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Abstract
Almost all water resources projects require past record of streamflow data and longer the record, the better the decision that 
can be taken during design or operation stage. However, in most of the cases, a long record of streamflow data is not avail-
able and it becomes essential to synthetically generate sequence of streamflow those are statistically similar to the observed 
data. Models to generate such sequences are available for a single river (single-site) and for both river and its tributaries 
(multi-site); however, comparative studies of these models needs to be done, before implementation to actual system. This 
study deals with the comparison of the performances of single-site and multi-site, seasonal streamflow generation models, 
applied to an existing river with tributary across which reservoirs were constructed. Since cross-correlation structure of the 
flows in a river–tributary system plays an important role in the integrated operation of the reservoirs, multi-site models are 
developed, as the cross-correlation cannot be preserved by the single-site models. Performances of the developed single-site 
and multi-site models are compared in terms of mean, standard deviation, skewness, serial correlation and cross-correlation 
of the observed and the generated series. The results indicated that cross-correlations are well preserved by the multi-site 
models only, whereas other statistical parameters, except serial correlation, are well preserved by both the single-site and 
multi-site models.
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Introduction

Synthetic generation of streamflow is one of the major areas 
in stochastic hydrology. Since the flow through a river is 
inherently stochastic, sufficient information about this flow 
is almost essential in either design or operation of any water 
resources project. Such information is usually retrieved 
from the observed records of flows. However, in most of 
the cases, past records of flows are available for a limited 
length and such records do not provide the proper picture 
of variability in flows. Any system designed with such lim-
ited data becomes shortsighted and inherits the risk of being 
inadequate for the unknown flow sequences that the system 
may experience in future. To deal with this issue of limited 
available data, usually a synthetic generation model is used 

that is capable of generating equally likely sequences of flow 
data which are similar to the historical data in a statistical 
sense. Two different classes of models are generally used: 
(i) single-site models for flow data of a single river and (ii) 
multi-site models dealing with flow data of more than one 
adjacent rivers (or tributaries).

Brief review of past works

Single‑site models

Streamflow generation model was originally introduced by 
Thomas and Fiering (1962) which is a first-order autore-
gressive model for generating monthly streamflows of the 
Clearwater River and its tributaries in Idaho. Since then a 
number of models have been suggested for hydrologic time 
series in general and streamflow series in particular. Harms 
and Campbell (1967) extended Thomas–Fiering model to 
preserve: (a) normal distribution of annual flows; (b) log-
normal distribution of monthly flows; and (c) correlation 
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between annual flows. McMahon and Miller (1971) applied 
the Thomas Fiering model to skewed hydrologic data using 
gamma transformation. However, they noted an inconsist-
ency in the transformation process to modify random nor-
mal variates to random skewed variates used in the model. 
According to them, this transformation could be applied 
to larger skews by taking initially a logarithmic transfor-
mation of all flows prior to calculating the parameters of 
the model. This procedure appreciably reduced the skew-
ness, thus allowing the transformation to generate within 
the limits of its consistency. Bobée and Robitaille (1975) 
proposed formulae for adjusting the average of estimates 
to give a better estimation of the skewness of the popula-
tion. Phien and Ruksaslip (1981) considered four models for 
generation of monthly streamflows and modified them when 
needed with a view to reproduce the mean, standard devia-
tion and skewness coefficient of each monthly sequence of 
the historical records. The four single-site streamflow gen-
eration models for monthly sequences considered were: (a) 
Thomas–Fiering model (1962), (b) First Spolia–Chander 
model (1974), (c) Second Spolia–Chander model (1977), 
(d) Sen model (1978). Modifications were made to account 
for preserving the skewness. To evaluate the above models, 
the number of negative values generated and the computer 
time required were also considered. The modified models 
proposed by them could satisfactorily preserve the mean, 
standard deviation and skewness coefficient of the histori-
cal records. Application of single-site model can also be 
found in the works of Shih (1978), Stedinger and Taylor 
(1982), Awchi and Srivastava (2009), Sangal and Biswas 
(1970), McMahon and Miller 1971, Moss and Dawdy 1974, 
Wallis et al. 1974, Mckerchar and Delleur 1974, Mejia and 
Rodriguez-Iturbe 1974, Charbeneau 1978, Stedinger and 
Taylor 1982, Sim 1987, Savic et al. 1989, Arselan 2012, etc.

