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Abstract
Arusha aquifers have been exploited intensively serving as the main source of domestic water supply in the city. But the 
quality of groundwater is not clearly documented for future planning and management. Hydrogeochemical assessment was 
carried out to establish groundwater quality and its spatial distribution with the aid of geostatistical techniques. Groundwa-
ter samples were collected and analyzed for major cations and anions using conventional methods of water analysis. Well 
lithology and geological map were considered for hydrogeological interpretation of the area. The results of piper diagram 
revealed Na–K–HCO3 water type with sodium and bicarbonate ions dominating in all samples. High fluoride concentra-
tions and general groundwater chemistry are mainly controlled by aquifer lithology than anthropogenic activities. The levels 
of anthropogenic pollution indicators such as nitrate, chloride and sulfate in deep wells are generally low and most likely 
coming from natural sources. The geological sections indicate two potential aquifers (volcanic sediment and weathered/
fractured formation) both yield water containing significant concentration of fluoride. Fluoride concentrations were higher 
than WHO guidelines (1.5 mg/l) and Tanzanian standards (4.0 mg/l) by 82 and 36% of the analyzed groundwater samples, 
respectively. The southern part of the study area yields groundwater of better quality for human consumption than northern 
zones which is at high elevation on the foot of Mt. Meru. With exception of fluoride, the quality of groundwater in the study 
area is generally suitable for drinking purpose and other socioeconomic uses.
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Introduction

Water is the most important natural resource for continued 
existence of any community or ecosystem (Gleeson et al. 
2016; Jha et al. 2007; Kløve et al. 2014). Most social eco-
nomic processes and functions of a particular community 
are largely depending on potable water supply (Brown and 
Lall 2006; Chenoweth 2008; Komakech et al. 2012). Its vital 
role necessitates the importance of understanding water 
resources dynamics throughout the world for present and 

future use (Heathwaite 2010; Hellar-Kihampa et al. 2013; 
Schmoll 2006). Due to socioeconomic development, rapid 
population growth and increased incidences of freshwater 
pollution (Schwarzenbach et al. 2010), groundwater exploi-
tation has increased tremendously in many parts of the world 
(Cheema 2016; Taylor et al. 2014; Venetsanou et al. 2015). 
Knowledge on the availability and quality of water is inevita-
ble in groundwater development and management programs.

The quality of groundwater is mainly governed by local 
geology and highly influenced by environmental factors 
(Fitts 2002). Factors such as rainfall, temperature and pH 
conditions facilitate different subsurface physical chemical 
processes such as weathering, dissolution and ion exchange 
(Gizaw 1996). Under ideal conditions, these processes are 
the ones that determine groundwater chemistry and its qual-
ity as it moves across different geological formations (Kump 
et al. 2000; Olobaniyi and Owoyemi 2006). However, apart 
from natural and anthropogenic pollution sources, over-
abstraction has been reported worldwide as a threat to both 
groundwater quality and quantity (Changming et al. 2001; 
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Delinom 2008; Wada et al. 2010). In order groundwater 
abstraction to be sustainable, a better understanding of both 
quantity and quality of water need to be defined by apply-
ing proper management strategies with the aid of reliable 
hydrogeological and hydrogeochemical data of an aquifer 
(Gleeson et al. 2012). This study focused on geostatistical 
methods for establishing groundwater quality spatial distri-
bution in the study area. The use of geographic information 
system (GIS) technique has been widely adopted in proper 
planning and management of groundwater resource (Dixon 
2005; Jha et al. 2007; Rahmati et al. 2015) due to its vast 
capability of effective storage, spatial analysis, and presenta-
tion of graphical outputs on water quality issues (Fenta et al. 
2015; Venkatramanan et al. 2015). Hydrogeochemical data 
and spatial analysis help to understand the groundwater qual-
ity distribution and its suitability based on available local 
standards and World Health Organization’s (WHO) guide-
lines for various uses. Such knowledge helps water resource 
managers and policy makers to properly plan and manage 
the vital resource for present and future use.

The current study was conducted in a volcanic area 
(southern slope of Mt. Meru) located within East African 
Rift System. The quality of groundwater in the rift system 
has been reported in previous works particularly in the 
Main Ethiopian Rift whereby high levels of fluoride, bicar-
bonate and sodium are a major concern due to high rate 
of carbon dioxide outgassing, acid volcanic and geothermal 
heating (Bretzler et al. 2011; Gizaw 1996). High fluoride 
levels in drinking water are a serious threat to human health 
specifically causing dental fluorosis and other related dis-
eases (Moturi et al. 2002). Such natural contaminants are 
not uniform in groundwater systems rather are distributed 
depending on geological formation of a particular aquifer. 
This necessitates the need of undertaking hydrogeochemical 
investigations to determine the quality of water intended for 
public supplies by ensuring compliance with local and inter-
national standards. Ghiglieri et al. (2012) conducted hydro-
geological and hydrochemistry study on the northeastern 
part of Mt. Meru in Arusha Tanzania where fluoride levels 
of up to 68 mg/l was observed in alkaline volcanic zones. 
The northern slopes of Mt. Meru are relatively dry (leeward 
side) compared to southern part of the mountain where the 
current study was carried out.

