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Abstract
Weirs are a commonly used system to adjust water surface level and to control the flow in canals and hydraulic structures. 
Labyrinth weirs are a type of weirs that can pass through a certain amount of flow which has a lower upstream water level 
than the linear weirs, by increasing the effective length. In the present study, the performance of multilayer perceptron (MLP) 
networks, radial basis function networks and support vector machines with different kernel functions were investigated in 
order to estimate the discharge coefficient (Cd) of labyrinth weirs with quarter-round crests. For this purpose, 454 labora-
tory data were used. The non-dimensional parameters of L/W, a, W/P, and Ht/P were considered as the input, and the non-
dimensional parameter of Cd was regarded as the output in the models. In comparison with the other models, the performance 
of the MLP model with RMSE, R, and DC of 0.019, 0.985, and 0.971, respectively, was more acceptable and closer to the 
experimental data. Also, the data density plot and the violin plot showed that the dispersion and distribution of the probability 
of the estimated data to the MLP model with the data obtained from the laboratory have a very close and similar adaptation.

Keywords  Discharge coefficient · Labyrinth weirs · Multilayer perceptron network · Radial basis function network · 
Support vector machines

Introduction

Increasing the amount of flow rate in different structures was 
always a field of interest for researchers. Decreasing sedi-
mentation in reservoirs (Zahabi et al. 2018) and the creation 
of an opening in a broad-crested weir body to increase the 
discharge coefficient (Daneshfaraz et al. 2019) are exam-
ples of improving the flow rate. The other vital structures 
that can control the flow rate are weirs. The volume of flow 
over the weirs depends on the length and shape of the crest 
of the weir. Many researches have been done on the effect 
of the hydraulic and geometric parameters on the Cd and 
the amount of flow discharged from the weir. One of the 

effective ways to increase the weir length at a given width is 
to use weirs with nonlinear plans such as triangular, trape-
zoidal, circular, and parabolic. These weirs have been known 
as labyrinth weirs and are usually made in one cycle or sev-
eral cycles. Through constructing this type of weirs, the 
volume of the flow through them increases, and a lower free 
height will be needed upstream in comparison with linear 
weirs. This issue is critical when they act as flood discharg-
ing structures and facilitate the flow of the flood (Crookston 
and Tullis 2012a).

Study on the labyrinth weirs hydraulics is conducted by 
the physical and numerical approaches. Crookston and Tullis 
(2012b) tested some configurations of arced labyrinth weirs 
and observed increased efficiency. Dabling et al. (2013) 
investigated the hydraulic performance of labyrinth weirs 
which consist of two crest elevations as an alternative to 
multiple-staged labyrinth weir layouts. Kabiri-Samani et al. 
(2013) performed a combined analytical and experimental 
investigation on a rectangular labyrinth weir. Their results 
showed that rectangular labyrinth weir represents an effec-
tive alternative and could be five times more efficient than 
corresponding traditional broad-crested weir. Carollo et al. 
(2017) studied the dimensionless stage–discharge relation 
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for a sharp-crested triangular labyrinth weir. They found that 
the length magnification ratio affects the flow magnification 
ratio.

Recent research efforts have included numerical mod-
eling and CFD as an additional design tool (Seo et al. 2016; 
Daneshfaraz et al. 2016; Daneshfaraz and Ghaderi 2017). 
Another way for numerical modeling is related to the use of 
soft computing techniques for predicting the hydraulic prop-
erties of weirs such as discharge coefficient (Azamathulla 
et al. 2016). In this regard, researchers used an artificial 
neural network (ANN), group method of data handling 
(GMDH), gene expression programming (GEP), and adap-
tive neuro-fuzzy inference system (ANFIS). Juma et al. 
(2014), using artificial neural network (ANN), analyzed the 
hydraulic properties of semicircle weirs. They showed that 
the results of artificial neural networks were in good agree-
ment with laboratory results.