Multi‑site models

Most of the reported studies on streamflow generation are 
based on a single site. But for simultaneous generation of 
flows in a river–tributary system, multi-site models are more 
logical. If the individual flows in the river and its tributary 
are spatially uncorrelated, developing individual, single-site 
models, for the river as well as for the tributary may be 
sufficient. But usually, flows in a river and its tributary are 
observed to have significant cross-correlations, since both 
the river and the tributary receive runoff from the same par-
ent rainfall on the basin. In this context, Fiering and Jackson 
(1971) explained that, if a particular month is unusually wet 
at one site in an area, it is very likely that the same month 
will be wet at nearby sites. In such cases, it becomes neces-
sary to develop multi-site models which can preserve the 
cross-correlation in addition to the other required properties 
at each site (Matalas 1967).

Xu et al. (2001, 2003) used Markov cross-correlation 
pulse model to extend synthetic streamflow generation for 
a single site to multiple sites with possibly high cross-
correlations of the daily values among these sites. For 
simulating multi-site multi-season streamflows, Srinivas 
and Srinivasan (2005) introduced a new hybrid stochas-
tic model which used a parsimonious periodic parametric 
model without normalization for partial pre-whitening 
of streamflows at each site. The resulting residuals were 
resampled using moving block bootstrap to reproduce 
site-to-site correlations. Szilagyi et al. (2006) applied a 
hybrid, seasonal Markov chain-based model of daily flow 
simulation at multiple catchment sites. The model used 
components of the shot noise models in a Markov chain-
based approach, together with a conceptual framework 
describing flow recession without the need for informa-
tion on precipitation. They could generate arbitrarily long 
time series of daily flow rates that at least moderately well 
preserve basic long-term (mean, variance, skewness, auto-
correlation structure, cross-correlations) statistics, as well 
as short-term behavior of the original time series. Use of 
multi-site models can also be found in the studies of Wang 
and Ding (2007), Hao and Singh (2013), Srivastav and 
Simonovic (2014), etc.

Apart from these autoregressive (AR) models, works 
based on autoregressive moving average (ARMA) and 
autoregressive integrated moving average (ARIMA) models 
have also been reported both for single- and multi-site cases 
(Box and Jenkins 1970; Moss and Dawdy 1974; Mckerchar 
and Delleur 1974; Stedinger et al. 1985; Sim 1987, etc.) 
and ANN models (Cigizoglu 2005; Kisi 2007; Ahmed and 
Sarma 2007; Yonaba et al. 2010;  Mehr et al. 2014, etc.).

Since single-site models are inherently simple and effi-
cient for a single river, many a times, single-site models are 
employed for multi-river systems. But as cross-correlation 
structure cannot be considered into the model, they cannot 
properly preserve the cross-correlation structure of multi-
river flow data. Since a comprehensive comparison of the 
performances of single-site and multi-site models applied to 
the same river–tributary system is not available, this study 
aims to provide such a detailed analysis. A number of sea-
sonal (monthly) AR models are developed for an existing 
river and its tributary, considering both single-site as well 
as multi-site formulation. As for the distribution of the flow 
data, models are developed based on i) normal distribution 
and ii) gamma distribution, both for single-site and multi-
site models.

The generated series are compared with the historical 
series in terms of long-term statistical parameters includ-
ing, mean, standard deviation, coefficient of skewness, serial 
correlation between successive months and cross-correlation 
between two sites in the same month.
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Study area

Damodar valley (DV) reservoir system in India is a multi-
purpose multi-reservoir system. The two upper reservoirs, 
Konar and Tilaiya, are constructed across river Konar and 
river Barakar, respectively, as shown in Fig. 1. Performance 
of the integrated operation of this multi-reservoir system 
largely depends on the flow in these rivers. For simulation 
and optimization studies on the operation of this multi-res-
ervoir system, a long sequence of possible flows in future 
in these rivers is essential that resembles the observed flow 
series. Hence, streamflow generation models are developed 
for the flows in these two rivers, which are actually inflows 
to the two reservoirs.