In the City of Arusha, which is situated in southern slopes 
of Mt. Meru, Northern Tanzania, the main source of water 
supply is groundwater (Mbonile 2005). The contribution of 
surface water (rivers) to the total amount of water abstracted 
is high only during rainy season. This implies that the city 
depends largely on groundwater as the main source of water 
supply for socioeconomic development. According to Aru-
sha Urban Water Supply and Sanitation Authority (AUWSA) 
medium term strategic plan (2015–2020) report, groundwa-
ter contributes more than 80% of the daily water production 

(~ 47,000 m3) supplied to the city (AUWSA 2014) with a 
population of about 739,640 inhabitants in accordance 
with 2012 population and housing census (NBS 2013). The 
population increase accelerates rapid growth and expansion 
of the city and more demand on services including pota-
ble water supply (current water demand is 93,000 m3/day) 
which forces water authority to prolong water pumping from 
the aquifers.

Nevertheless, most deep wells in the study area were 
drilled and have been continuously operating for more than 
three decades. Previous works have noted decrease in both 
boreholes’ yields and subsequently water levels decline in 
the area (Kashaigili 2010; Ong’or and Long-cang 2007; 
GITEC and WEMA 2011). This is attributed to rapid 
urbanization, industrial growth and expansion of irrigated 
agriculture in the area which has escalated the water supply 
demands (Noel et al. 2015). The problem of over-abstraction 
of groundwater resource has been and will keep increas-
ing as a result of uncontrolled groundwater development 
in the city and all over the country (Custodio 2002; Reddy 
2005). Furthermore, according to AUWSA personal com-
munication, several boreholes have been abandoned due to 
increase in fluoride concentrations exceeding 10 mg/l which 
is beyond both Tanzanian standards (4.0 mg/l) and WHO 
guidelines (1.5 mg/l). Despite all these challenges, baseline 
and monitoring information on the trends of groundwater 
quality in the respective aquifers are lacking. However, 
pumping has been done continuously without proper under-
standing of the quality changes in different hydrogeological 
settings of the area.

Therefore, this study aimed at assessing hydrogeochemi-
cal characteristics and establishing spatial variation of 
groundwater quality in the City of Arusha for future ground-
water management plans. The study used existing wells and 
springs for generating the needed information. All major 
cations and anions including fluoride were analyzed using 
conventional methods of water analysis, and the results were 
compared with both available local standards (Tanzania 
bureau of standards, TBS) and World Health Organization’s 
(WHO) guidelines.

The study area

Location

The study was conducted in Arusha City and Arusha Dis-
trict, located on the southern slopes of Mount Meru in 
Northern Tanzania. The study area is bordered by three 
administrative districts of Monduli, Longido, and Meru 
(Fig. 1). The area covers an area of 282 km2 and lies between 
latitudes 3°15′ and 3°30′ South and longitudes 36°34′ and 
36°46′ East (Fig. 1). According to the 2012 population and 
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Fig. 1   Location of the study area
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housing census, the Arusha City and Arusha District had a 
population of 416,442 and 323,198 inhabitants, respectively 
(NBS 2013).

Climatic characteristics

The area is characterized by tropical climate with two dis-
tinct seasons, dry and wet seasons. The rainfall pattern in 
Arusha as part of northern Tanzania is bimodal with short 
rains from October to December and long rains from March 
to May (Kijazi and Reason 2009; Zorita and Tilya 2002). 
The annual total rainfall ranges between 500  mm and 
1200 mm with mean value of about 842 mm (Kaihura et al. 
2001). The temperature typically ranges between 13 and 
30 °C with an average annual temperature of about 25 °C. 
The coolest month is July, whereas the warmest is February. 
The relative humidity varies from 55 to 75% (Anderson et al. 
2012) and annual potential evapotranspiration of 924 mm 
(GITEC and WEMA 2011).

Geological and hydrogeological settings

The geology of the study area is dominated by volcanic 
materials of varying ages and recently deposited alluvial 
sediments (Ghiglieri et al. 2008, 2010; Ong’or and Long-
cang 2007; Wilkinson et al. 1986). Mt. Meru is the main 
center of volcanic activities in the region. The main features 
of the volcanic eruption in the area include main cone depos-
its, mantling ash, lahars, lava flows, pyroclastic materials, 
tuffs, pumice, agglomerates and volcanic rocks such basalts 
(Nanyaro et al. 1984; Ong’or and Long-cang 2007). Some 
of these volcanic features have been depicted in hydrogeo-
logic map (Fig. 2) together with the cross section derived 
from hydrogeological map running from the steep slopes 
of Mt. Meru toward the foot of the Mountain (Fig. 3). Vol-
canic rocks are mainly lava flows (basaltic to phonolitic 
and nephelinitic tuff). These materials, if not fractured or 
weathered they act as aquitard which favor groundwater 
movement down the slope. The properties of these geologi-
cal formations normally change with time due to various 
physical chemical reactions such as weathering and subse-
quent volcanic and tectonic activities. Mount Meru region 
is dominated by volcanic and sedimentary hydrogeologic 
formations with various mineralogy compositions. These 
include fluorapatite, natrite, halite, sylvite, aphthitalite, cal-
cite, goethite, phillipsite, chabazite, augite, sanidine, anal-
cime, leucite, nepheline, anorthoclase, biotite, cancrinite, 
riebeckite, albite and illite (Ghiglieri et al. 2012).