Roushangar et al. (2017) investigated the determination 
of the Cd of labyrinth and archery labyrinth weirs with the 
support vector regression method. Their results showed that 
the vector support regression method had high efficiency in 
determining the Cd of labyrinth weirs. Karami et al. (2018) 
investigated the rectangular labyrinth weirs with sup-
ported vector machine models, artificial neural networks, 
and genetic algorithms. They compared the results of these 
models with the experimental data and found out the sup-
port vector machines represented better results than the other 
models.

Moreover, support vector machines have been exten-
sively used in various fields (Zhou et al. 2015; Nadiri et al. 
2018; Sadeghfam et al. 2019; Azimi et al. 2019).

The prediction of the Cd of the labyrinth weirs has always 
been important for the researchers in this area; therefore, 
several methods including empirical, quasi-empirical, time 
series, and artificial intelligence models have been devel-
oped. Among these, artificial intelligent models by being 
inspired by nature have been able to estimate the parameters 
of natural phenomena with acceptable accuracy.

Reviewing the literature has shown that there have been 
limited studies conducted on artificial models for estimating 

the Cd of labyrinth weirs with quarter-round crests. There-
fore, in the present study, using the experimental data of 
Crookston and Tullis (2013), the performance of artifi-
cial neural networks (ANNs) and support vector machines 
(SVMs) with different kernels was examined for estimating 
the Cd of labyrinth weirs with quarter-round crests.

Materials and methods

The dynamic behavior can be described by a set of equations 
known as the St. Venant equations (Daneshfaraz and Kaya 
2008). The one-dimensional equation of flow on labyrinth 
weirs is a function of the total upstream head (h) in meters, 
weir’s crest length (L) in meters and Cd without dimension, 
which is obtained from Eq. 1 (Tullis et al. 1995).

Using the dimensional analysis method and consider-
ing the geometric, kinematic, and dynamic parameters, the 
effective parameters on the Cd in labyrinth weirs included 
the total upstream head (h), inside apex length (A), outside 
apex length (D), centerline length of the sidewall (Lc), num-
ber of cycles (N), the whole width of the spillway (W), the 
walls’ angles (a), the weir’s height (P), the wall thickness 
(tw), and the shape of the weir’s crest (Lc = N (2lc + A + D). 
Crookston and Tullis (2013) conducted studies on labyrinth 
weirs with quarter-round crests; the effective parameters in 
them can be seen in Fig. 1.

Artificial neural networks

Artificial neural network (ANN) is a nonlinear mathematical 
model that is able to simulate arbitrarily complex nonlinear 
processes, which relate inputs and outputs of any system. 
In many complex mathematical problems that lead to solv-
ing complex nonlinear equations, multilayer perceptron net-
works are common types of ANN widely used by researchers 
(Parsaie 2016; Moazamnia et al. 2019).

(1)Q =
2

3
Cd

√
2gLch

1.5

Fig. 1   A view of a labyrinth weir investigated by Crookston and Tullis (2013)
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Multilayer perceptron (MLP) network is the most com-
monly used neural network model applied in water engineer-
ing issues; for training, this network, a back-propagation learn-
ing algorithm which is a learning method with an observer, is 
used. The purpose of training a neural network is to arrange 
the network parameters (weights and biases) by providing 
training patterns, in a way that by representing the same pat-
terns, the resulted error between the optimal response and 
network is minimized. Generally, in a multilayer perceptron 
network, there are two types of signals, i.e., signals moving in 
the going path (from the inner layer to the outer layer) and the 
other are the return signals (from the outer layer to the inner 
layer) which are known as the functional signals and error sig-
nals, respectively. Arranging the parameters in the multilayer 
perceptron network is performed by the error signal and input 
signal. Determining the number of layers and neurons exist-
ing in them is one of the most important issues in modeling 
with artificial neural networks. Tokar and Johnson mentioned 
sigmoid stimulus and hyperbolic tangent functions as the most 
commonly used stimulus functions in the back-propagation 
learning algorithm (Ghorbani et al. 2013).