Konar dam is constructed across Konar River, about 
30.6 km from its confluence with Damodar River. The res-
ervoir is primarily responsible for flood control and to sup-
ply cooling water to Bokaro thermal power station in the 
downstream. Tilaiya dam was constructed across the Bara-
kar River, at Tilaiya in Koderma district in the Indian state 
of Jharkhand mainly to supply irrigation water during the 
dry season. Tilaiya dam has a power generation capacity 
of 4 MW.

Streamflow generation models

Four single-site and two multi-site models are developed 
in this study. As for the distribution of the flow series, nor-
mal distribution and gamma distribution are used. In many 
reported models, normal distribution is used due to its sim-
plicity, but being a symmetric distribution it cannot preserve 
skewness. Since streamflow values are always positive, its 
distribution has inherent skewness and use of a skewed dis-
tribution like gamma distribution is preferred.

Single site model

The general form of a seasonal, first-order Thomas–Fiering 
model is given below (Haan 1977):

in which xi,j is flow in the jth month of ith year; xj and Sx,j are 
mean and standard deviation of the flows in the jth month, 
respectively; rx,j is first-order serial correlation between j 

(1)

xi,j+1 = xj+1 +
rx,jSx,j+1

Sx,j

[
xi,j − xj

]
+ zi,j+1Sx,j+1

√
(1 − r2

x,j
)

Fig. 1   Location of Konar and Tilaiya reservoir
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and j + 1th month; and z is a random component with zero 
mean and unit variance. In the above equation for a monthly 
model, xi,j+1 is understood to be xi+1,1 when j = 12.

Normal model

Equation (1) actually represents the normal model, if the 
random component z is taken as normally distributed with 
zero mean and unit standard deviation. Since normal distri-
bution is symmetric with respect to mean, it is possible that 
some of the generated flows are found to be negative. But, 
since the flow value cannot be negative, these are usually 
discarded after using it for generating the next value. Moreo-
ver, as the starting value is selected arbitrarily, the first few 
years of generated values are discarded.

Gamma model

If the observed series has appreciable skewness, use of a 
skewed distribution instead of normal distribution is prefer-
able (Haan 1977). Gamma distribution is one such distribu-
tion which is used in this study.

Equation (1) can also be used for the gamma model, 
except that the random component zi,j+1 is replaced by εi,j+1 
as follows:

The random component εi,j is calculated from the follow-
ing equation (Haan 1977):

(2)

xi,j+1 = xj+1 +
rx,jsx,j+1

sx,j

[
xi,j − xj

]
+ �i,j+1sx,j+1

√(
1 − r2

x,j

)

Where zi, j is normally distributed with zero mean and unit 
standard deviation, as usual, and cε, j is skewness of random 
component εi, j+1 and given by

Multi‑site models

Multi-site modeling was first proposed by Fiering (1964) 
which was a principal component model. Later, Matalas 
(1967) proposed a lag-one multivariate model. The multi-
site seasonal AR(1) model (Matalas 1967) may be written 
as:

Where Zi,j is a vector ( n × 1 ) of standardized streamflow 
values at n sites (reservoirs). The subscripts i and j denote 
the year and season, where j = 1, 2,…w ; w representing the 
number of seasons in the year ( w = 12 for a monthly model). 
�i,j is a vector (n × 1) of serially and mutually uncorrelated 
independent variables with zero mean and unit variance. �j 
and �j are coefficient matrices of size (n × n).

The �i,j vector is assumed to be derived from the origi-
nal series �i,j through a two step process of standardization 

(3)�i,j =
2

c
�,j

[
1 +

c
�,jz�,j

6
−

c2
�,j

36

]
−

2

c
�,j

(4)c
�,j =

cx,j − r3
x,j−1

cx,j−1
[
1 − r2

x,j

]1.5

(5)�i,j = �j�i,j−1 + �j�i,j

Fig. 2   Historical and gener-
ated monthly means of flows in 
Konar River (single-site model)
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and normalization (if needed, for non-normal models) as 
follows:

In Eq. (6), xk
i,j

 represents actual streamflow value at the 
site k , during the year i and month j . It is kth element of the 

(6)yk
i,j
=
[
xk
i,j
− x

k

j

]
∕Sk

x,j
, k = 1,… , n

(7)zk
i,j
= gk

i

(
yk
i,j

)
, k = 1,… , n

vector �i,j . The terms xk
j
 and Sk

x,j
 are the monthly mean and 

monthly standard deviation of the series xk
i
 , respectively, and 

yk
i,j

 is the kth element of the standardized vector yi,j . In 
Eq. (7), the term gk

i
(.) is a transformation function which is 

applied in case of non-normal distributions to normalize the 
original series. After generation of the Z series, inverse 
transformation of this function is applied to achieve the 
desired distribution.