The area is also affected by tectonism leading to the 
development of fractures and faults which act as conduit to 
groundwater flows in some areas (Ghiglieri et al. 2010). Fig-
ure 2 shows the fault system within the main cone deposits 
of pyroclastic materials with subordinate nephelinitic and 

phonolitic lavas. The fault lines are assumed to be avenue 
of huge groundwater flows that manifest through numerous 
springs which discharge into Themi River.

Volcanic sediments and alluvium derived from differ-
ent volcanic materials such as ashes, pyroclastic materials, 
weathered and fractured volcanic formation (e.g., basalts), 
phonolitic to nephelinitic formation form the major potential 
aquifers in the study area (Ghiglieri et al. 2010). However, 
mantling ash, volcanic ash and tuff, and sedimentary forma-
tions particularly fine-grained alluvial sediments are char-
acterized by low transmissivity which become practically 
impermeable. In most cases such hydrogeological units act 
as aquitard or low yield aquifers. Groundwater recharge is 
mainly taking place in high elevation on the slopes of Mt. 
Meru along fractured formations as well as through infiltra-
tion in valleys or depression zones with medium to coarse 
grain sizes (Ghiglieri et al. 2010). Groundwater potential-
ity in fractured formation is also supported by a number of 
springs around the fault zone (Fig. 2), northeastern side of 
the study area. Springs’ flows from this zone are very high 
particularly after or at the end of long rains. For example in 
May 2015, a total of 25,698 m3/day was abstracted from the 
springs by AUWSA for public water supply. This amount 
is only the portion of groundwater discharged from springs 
along this fault; the remaining water flows into Themi River 
which is one among the perennial and reliable water sources 
in the study area. Overall, most rivers and streams originate 
from springs located on the slopes of Mt. Meru particu-
larly in fractured formations at high elevations. Major riv-
ers include Themi, Kijenge, Ngarenaro, Burka and Engare 
Olmotonyi (Fig. 2).

Based on the hydraulic head observed from existing pro-
duction wells, groundwater flows from north to south direc-
tion toward the foot of Mt. Meru. This is well supported 
by wells W12 and W17 with hydraulic heads at 1356 and 
1348 m a.s.l., respectively. Thus, groundwater flows from 
W12 with high hydraulic head also located at elevated area 
to W17 with hydraulic head difference of 8 m at a distance 
of 1.2 km. Figure 4 shows potential aquifers as derived from 
well logs data in the study area. The W12, W15, W16 and 
W9 are among the existing production wells in the area. 
W19 taps water from weathered or fractured basalt aquifer, 
whereas the rest collect water from either formation depend-
ing on the arrangement of hydrogeological units and posi-
tion of the screens. This indicates that groundwater occurs 
both in fractured formation and volcanic sediment hosted 
aquifers. As mentioned before, fractured formations seem 
to be more productive aquifers as well as potential recharge 
zones in the area. Though volcanic sediment hosted aquifers 
cannot be ignored as they also produce substantial amount of 
water in the area. A good example of the well tapping water 
from volcanic sediment formation is W12 which discharge 
up to 192 m3/h. However, more information are needed to 
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Fig. 2   Hydrogeological map showing location of sampling sites. Reproduced with permission form AA.VV. (1983)
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delineate the aquifer geometry as most wells used in this 
study lack hydrogeological data including well logs, depth 
and specific yield.

Materials and methods

Field work and groundwater sampling

Mapping and geo-referencing using a hand-held global 
positioning system (GPS), GARMIN GPSmap 62S was 
conducted to identify operational water wells and springs 
in the study area. A total of 46 drilled wells were identified 
out of which 30 deep wells (> 50 m) and 3 shallow wells 
(< 15 m) were used in sampling campaign together with 12 
natural springs (Fig. 2). Based on available well’s construc-
tion records, most wells in the study area are tapping water 

at different depths depending on screen positions. This sug-
gests that majority of collected water samples represented 
mixed groundwater from different layers. According to the 
hydrogeological setting of the study area and field work, 
two types of springs namely fracture and depression springs 
were observed (Bryan 1919). Groundwater samples were 
collected during April and May, 2016 representing wet sea-
son in the study area.

In situ measurements of pH, temperature, electrical con-
ductivity (EC), total dissolved solids (TDS) and salinity 
were carried out using multi-parameter HANNA instrument, 
Model HI 9828. Equipment calibration was done prior to 
taking measurements according to the procedures set out 
by manufacturer.