Radial basis function (RBF) network, like the MLP neu-
ral networks model, is another type of neural networks in 
which the processor units focus on a certain position while 
processing. This focus is modeled through radial functions. 
Regarding the overall structure, RBF neural networks are not 
much different from MLP networks; just the kind of process-
ing that neurons do on their inputs is different. However, 
RBF networks often have faster learning and preparation 
processes. In fact, because of the concentration of neurons 
on a particular functional range, it is easier to adjust them. 
There are several types of radial basis functions, but the most 
commonly used is the Gaussian function. Figure 2 shows a 
view of a multilayer perceptron network and a radial neural 
network (Ghorbani et al. 2016). In the present study, MLP 
and RBF models have been used to predict the Cd of the 
labyrinth weirs with quarter-round crests.

Support vector machines

Support vector machines operate based on data mining algo-
rithms and are like other artificial intelligent methods. The 
first application of this method in water issues which was 
presented by Dibike et al. (2001) was simulating the rainfall 
runoff. Later, it was used in different fields of hydrology 
(e.g., Nadiri et al. 2017) and Hydraulics (e.g., Sadeghfam 
et al. 2019). Support vector machines are an efficient learn-
ing system based on the theory of optimization that uses the 
inductive principle of minimization of structural errors and 
lead to a general optimal response.

The SVM algorithm operates through training and testing 
like most artificial intelligent methods, but unlike the other 
artificial intelligent methods, instead of reducing the compu-
tational errors, it considers the operational risk of incorrect 
division as the target function and obtains its optimal value. 
Figure 3 represents the structure of the vector machine.

In the regression model of SVM, a function related to the 
dependent variable of y which itself is a function of several 
independent variables of x is estimated. Similar to the other 
regression issues, it is assumed that the relationship between 
the independent and dependent variables is determined by an 
algebraic function such as f(x) along with some disturbance 
(tolerance factor ε) (Eq. 2).

where w is a weight vector, b is biased, and ∅ is also a 
kernel function, and then, the purpose is to find a functional 
form for f(x). This is accomplished by calibrating the SVM 
model by a series of samples (calibration set). This process 
involves the sequential optimization of the error function. 
Depending on the definition of this error function, two types 
of SVM model have been defined.

(2)f (x) = WT
⋅ �(x) + b

(3)y = f (x) + noise

Fig. 2   A simple composition of a MLP and b RBF neural networks
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SVMs are a set of related supervised learning methods 
used for classification and regression: SVM regression of 
type 1 (also known as ε-SVM regression) and SVM regres-
sion of type 2 (also known as υ-SVM regression). It is worth 
noting that in this study, the regression model of ε-SVM was 
used to predict the discharge coefficient of labyrinth weirs 
with quarter-round crests because of its extensive application 
in regression studies.

Support vector machines change the dimensions of the 
problem through kernel functions for solving nonlinear prob-
lems. Applying kernel for SVM depends on the amount of 
training data and the dimensions of the feature vector. In 
other words, considering these parameters, a kernel function 
that can solve the problems of inputs should be selected. 
Practically, four types of linear kernels including linear, pol-
ynomial, sigmoid, and radial basis function (RBF) are used 
(Kavzoglu and Colkesen 2009; Baofeng and et al. 2008). 
The equations used in each of them have been given below:

In the present study, the artificial neural networks (ANNs) 
and SVM models were used to estimate the amount of Cd of 
the labyrinth weirs with quarter-round crests with four non-
dimensional parameters of Ht/P, L/W, W/P, and α. The data 
existing in the laboratory were taken, and the total number 
of the generated data was 454.