Fig. 3   Historical and generated 
monthly standard deviations of 
flows in Konar River (single-
site model)
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Fig. 4   Historical and generated 
monthly skewness coefficients 
of flows in Konar River (single-
site model)
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Estimation of parameters

The parameter matrices �j and �j of Eq. (5) are estimated as 
follows (Haan 1977):

(8)�j = �1,j�
−1
1,j

(9)�j�
T
j
= �0,j −�1,j�

−1
0,j
�T

1,j

Where �0,j and �1,j are the cross-covariance matrix of 
lag zero and lag one, respectively. The cross-covariance 
matrices are obtained from the following equations:

(10)�0,j = E
(
�j �

T
j

)

(11)�1,j = E
(
�j �

T
j−1

)

Fig. 5   Historical and generated 
monthly serial correlations of 
flows in Konar River (single-
site model)
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Fig. 6   Historical and gener-
ated monthly means of flows 
in Barakar River (single-site 
model)
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Matrix �j does not have a unique solution. Rather it can 
have several solutions. Matalas [1967] suggested principal 
component analysis. But a more straight forward solution 
was proposed by Young and Pisano [1968] assuming �j as a 
lower triangular matrix.

Normal model

If the normalization step (Eq. 7) is omitted, then the model 
acts as a normal model.

Gamma model

For developing gamma model, the original series �i,j is first 
standardized using Eq. (6) and the standardized series �i,j 
is normalized using the Wilson–Hilferty transformation as 
follows:

(12)

zk
i,j
=

�
6

Ck
y,j

�⎧⎪⎨⎪⎩

��
ck
y,j
yk
i,j

2

�
+ 1

� 1

3

− 1

⎫⎪⎬⎪⎭
+

�
ck
y,j

6

�
, k = 1,… , n

Fig. 7   Historical and generated 
monthly standard deviations of 
flows in Barakar River (single-
site model)

0

 10

 20

 30

 40

 50

 60

 70

 80

0 2 4 6 8  10  12

S
ta

nd
ar

d 
de

vi
at

io
ns

 o
f f

lo
w

Months

Standard deviations of observed and generated streamflows"

Observed
Normal

Gamma

Fig. 8   Historical and generated 
monthly skewness coefficients 
of flows in Barakar River 
(single-site model)
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Where ck
y,j

 represents the monthly skewness coefficient of 
the series �k

i
 , and zk

i,j
 is the ith element of the normalized 

vector �i,j.
The lag-zero and lag-one cross-covariance matrices are 

estimated from the Z series using Eqs. (10) and (11). Param-
eter matrices �j and �j are estimated from Eqs. (8) and (9), 
assuming �j as lower triangular matrix.

Then, a sequence of normal random deviate �i,j of length 
(N*n) is generated where N represents number of years for 
which flows are required to be generated and n is number 
of sites.

After the generation of standard normal vector �i,j , 
inverse transformation of Eq. (12) is applied to transform 
the generated normal vector into standard gamma vector �i,j 
using the following equation:

Fig. 9   Historical and generated 
monthly serial correlations of 
flows in Barakar River (single-
site model)
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Fig. 10   Historical and generated 
monthly cross-correlations of 
flows in Konar and Barakar 
(single-site model)
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Now, the original series is obtained as:
(13)

yk
i,j
=

�
2

Ck
y,j

�⎧
⎪⎨⎪⎩

��
Ck
y,j

6

��
zk
i,j
−

Ck
y,j

6

�
+ 1

�3

− 1

⎫
⎪⎬⎪⎭
, k = 1,… , n

(14)xk
i,j
= Sk

x,j
yk
i,j
+ x

k

j
, k = 1,… , n

Results and discussion

After developing the models, monthly sequences of 
100 years flow data have been generated for each of the 
two rivers, namely Konar and Barakar. The statistical 
parameters of the models are estimated from thirty-seven 
years of observed flow through these two rivers. The gen-
erated series of the two rivers are compared with the cor-
responding observed series in terms of mean, standard 
deviation, coefficient of skewness of each month, serial 