Water samples were collected directly from taps located 
near the well heads into HDPE plastic bottles. Aliquots 
of samples earmarked for the analyses of sodium (Na+), 

Fig. 3   Geological cross section C–C′ from the steep slopes of Mt. Meru toward the foot of the Mountain



Applied Water Science (2018) 8:118	

1 3

Page 7 of 23  118

potassium (K+), magnesium (Mg2+), calcium (Ca2+), iron 
(Fe2+) and manganese (Mn2+) were acidified using ultrapure 
concentrated nitric acid, HNO3 to a pH less than 2.0. All 
samples were stored in a refrigerator at 4 °C to minimize 
microbial activity and any undesirable physical–chemical 
reaction before performing measurements of other chemical 
parameters including sulfate (SO4

2−), chloride (Cl−), nitrate 
(NO3

−), bicarbonate (HCO3
−), fluoride (F−), and phosphate 

(PO4
3−) (American Public Health Association 2012; Sunda-

ram et al. 2009).

Laboratory analyses

All groundwater samples were analyzed for major cations 
and anions using various methods. Bicarbonate (HCO3

−) 
was determined by titration method using standard sulfuric 
acid and bromocresol green indicator for end point detec-
tion. The determination of SO4

2− (SulfaVer 4 method), 
NO3

− (Cadmium reduction method), and PO4
3− (PhosVer 

3, Ascobic acid method) were carried out using HACH DR 
2800 spectrophotometer by powder pillow test. Chloride 
concentration was determined by argentometric titration 
method using standard silver nitrate (AgNO3) titrant and 
potassium chromate indicator solution (American Public 
Health Association 2012). Fluoride content was deter-
mined by ion selective electrode method. The fluoride con-
centration was read directly from the meter calibrated with 
standard fluoride solution before use. Fluoride buffer was 

prepared from glacial acetic acid, sodium chloride and 1, 
2-cyclohexanediaminetetraacetic acid.

All major cations (Na+, K+, Mg2+, Ca2+) and trace ele-
ments (Fe2+ and Mn2+) analyses were carried out at the 
Ardhi University Laboratory in Dar es Salaam by Atomic 
absorption Spectrometer (AAS) PerkinElmer Analyst 100. 
Samples were filtered (0.45 µm) before introduced into the 
flame for conversion from aerosols into atomic vapor which 
absorbs light from the primary source. The concentration of 
individual element was determined by measuring the amount 
of light absorbed relative to the standard solution under a 
specific wavelength. The accuracy of the major ions analyses 
was checked by calculating the charge balance error.

Geostatistical analysis

Cluster analysis, multivariate statistical analysis technique, 
was carried out using Paleontological Statistics (PAST) Soft-
ware Package, Version 3.08 (Hammer et al. 2001). The tech-
nique was employed to understand the relationship between 
variables from different sampling sites and their relevance 
with respect to groundwater quality in the study area. The 
clusters were established based on similarities of variables 
under consideration (Davidson and Ravi 2005; Mooi and 
Sarstedt 2010). One-way ANOVA, single factor was used 
to compare means of various parameters between spring 
and well waters. It was also applied for comparing means 
of different water groups generated by cluster analysis. The 
correlation analysis was carried out for hydrogeochemical 

Fig. 4   Geological section A–A′ derived from well logs in the study area
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characteristics of analyzed water samples, and the signifi-
cance of correlation coefficients was tested using the statisti-
cal software, SPSS version 21. A geographical Information 
System (GIS) Software Package, ArcGIS version 10.1, was 
used to generate various maps in this study. Geostatistical 
analysis tool was employed in establishing groundwater 
quality spatial variation.

Piper diagram

Piper diagram was used to graphically represent chemis-
try of groundwater samples in the study area (Piper 1944; 
Sadashivaiah et al. 2008; Srinivas et al. 2014). It comprises 
of three plots: a ternary diagram in the lower left represent-
ing the cations, another ternary diagram in the lower right 
representing the anions and a diamond plot in the middle 
representing a combination of the two ternary diagrams. The 
diagram was mainly employed to understand and identify 
different water composition or type through chemical rela-
tionships among groundwater samples (Utom et al. 2013).

Results

Temperature, pH, and EC

The results of groundwater physical chemical characteristics 
in the study area are presented in Table 1. The temperature 
for the spring water ranged from 16.7 to 22.9 °C and aver-
aged 19.9 ± 1.9 °C, while that of well water ranged from 
19.4 to 24.5 °C and averaged 21.9 ± 1.1 °C. The lowest tem-
perature in spring water was recorded at high altitude about 
1600 m above sea level (a.s.l.) and the highest temperature 
at an elevation of 1322 m a.s.l. A slight temperature varia-
tions observed in both spring and well waters are generally 
influenced by different ambient conditions from low to high 
elevations than aquifer type. The average value of pH in 
spring and well waters was 7.2 ± 0.7 and 7.5 ± 0.5, respec-
tively. In spring water the pH varied from 6.42 to 8.26, while 
in well water it ranged from 6.47 to 8.9. About 42 and 15% 
of spring and well waters showed slightly acidic conditions 
(pH values less than 7.0), respectively.

Electrical conductivity (EC) in well water varied from 
286 to 1634 µS/cm with an average value of 638 ± 330 µS/
cm which is relatively high to WHO recommended limit 
(500 µS/cm). Low EC values were detected in spring waters 
which ranged from 157 to 781 µS/cm with an average value 
399 ± 225 µS/cm.