In the applied models, four non-dimensional parameters 
of Ht/P, L/W, W/P, and α were introduced as the input, and 
the non-dimensional parameter of Cd was considered as the 

(4)K(x, xj) = (x ⋅ xj)

(5)K(x,Xj) = (1 + (x,Xj))
d

(6)K(x,Xj) = tanh(−a(x,Xj) + c)

(7)K(x, xj) = exp
(
−‖‖x − xi

‖‖
2
/
�2
)

output. In the applied models, 75% of the total available data 
were considered for the training period, and 25% of them 
were used for the testing period. In this study, STATISTICA 
12 software was used to estimate the Cd and the value of the 
R, DC, and RMSE is determined.

Evaluation criteria

Three statistical indicators were used for assessing the abil-
ity and accuracy of ANNs and SVM models in estimating 
the Cd. The assessment criteria for estimating the param-
eter of the discharge coefficient included the correlation 
coefficient between the observational estimated values (R), 
root-mean-square error (RMSE) and the linear correlation 
between the predicted values and the observations (DC); 
each of them was calculated from Eqs. 8, 9, and 10, respec-
tively. The model which had R and DC close to 1 and the 
root-mean-square close to zero was considered the better 
model.

In these equations, Oi were the values obtained from the 
observational values (extracted from the laboratory), Pi were 
the values obtained from the predictive models’ method, Ō 
were the mean values of the observed values, P̄ were the 

(8)R =

∑n

i=1
(Oi − Ō)(Pi − P̄)

�∑n

i=1
(Oi − Ō)2

∑n

i=1
(Pi − P̄)2

(9)RMSE =

�∑n

i=1
(Pi − Oi)

2

n

(10)DC = 1 −

∑n

i=1
(Pi − Oi)

2

∑n

i=1
(Pi − P̄)2

Fig. 3   Simple composition of 
SVM
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mean values obtained from the predictive models’ method, 
and n was the number of data.

Results and discussion

The Cd of the labyrinth weirs with quarter-round crests was 
analyzed through the results of the ANNs and SVM models. 
In the present study, Crookston and Tullis (2013) laboratory 
data were used to evaluate and compare the results obtained 
from the models.

The non-dimensional parameters of Ht/P, L/W, W/P, and 
α were considered as the input, and the non-dimensional 
parameter of Cd was considered as the output in the models 
used in this research. In Table 1, the statistical parameters 
of the dataset have been shown for the training and testing 
ranges.

The multilayer perceptron (MLP) network and radial 
basis function (RBF) neural networks with hidden layers and 
different neurons were used for modeling the Cd of labyrinth 
weirs with quarter-round crests.

In this research, a hyperbolic tangent function which has 
been the most useful form of multilayer perceptron network 
stimulus functions was used to construct the output layer 
of the artificial neural networks. Training the multilayer 
perceptron networks was done through the training back 
of propagation learning algorithm which is called Laven-
berg–Marquart algorithm because of its faster convergence 
in network training. Also, the Gaussian function was used 
for the radial basis neural network.

In modeling the Cd, the neural network had four neurons 
in the input layer (Ht/P, L/W, W/P, and α) and one neuron in 
the output layer (Cd). The value of the correlation coefficient 
between the observed and estimated values in the training 
and testing data for the estimated parameters indicated the 

high capacity of the designed neural network to estimate 
the discharge coefficient of the labyrinth weirs with quarter-
round crests. Various models were evaluated. Finally, the 
appropriate models of MLP and RBF were calculated based 
on the statistical parameters according to Table 2.

Table 3 is presented in order to evaluate the efficiency of 
the method used to estimate the Cd in labyrinth weirs with 
quarter-round crests. According to Table 3, it can be claimed 
that in the present study, the accuracy of the multilayer per-
ceptron (MLP) neural network is greater than the radial basis 
function (RBF) neural network for estimating the Cd of the 
labyrinth weirs with quadrantal crests.