Fig. 11   Historical and gener-
ated monthly means of flows in 
Konar River (multi-site model)
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Fig. 12   Historical and generated 
monthly standard deviations of 
flows in Konar River (multi-site 
model)
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correlation of successive months and cross-correlation 
between the flows in two rivers. The corresponding plots 
of comparisons are shown in Figs. 2, 3. 4 and 5 for Konar 
River with single-site model, in Figs. 6, 7, 8 and 9 for 
Barakar River with single-site model, in Fig. 10 for both 
Konar River and Barakar River with single-site model, in 
Figs. 11, 12, 13 and 14 for Konar River with multi-site 
model, in Figs. 15, 16, 17 and 18 for Barakar River with 
multi-site model and in Fig. 19 for both Konar River and 
Barakar River with multi-site model.

Results from single site models

Figure 2 presents the plots of monthly mean values obtained 
from single-site models with normal distribution and gamma 
distribution, along with those obtained from the observed 
data series, for Konar River. It may be seen that both normal 
and gamma model generated mean values almost equal to 
that of the observed series, except for the month of August. 
Similar plot for monthly standard deviation are shown in 
Fig. 3, which also shows very close agreement of the gener-
ated series with the observed series, except for the month of 

Fig. 13   Historical and generated 
monthly skewness coefficients 
of flows in Konar River (multi-
site model)
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Fig. 14   Historical and generated 
monthly serial correlations of 
flows in Konar River (multi-site 
model)

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 2 4 6 8  10  12

S
er

ia
l c

or
re

la
tio

n 
of

 fl
ow

Months

Serial correlations of observed and generated streamflows"

Observed
Normal

Gamma



Applied Water Science (2019) 9:67	

1 3

Page 11 of 14  67

August and September. The situation is however different 
in case of skewness coefficient (Fig. 4), where the Gamma 
model yielded results similar to the observed series, but for 
normal model, the values are different and around zero. This 
is expected since normal distribution is a symmetric distri-
bution. The small amount of skewness that can be observed 
is due to making the generated negative values equal to zero. 
In Fig. 5, which shows the serial correlations it can be seen 
that both the three plots are quite close.

Similar comparative plots of the statistical parameters 
are obtained for Barakar River also, as shown in Figs. 6, 

7, 8 and 9. In case of preserving mean values, it can be 
seen from Fig. 6 that both the two models yielded results 
very close to the observed series, except for the month 
of August. Comparatively, gamma model yielded bet-
ter results. In terms of monthly standard deviation also 
(Fig. 7), both normal and gamma model produced results 
very close to the observed series, except for the month of 
August and September. In case of skewness coefficient 
(Fig. 8), results of gamma model are quite similar to the 
observed series but that of normal model is quite different, 
similar to that observed in case of Konar River. As for the 

Fig. 15   Historical and gener-
ated monthly means of flows 
in Barakar River (multi-site 
model)

0

 20

 40

 60

 80

 100

 120

0 2 4 6 8  10  12

M
ea

n 
flo

w

Months

Means of observed and generated streamflows"

Observed
Normal

Gamma

Fig. 16   Historical and generated 
monthly standard deviations of 
flows in Barakar River (multi-
site model)
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serial correlation, it can be seen from Fig. 9 that results 
from both the two models are very close to the observed 
values.

Although the single-site models were developed sepa-
rately for each river and models for one river yielded results 
without having any knowledge about flows in the other 
river, just for comparison, cross-correlations are computed 
from the two generated series for Konar and Barakar, for 
each model. These values are shown in Fig. 10. Expectedly, 
generated cross-correlation values did not match at all with 
those of the observed series.