Major cations and anions

About 89% of the groundwater samples analyzed (Table 1) 
in the study area gave charge balance errors less than 

± 10% which is acceptable in most fresh groundwater 
hydrogeochemical assessment (Srinivas et al. 2014; Srin-
ivasamoorthy et al. 2008; Utom et al. 2013). The rest of 
the samples showed relatively high charge balance error 
greater than 10% which is probably due to low ionic 
strength (mean value = 0.0082) of water samples (Fritz 
1994). The overall mean charge balance error was esti-
mated to − 6.25% which is fairly reasonable for accuracy 
check. Figure 5 shows major ions composition of both 
spring and well waters in the study area. The groundwater 
chemistry is typically sodium–potassium Bicarbonate. The 
concentration of sodium (Na+) was relatively higher than 
other cations in all samples from spring and well waters 
(Table 1).

Fluoride in the study area was generally high in both 
spring and well waters. In well water, its concentration 
varied from 0.60 mg/l to 10.8 mg/l with average value of 
4.04 ± 2.39  mg/l. Samples from springs were observed 
to have relatively low concentration ranging from 0.81 to 
5.45 mg/l with mean value 2.66 ± 1.56 mg/l. Fluoride con-
centrations were higher than WHO guidelines (1.5 mg/l) 
and Tanzanian standards (4.0 mg/l) by 82 and 36% of the 
analyzed groundwater samples, respectively (Table 1). The 
concentrations of fluoride in groundwater indicated a con-
sistent relationship with amount of pH, HCO3

−, Ca2+, and 
EC. Samples with high pH (alkaline condition), EC and 
HCO3

− mostly in well waters were found to have high fluo-
ride concentrations. There was a significant positive rela-
tionship between fluoride and pH, r (31) = 0.62, p < 0.01); 
however, the correlation between fluoride and EC (r = 0.29) 
was not statistically significant. Moreover, fluoride showed 
significant negative correlation with alkaline earth elements 
Ca2+ (r (31) = − 0.47, p = 0.006) and Mg2+(r (31) = − 0.69, 
p < 0.01) and significant positive relationship with Na+, r 
(31) = 0.426, p = 0.013 (Table 2).

In well water, nitrate concentration levels varied from 0.1 
to 10.1 mg/l with average value of 2.4 ± 2.51 mg/l. Spring 
waters were found with relatively high nitrate levels, ranged 
from 1.6 to 17.3 mg/l and averaged 5.11 ± 4.80 mg/l. Only 
three out of forty-five analyzed groundwater samples (S04, 
S05 and W20) exceeded the recommended WHO drinking 
water limit of 10 mg/l beyond which it may cause health 
effects such as infant methemoglobinemia (Adelana 2005; 
Fan and Steinberg 1996).

The levels of both sulfate and chloride were relatively 
low compared to recommended WHO drinking water limit 
(250 mg/l). The maximum levels of sulfate detected were 
43 and 69 mg/l in spring and well waters, respectively. 
The maximum chloride level in well water was 174 and 
59 mg/l in spring water. The two constituents (SO4

2− and 
Cl−) seemed to be related in both spring and well water 
samples. Figure 6 shows significant strong positive correla-
tion between sulfate and chloride with Pearson coefficients, 
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r (10) = 0.879, p < 0.01 and r (31) = 0.858, p < 0 0.01 for 
spring and well waters, respectively.

Relatively low concentrations of dissolved phosphate 
were observed in most spring water and shallow wells with 
exception of sample S09 which recorded 1.02 mg/l (Table 1). 
High levels of phosphate (up to 1.48 mg/l) were observed 
in deep wells (> 100 m deep). The possible source of phos-
phate release into groundwater is apatite minerals which 
are common in volcanic rocks of Mt. Meru region (Rob-
erts 2002). Figure 7 shows significant positive correlation 
between phosphate and well depth, r (23) = 0.547, p = 0.005. 
The correlation indicates that phosphate minerals are more 
pronounced in deep geological formation of the study area.

Trace elements (Fe and Mn)

Iron concentration varied from 0.02 to 3.06 mg/l (well 
water) and 0.03 to 1.93 mg/l (spring water). More than 84% 
of the analyzed water samples had Fe contents less than 
recommended maximum WHO limit (0.3 mg/l). Further-
more, the concentration of manganese was generally very 
low. About 36% of analyzed water samples were below the 
detection limits (0.01 mg/l). However, only two samples 
(W03 and W27) out of forty-five were observed to have 
manganese levels beyond the recommended WHO guide-
line (0.1 mg/l). Generally, the levels of iron and manganese 
detected in this study were relatively low which have no 
significant health effect or engineering problems in water 
supply infrastructures.Ta
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Multivariate analysis

Analyzed water samples were grouped into four main catego-
ries, the first group comprises of cluster A and B with a total 
of fourteen samples which indicated great than 60% similarity. 
Six out of fourteen in this group being samples from spring 
water. Cluster C has a total of six (6) sampling sites all being 
wells. The third group (Cluster D) has twelve (12) sampling 
sites with great than 60% similarity and one of its sub-clusters 
has greater than 90% similarity index. The last group (Cluster 

E) comprises of four (4) sampling sites (springs) with great 
than 95% similarity. However, out of 45 sampling sites, five 
showed less than 50% similarity with other clusters (Fig. 8).