In Fig. 4, the distribution diagram of the observational 
estimated values of the training and testing stage of the mul-
tilayer perceptron (MLP) network model and the radial basis 
function (RBF) neural network has been shown. As can be 
observed in Fig. 4, most points are located on or near the 
line of the bisector, and this shows the acceptability of both 
models in estimating the amount of Cd. However, the multi-
layer perceptron (MLP) network model provided very closer 
results to the results of the observed values; therefore, it had 
a very high accuracy in estimating the considered parameter, 
i.e., the amount of Cd.

In the present study, the performance of the support vec-
tor machines (SVMs) in estimating the Cd of the labyrinth 
weirs with quarter-round crests was investigated. Consider-
ing the point that choosing the input models in artificially 
intelligent systems can affect the accuracy of the results in 
SVM modeling. It was tried to use the inputs of the neural 
networks’ model, that is, the parameters of (Ht/P, L/W, W/P, 
and α) in the input layer, and a neuron in the output layer 
(Cd) in order to assess the performance of ANNS in com-
parison with SVM.

To select the suitable kernel function for the support 
vector machine, the Cd model with different kernels was 
assessed. According to Table 4, the results showed that 
the RBF kernel function with R, RMSE, and DC of 0.978, 
0.027, and 0.956, respectively, performed better in predict-
ing the Cd. The sigmoid kernel function with R, RMSE, and 
DC of 0.697, 0.211, and 0.185, respectively, had the weakest 
performance. Also, for finding the optimum parameters of 
the kernel function, the trial-and-error method was used, 
and by testing different values, the optimal value of these 
parameters was selected. In order to do so, for the constant 

Table 1   Range of dataset used for training and testing of models

Range a(radian) L/W W∕P Ht/P Cd

Train
 Min 0.105 1.000 2.008 0.025 0.1998
 Max 1.000 7.607 4.015 0.855 0.8147
 Mean 0.320 3.980 2.215 0.344 0.5242
 Cv 0.8240 0.5003 0.2758 0.6651 0.2498
 STDV 0.264 1.991 0.611 0.229 0.131

Test
 Min 0.105 1.000 2.008 0.022 0.2169
 Max 1.000 7.607 4.015 0.832 0.8022
 Mean 0.344 3.751 2.221 0.353 0.5225
 Cv 0.7823 0.5286 0.2796 0.6621 0.2577
 STDV 0.269 1.983 0.621 0.234 0.1346

Table 2   The results of the simulation of the Cd of the labyrinth weirs 
with quarter-round crests

Parameter Neural network 
models

Number of hid-
den layers

Number of 
input and output 
neurons

Cd MLP 4 4–1
RBF 8 4–1
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value of γ, first the optimal values of ε and c were obtained, 
and then, the value of γ was changed, and by calculating 
the statistical parameters, its optimum value was calculated.

In Fig. 5, the distribution diagram of the observational 
estimated values in the training and testing stages of the 
support vector machine was shown in the best kernel state 
(RBF kernel). As shown in Table 4, the R and the DC were 
0.978 and 0.956, respectively, and the RMSE was 0.027 at 

the testing stage, and it was chosen as the best kernel mode 
for the SVM model.

In Fig. 6, data dispersion for the test period is shown 
using the MR linear and MR nonlinear, respectively. In 
Table 5, the MR linear and MR nonlinear equations are also 
shown. As can be seen, these equations have almost the same 
results. It should be noted that in Table 5, α unit is radians.

Table 3   The evaluation of the 
accuracy of the artificial neural 
networks model in estimating 
the Cd

Neural network 
models

Training Testing

RMSE DC R RMSE DC R

MLP 0.023 0.977 0.988 0.019 0.971 0.985
RBF 0.045 0.892 0.944 0.043 0.872 0.933

Fig. 4   Distribution diagram of the observational-computational values in training and testing stages of MLP and RBF models

Table 4   Statistical parameters 
of the SVM model with 
different kernels

Kernel Function Training Testing

RMSE DC R RMSE DC R

Linear 0.063 0.733 0.870 0.061 0.778 0.883
Polynomial 0.043 0.862 0.944 0.046 0.871 0.935
RBF 0.031 0.944 0.971 0.027 0.957 0.978
Sigmoid 0.181 0.112 0.667 0.211 0.185 0.697
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According to Figs. 4, 5, and 6, MLP model has estimated 
very closely comparable results with respect to observational 
values compared to other models and therefore has very high 
accuracy in estimating the desired parameter (Cd).