Results from multi‑site models

Plots for comparing mean, standard deviation, skewness 
and serial correlation values obtained from the multi-
site models with two different distributions with those of 
the observed series are shown in Figs. 11,12, 13 and 14 
for Konar River and in Figs. 15, 16, 17 and 18 for Bara-
kar River. Like the single-site models, here also it can 
be observed that both the normal model and the gamma 
model preserved the mean and standard deviation values 
very well, for both Konar and Barakar. In case of skewness 

Fig. 17   Historical and generated 
monthly skewness coefficients 
of flows in Barakar River 
(multi-site model)
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Fig. 18   Historical and generated 
monthly serial correlations of 
flows in Barakar River (multi-
site model)
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coefficient, gamma model yielded much better result than 
the normal model. Regarding serial correlation values, 
however, both the models produced values quite differ-
ent than that of the observed series, for both Konar and 
Barakar.

Regarding preservation of cross-correlation between the 
flows in two rivers, it can be seen from Fig. 19 that both 
the models produced excellent results with values almost 
equal to those of the observed series.

Conclusion

A comparative study on the performances of single-site 
AR model and multi-site AR model, for synthetic gen-
eration of flows in an existing river and tributary is pre-
sented in this paper. As for the distribution of the flows, 
both normal distribution and gamma distribution are used 
and compared. Gamma distribution is used to take care 
of the skewness in the series, if any. Results indicate that 
regarding preservation of mean, standard deviation and 
serial correlation, both single-site models and multi-site 
models produce very good results with each distribution, 
for both the rivers. Gamma model is, however, found to 
be much better than the normal model in preserving skew-
ness, which is expected since normal distribution has zero 
skewness. Cross-correlation is not at all preserved by the 
single-site models, which is excellently preserved by the 
multi-site models. Hence, in cases, where preservation of 
mean, standard deviation, serial correlation and skewness 
is needed, single-site model with gamma distribution can 
be used. If preservation of cross-correlation is required, 

then multi-site model with gamma distribution is to be 
used. It may be noted here that the performance of an AR 
model is dependent on its parameters, which are in turn 
dependent on the length of the observed record and varia-
tions in flow characteristics captured in the record. Hence, 
these conclusions are specific to the river system studied 
and may be applicable to river systems with similar flow 
characteristics.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Ahmed JA, Sarma AK (2007) Artificial neural network model 
for synthetic streamflow generation. Water Resour Manage 
21:1015–1029

Arselan CA (2012) Stream flow simulation and synthetic flow cal-
culation by modified Thomas Fiering model. Al-Rafidain Eng 
20(2):118–127

Awchi TA, Srivastava DK (2009) Analysis of drought and storage 
for Mula project using ANN and stochastic generation models. 
Hydrol Res 40(1):79–91. https​://doi.org/10.2166/nh.2009.012

Bobée B, Robitaille R (1975) Correction of bias in the estimation of 
the coefficient of skewness. Water Resour Res 11(6):851–854

Box GEP, Jenkins GM (1970) Time series analysis: forecasting and 
control. Holden-Day, San Francisco, California, pp 55–56

Charbeneau RJ (1978) Comparison of the two- and three- parameter 
log normal distributions used in streamflow synthesis. Water 
Resour Res 14(1):149–150

Fig. 19   Historical and generated 
monthly cross-correlations of 
flows in Konar and Barakar 
(multi-site model)

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 2 4 6 8  10  12

C
ro

ss
 c

or
re

la
tio

n 
of

 fl
ow

Months

Cross correlations of observed and generated streamflows"

Observed
Normal

Gamma

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2166/nh.2009.012


	 Applied Water Science (2019) 9:67

1 3

67  Page 14 of 14

Cigizoglu HK (2005) Application of generalized regression neural net-
works to intermittent flow forecasting and estimation. J  Hydrol 
Eng 10(4):336–341

Fiering MB (1964) Multivariate Technique for Synthetic Hydrology. J 
Hydraulics Div ASCE 90(5):43–60

Fiering M, Jackson B (1971) Synthetic streamflows, water resources 
monograph 1. American Geophysical Union, Washington, D.C.