Discussion

Groundwater chemistry

The results of major ions for groundwater plotted in piper 
diagram (Fig. 5) indicated both spring and well waters 

Table 2   Pearson correlation matrix for samples from well water

pH Temp EC TDS Sal. SO4
2- NO3

- F- Cl- HCO3
- PO4

3- Na+ K+ Mg2+ Ca2+

pH 1

Temp 0.04 1

EC 0.21 0.53 1

TDS 0.21 0.53 1.00 1

Sal. 0.24 0.47 0.99 0.99 1

SO4
2- -0.10 0.40 0.76 0.76 0.75 1

NO3
- -0.45 0.14 0.03 0.03 -0.01 0.08 1

F- 0.62 -0.02 0.29 0.30 0.29 0.07 -0.24 1

Cl- 0.11 0.51 0.97 0.97 0.97 0.84 -0.04 0.18 1

HCO3
- -0.38 0.19 0.45 0.45 0.45 0.44 0.17 -0.34 0.49 1

PO4
3- 0.30 -0.17 -0.39 -0.39 -0.38 -0.51 -0.21 0.48 -0.43 -0.60 1

Na+ 0.24 0.37 0.90 0.90 0.90 0.70 -0.10 0.43 0.89 0.44 -0.26 1

K+ 0.23 0.18 0.83 0.83 0.84 0.54 -0.07 0.36 0.78 0.44 -0.31 0.81 1

Mg2+ -0.69 0.35 0.30 0.30 0.28 0.45 0.36 -0.69 0.39 0.70 -0.67 0.17 0.19 1

Ca2+ -0.55 0.33 0.46 0.45 0.43 0.61 0.52 -0.47 0.50 0.81 -0.70 0.31 0.30 0.84 1

Green color indicates negative correlation (r < − 0.5) and pink color, positive correlation (r > 0.5)
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to fall under sodium–potassium bicarbonate water type. 
The chemical properties of groundwater are dominated 
by alkali elements (Na+ and K+) and weak acids (HCO3

−). 
Sodium ion was generally dominant in all samples with 

Magnesium being the least cation in the study area 
(Na+ > Ca2+ > K+ > Mg2+). Such chemical behavior in 
groundwater is explained by cations exchange reac-
tions between Na+ and Ca2+ which occur as a result of 

Cluster A
Cluster B

Cluster C

Cluster D

Cluster E

Fig. 8   Dendrogram for groundwater hydrogeochemical data from 45 sampling sites

Table 3   Pearson correlation matrix for samples from spring water

pH Temp EC TDS Sal. SO42- NO3- F- Cl- HCO3- PO43- Na+ K+ Mg2+ Ca2+

pH 1

Temp -0.76 1

EC -0.53 0.76 1

TDS -0.53 0.76 1.00 1

Sal. -0.55 0.74 0.98 0.98 1

SO42- -0.61 0.74 0.88 0.88 0.84 1

NO3- -0.56 0.41 0.39 0.39 0.44 0.32 1

F- 0.57 -0.27 0.16 0.16 0.12 -0.17 -0.41 1

Cl- -0.50 0.72 0.78 0.78 0.77 0.88 0.30 -0.23 1

HCO3- -0.88 0.71 0.46 0.45 0.48 0.60 0.74 -0.69 0.52 1

PO43- -0.29 0.41 0.08 0.08 0.08 0.07 0.27 -0.26 0.25 0.29 1

Na+ -0.41 0.54 0.84 0.84 0.80 0.66 0.22 0.34 0.44 0.19 0.11 1

K+ -0.31 0.56 0.71 0.71 0.71 0.53 0.70 0.07 0.54 0.48 0.00 0.37 1

Mg2+ -0.81 0.82 0.66 0.66 0.64 0.75 0.61 -0.52 0.61 0.84 0.29 0.52 0.50 1

Ca2+ -0.85 0.81 0.77 0.77 0.76 0.91 0.56 -0.44 0.80 0.86 0.24 0.55 0.51 0.87 1

Green color indicates negative correlation (r < − 0.5) and pink color, positive correlation (r > 0.5)
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water–rock interaction as water moves through different 
mineralogical composition (Cerling et al. 1989; Ghiglieri 
et  al. 2012; Utom et  al. 2013). The ions distribution 
(Fig.  5) and significant positive correlation (Table  2) 
between bicarbonate ion and major cations, Ca2+(r 
(31) = 0.81, p < 0.01), Mg2+(r (31) = 0.70, p < 0.01), Na+(r 
(31) = 0.44, p = 0.011) and K+(r (31) = 0.44, p = 0.010), 
in well water indicate that these constituents are naturally 
occurring through weathering and water–rock interaction 
mechanisms (Ishaku et al. 2015; Srinivasamoorthy et al. 
2012). The same trend of positive correlation was also 
observed in spring water (Table 3). From other literature 
it is also suggested that in geothermal system, most of 

