to the stream health con-
ditions. Morley and Karr (2002) observed a strong decline in 
benthic IBI with increasing urban land cover. Several studies 
of urban ecosystems suggest that stream conditions respond 
nonlinearly to urbanization and that serious degradation 
takes place in the range of 15–25% urban land cover or urban 
land cover or impervious surface (Wang et al. 2000). Li et al. 
(2008) found a significant positive correlation between dis-
solved phosphorus and urban land area while working out 
the water quality in relation to land use and land cover in 

Han River basin, China, which was consistent with previous 
reports (Osborne and Wiley 1988; Ferrier et al. 2001; Sliva 
and Williams 2001).

In comparison with rural streams, urban streams are 
characterized by elevated concentrations of solutes, such as 
nitrate, sulfate, chloride and base cations, even under base-
flow situation (Wernick et al. 1998; Mcmahon and Cuffney 
2000). Lewis et al. (2007) found that the concentration of 
most major anions and cations (nitrate, sulfate, chloride, 
sodium, potassium and calcium) was highest in urbanized 
headwaters, while examining the influence of headwater 
urbanization on the water chemistry, microbiology and fish 
communities of the Big Brushy Creek watershed, in the 
Piedmont of South Carolina, USA.

Conclusion

Our paper focused on the influence of local determinants 
including both natural and anthropogenic factors on stream 
water quality. Local determinants profoundly contribute to 
the spatiotemporal variation of stream water quality. Natu-
ral determinants related to geology, atmospheric deposi-
tion associated with precipitation, weathering process and 
anthropogenic inputs related to urban, industrial and agri-
cultural activities were identified as potential factors to drive 
spatiotemporal variations in stream water quality. Anthro-
pogenic activities and catchment characteristics drive spa-
tial variability in stream water quality parameters. Indeed, 
understanding how this relationship changes over space and 
time will help policy makers and resource managers to target 
appropriate scales at watershed level for the quality conser-
vation and management of stream waters.
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