Figures 7 and 8 show the density plot and violin plot 
in the test period for observational data from laboratory tests 
(Crookston and Tullis 2013) and ANN, SVM, MR linear and 
MR nonlinear. In this study, the Wolfram Mathematica soft-
ware has been used to draw the density plot and violin plot. 
Figure 7 shows the density chart of the rectangular box in 

which the distribution of points is observed for observational 
and estimated data. According to Fig. 7, it can be seen that 
the artificial neural network model has a very close adapta-
tion to observational data. Figure 8 also shows the violin 
plot of the probability distribution function for the observed 
and estimated data. According to the violin plot, it is clear 
that the artificial neural network model has similar results 
to observational data. For observational and estimated data, 
with the above methods, the probability values for maxi-
mum, 75%, 50%, 25%, and minimum values are obtained, 

Fig. 5   Distribution diagram of the observational estimated values of the training and testing stage of SVM-RBF

Fig. 6   Distribution diagram of the observational estimated values

Table 5   The MR linear and MR nonlinear equation for obtaining the Cd

Equation RMSE D R

C
d
= 0.303 ×

(
ks

p

)
− 0.049 × �−0.023 ×

(
P

L

)
−0.306 ×

(
P

L

)
+ 0.726

0.056 0.831 0.911

Cd = 8.491 ×

(
ks

p

)0.011

+ 0.156 × �−0.903 − 7.749 ×

(
P

L

)0.01

− 0.323 ×

(
P

L

)1.341 0.056 0.835 0.913
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respectively (0.802, 0.618, 0.534, 0.409, and 0. 204), (0.813, 
0.625, 0.554, 0.414, and 0. 227), (0.838, 0.607, 0.549, 0.477, 

and 0. 150), (0.694, 0.564, 0.479, 0.411, and 0. 261), and 
(0.691, 0.562, 0.481, 0.405, and 0. 247). 

The statistical criteria have shown that the multilayer per-
ceptron (MLP) network model had higher accuracy com-
pared with SVM, MR linear and MR nonlinear. It has also 
been observed that the MLP provided very similar results 
to the experimental values in predicting the amount of the 
discharge coefficient (Table 6).

Fig. 7   Density plot for data in 
the test period for observational 
and estimated data

Fig. 8   Violin plot for data in the 
test period for observational and 
estimated data

Table 6   ANN, SVM, MR linear, and MR nonlinear results for the test 
period

RMSE DC R

ANN-MLP 0.019 0.971 0.985
SVM-RBF 0.027 0.956 0.978
MR linear 0.056 0.831 0.911
MR nonlinear 0.056 0.835 0.913
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Conclusion

In the present research, ANNS, SVM, MR linear and MR 
nonlinear models were used to estimate the Cd of the laby-
rinth weirs with quarter-round crests. The values of the Cd 
were obtained from Crookston and Tullis (2013)’s labora-
tory studies. Then, the estimated values Cd found for the 
mentioned models were compared using evaluation criteria. 
It should be noted that random sampling from the total data 
of 454 for considering 25% and 75% as testing and training 
data, respectively, was done in a way that after repeating 
several random choosing among the total available data, the 
data concerning the conditions with the highest R and the 
least RMSE for the estimation process could be used in the 
artificial neural network (ANN) model.

The results of this study showed that both artificial intel-
ligent models had better accuracy in estimating Cd. How-
ever, the multilayer perceptron (MLP) network model with 
R, RMSE, and DC of 0.985, 0.043, and 0.8729, respectively, 
had a remarkably higher accuracy to the other models.
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