Table 4   One-way ANOVA, single-factor results comparing spring 
and well waters

a Degree of freedom between groups
b degree of freedom within groups

Ion/parameter df F p value Sig. level, α

pH 1a, 43b 2.06 0.159 0.05
EC 1a, 43b 5.34 0.026 0.05
HCO3

− 1a,43b 7.58 0.009 0.01
F− 1a, 41b 6.09 0.018 0.05
Na+ 1a, 43b 5.78 0.021 0.05
NO3

− 1a, 43b 5.93 0.019 0.05

Fig. 9   Comparison of means 
of selected major ions in spring 
and well waters
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HCO3
− and part of alkali elements are produced by the 

reactions of dissolved carbon dioxide (CO2) with rocks 
(Gizaw 1996). Generally, both well and spring waters 
in the study area were characterized by same water type 
(Na–K–HCO3) as presented in the piper diagram. How-
ever, spring water contains significantly less dissolved 
ions (Table 4) compared to well water (Fig. 9). Based on 
field observation most springs are originating from aqui-
fers which are highly influenced by rainfall. Their dis-
charges increase significantly during or immediately after 

rainy season i.e., water–rock interaction time is relatively 
short hence less dissolved ions. The hydrochemistry of 
groundwater in the study area particularly deep wells is 
mainly controlled by geochemical reactions and natural 
processes than anthropogenic influences. The water type 
(Na–K–HCO3) and distribution of major cations and ani-
ons in the piper diagram indicate that groundwater hydro-
chemistry is mainly influenced by aquifer lithology. As 
to a large extent the hydrogeological formation of the 
region is characterized by the presence of sodium- and 

Fig. 10   Comparison of means 
of selected major ions for differ-
ent water clusters
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potassium-rich minerals such as nepheline, chabazite, san-
idine, cancrinite, phillipsite and anorthoclase (Ghiglieri 
et al. 2012). Generally, sodium and potassium ions were 
relatively high in all groundwater samples (Table 1) indi-
cating the influence of water–rock interaction in deter-
mining groundwater chemistry of the study area. This is 
also supported by low levels of anthropogenic indicators 
such as nitrate, chloride and sulfate observed in deep wells 
(Table 1). Moreover, statistical error bars of selected major 
ions were plotted to compare water clusters (Fig. 10). A 
slight difference between clusters was observed from the 
error bar plots. Additionally, the results of statistical test 
using one-way ANOVA, single factor indicated a signifi-
cance difference between clusters for the selected major 
ions (Table 5). The differences shown between clusters are 
probably due to heterogeneity of the volcanic aquifers in 
the study area (Ong’or and Long-cang 2007). However, the 
groundwater hydrochemistry of the study area remains the 
same with Na–K–HCO3 water type.

Fluoride

Fluoride concentration in the study area was generally high 
in both spring and well waters. Its concentrations varied 
from one location to another indicating different mineralogy 
or geological formation which may have different dissolu-
tion rate, cation exchange capacity and precipitation in the 

aquifer matrix (Ghiglieri et al. 2012). Fluoride concentration 
indicated positive correlation with Na+ and negative correla-
tion with alkaline earth elements (Ca2+ and Mg2+) (Table 2). 
This association indicates that during ionic exchange process 
and precipitation when calcium ion is removed from ground-
water system more Na+ and F− ions are being released from 
minerals such as fluorapatite and nepheline in the aquifer 
matrix. Similar findings on fluoride behavior with alkaline 
earth elements (Ca2+, Mg2+) and alkali metals (Na+, K+) are 
well documented (Chae et al. 2007; Guo et al. 2012; Rafique 
et al. 2009). Moreover, Ghiglieri et al. (2012) and Srinivasa-
moorthy et al. (2012) revealed that alkaline nature of ground-
water enhances fluoride releases from fluorine-rich miner-
als such as fluorite (CaF2) into water system. Furthermore, 
according to the batch experiments conducted (Saxena and 
Ahmed 2001) at normal room temperature fluoride is easily 
released from parent rocks at a pH, EC and HCO3

− range of 
7.6–8.6, 750–1750 µS/cm and 350–450 mg/l, respectively. 
These findings are in line with high fluoride concentrations 
detected in groundwater samples with high bicarbonate and 
pH values. In addition, water–rock interaction influences the 
concentration and rate of fluoride release into groundwater 
system. Low fluoride concentration in fractured and highly 
permeable phonolite hosted aquifers has been reported, and 
high fluoride concentration in water originating from basalt 
and lahars formation (Ghiglieri et al. 2010). This suggests 
that variations of fluoride concentrations in groundwater are 
mainly controlled by both aquifer materials and mean resi-
dence time. The geological–hydrogeological section A–A′ 
(Fig. 4) constructed from well logs indicates that most wells 
collect water from volcanic sediment aquifers except W19 
which is located in weathered and/or fractured basalt forma-
tion. W19 indicated high fluoride concentration (9.23 mg/l) 
compared to wells W12 (4.2 mg/l) and W16 (2.09 mg/l) 
which tap water from volcanic sediment aquifer. However, 
it should be noted that groundwater samples were collected 
from different depths within a single well depending on the 
position of the screens (Table 6).