Haan CT (1977) Statistical methods in hydrology. Iowa State Uni-
versity Press, Ames

Hao Z, Singh VP (2013) Modeling multi-site streamflow dependence 
with maximum entropy copula. Water Resour Res 49(7139–
7143):2013. https​://doi.org/10.1002/wrcr.20523​

Harms AA, Campbell TH (1967) An extension to the Thomas–Fiering 
model for the sequential generation of Streamflow. Water Resour 
Res 3(3):653–661

Kisi O (2007) Streamflow forecasting using different artificial neural 
network algorithms. J Hydrol Eng 12:532–539

Matalas NC (1967) Mathematical assessment of synthetic hydrology. 
Water Resour Res 3(4):937–945

Mckerchar AI, Delleur JW (1974) Application of seasonal parametric 
linear stochastic models to monthly flow data. Water Resour Res 
10(2):246–255

McMahon TA, Miller AJ (1971) Application of the Thomas and 
Fiering model to skewed hydrologic data. Water Resour Res 
7(5):1338–1340

Mehr AD, Kahya E, Sahin A (2015) Successive-station monthly 
streamflow prediction using different artificial neural network 
algorithms. Int J Environ Sci Technol 12:2191–2200

Mejia JM, Rodriguez-Iturbe I (1974) Correlation links between normal 
and log normal processes. Water Resour Res 10(4):689–693

Moss ME, Dawdy DR (1974) Stochastic simulation for basins with 
sort or no records of streamflow. Design of water resources pro-
jects with inadequate data. U.S. Geological Survey, Washington, 
D.C., pp 365–376

Phien HN, Ruksaslip W (1981) A review of single-site models for 
monthly streamflow generation. J Hydrol 52(1–2):1–12

Sangal BP, Biswas AK (1970) The 3-parameter lognormal distribution 
and its application in hydrology. Water Resour Res 6(2):505–515

Savic DA, Burn DH, Zrinji Z (1989) A comparison of streamflow 
generation models for reservoir capacity-yield analysis. Water 
Resour Bull 25(5):977–983

Shih SF (1978) Generating streamflow sequences with trend and cycli-
cal movements. J Am Water Resour Assoc 14(4):942–955

Sim CH (1987) A mixed gamma ARMA(1,1) model for river flow 
time series. Water Resour Res 23(1):32–36

Srinivas VV, Srinivasan K (2005) Hybrid moving block bootstrap for 
stochastic simulation of multi-site multi-season streamflows. J 
Hydrol 302(1–4):307–330

Srivastav RK, Simonovic SP (2014) An analytical procedure for 
multi-site, multi-season streamflow generation using maximum 
entropy bootstrapping. Environ Model Softw 59:59–75

Stedinger JR, Taylor MR (1982) Synthetic streamflow genera-
tion: 1. Model verification and validation. Water Resour Res 
18(4):909–918

Stedinger JR, Lettenmaier DP, Vogel RM (1985) Multisite ARMA(1,1) 
and disaggregation models for annual streamflow generation. 
Water Resour Res 21(4):497–509

Szilagyi J, Balint G, Csik A (2006) Hybrid, Markov chain-based model 
for daily streamflow generation at multiple catchment sites. J 
Hydrol Eng 11(3):245–256

Thomas HA, Fiering MB (1962) Mathematical synthesis of streamflow 
sequences for the analysis of river basin by simulation. In: Maass 
A et al (eds) Design of water resource systems. Harvard Univer-
sity Press, Cambridge, pp 459–493

Wallis JR, Matalas NC, Slack JR (1974) Just a Moment! Water Resour 
Res 10(2):211–219

Wang W, Ding J (2007) A multivariate nonparametric model for 
synthetic generation of daily streamflow. Hydrol Process 
21:1764–1771

Yonaba H, Anctil F, Fortin V (2010) Comparing sigmoid transfer func-
tions for neural network multistep ahead streamflow forecasting. 
J Hydrol Eng 15(4):275–283

Xu Z, Schumann A, Li J (2003) Markov cross-correlation pulse model 
for daily streamflow generation at multiple sites. Adv Water 
Resour 26:325–335

Xu Z, Schumann A, Brass C, Li J, Ito K (2001) Chain-dependent 
Markov correlation pulse model for daily streamflow generation. 
Adv Water Resour 24:551–564

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/wrcr.20523

	Comparison of single-site and multi-site stochastic models for streamflow generation
	Abstract
	Introduction
	Brief review of past works
	Single-site models
	Multi-site models

	Study area
	Streamflow generation models
	Single site model
	Normal model
	Gamma model

	Multi-site models
	Estimation of parameters
	Normal model
	Gamma model

	Results and discussion
	Results from single site models
	Results from multi-site models

	Conclusion
	References