In the study area the spatial distribution of fluoride con-
centrations indicates high fluoride concentration in north-
ern and northwestern parts of the study area (Fig. 11). 

Table 5   One-way ANOVA, single-factor results comparing water 
clusters

a Degree of freedom between groups
b degree of freedom within groups

Ion/parameter df F p value Sig. level, α

EC 4a, 31b 22.98469 6.7E−09 0.01
Na+ 4a, 31b 21.06345 1.8E−08 0.01
Ca2+ 4a, 31b 19.99604 3.2E−08 0.01
F− 4a, 31b 9.916838 2.8E−05 0.01
Cl− 4a, 31b 29.21781 4E−10 0.01
NO3

− 4a, 31b 4.717767 0.004 0.01

Table 6   Well construction 
details indicating position of the 
screens

The data were compiled from well logs and construction details compiled from drilling companies

Well ID Depth (m) Screen position (m below ground surface) Aquifer thickness 
covered by screens 
(m)

W10 142 44–52, 64–76, 80–124, 132–136 92
W12 184 80–100, 120–156, 162–176 96
W16 183 80–88, 100–108, 112–128, 136–168 88
W19 108 28–48, 64–70, 76–84, 88–96 68
W17 142 56–64, 72–120, 124–136 80
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High fluoride concentration in this zone is probably due to 
dominance in basalt formation and other fluoride-rich vol-
canic materials such as lahars and volcanic ash (Figs. 3, 4) 
which are known to contain and release significant amount 
of fluoride into groundwater in the region (Ghiglieri et al. 
2012). It is unfortunate that the northwestern part is one 
of the areas earmarked by water authority to have potential 
groundwater reserve for present and future use. It should 
be noted that groundwater reserve in this part is obviously 
reduced as its quality won’t satisfy the intended use (Ako 
et al. 2011; Currell et al. 2012). However, the southern part 
of the study area shows relatively low levels of fluoride 
concentration compared to north and therefore calls for 
further groundwater exploration for future development.

Spatial distributions of nitrate, sulfate and chloride

Nitrate and other nutrients are among the best indicators of 
anthropogenic influence in groundwater quality assessment 
(Kaown et al. 2009). Apart from on-site sanitation practice 
in the research area, urban agriculture and animal husbandry 
are also common. All these are likely to threaten the qual-
ity of groundwater for various uses including drinking and 
other domestic purposes. The chances of pollutants to be 
released and transported from these anthropogenic sources 
to the shallow aquifers are very high (Drechsel and Dongus 
2010). Very low concentrations of nitrate (Fig. 12), chloride 
(Fig. 13) and sulfate (Fig. 14) were observed in groundwater 
samples collected from northern part of the study area. This 
suggests the influence of natural sources such as nitrogen 
leached from natural soils, volcanic minerals (e.g., apatite) 
and gases rather than anthropogenic activities. However, 
high concentrations of NO3

−, Cl− and SO4
2− were observed 

in wells and springs (Figs. 12, 13, 14) located in highly 
populated urban areas (south of the study area) where the 
use of pit latrine and soak-away pit as sanitary facilities are 
common. Additionally, effluent from a combined domestic 
and industrial wastewater treatment plant (waste stabiliza-
tion ponds) is being used for irrigation purpose in southern 
part of the study area which is likely to cause groundwater 
contamination. Similar cases of groundwater contamination 
have been reported in Tanzania and other parts of the world 
(Elisante and Muzuka 2015; Kaown et al. 2009; Mato and 
Kaseva 1999; Nkotagu 1996). In most cases, these wastes 
are discharged haphazardly to the environment (Couth and 
Trois 2011; Laramee and Davis 2013) or due to underground 
leakage from pit latrine, septic tanks and soak-away pit 
which are common sanitary facilities in the study area and 
Tanzania at large (Chaggu et al. 2002; Jenkins et al. 2014). 

Moreover, water samples collected from northwest and west-
ern part of the study area commonly known as Ngaramtoni 
and Magereza showed relatively high concentrations of both 
Cl− (Fig. 13) and SO4

2− (Fig. 14). The area is dominated by 
cultivation of coffee, wheat, sunflower, maize, and beans. 
Therefore, fertilizer application and uncontrolled waste dis-
posal mainly domestic sewage may have also contributed 
to these constituents in groundwater. Generally, the quality 
of groundwater with respect to NO3

−, Cl− and SO4
2− in the 

study area was generally good as the concentrations are still 
fairly below the recommended WHO guidelines with excep-
tion of samples S04, S05 and W20 which recorded high 
nitrate levels 17.3, 10.9 and 10.1 mg/l, respectively, possibly 
caused by human activities.

Conclusions

The hydrogeochemical assessment results and distribution 
of groundwater major cations (Na+, Ca2+, K+, Mg2+) and 
anions (HCO3

−, Cl−, SO4
2−, F−) in the study area indicate 

that groundwater chemistry is mainly influenced by aqui-
fer lithology than anthropogenic activities. Groundwater in 
the study area is dominated by sodium and bicarbonate ions 
which define the general composition of the water type to 
be Na–K–HCO3. With exception of fluoride, the quality of 
groundwater is generally suitable for drinking purpose and 
other socioeconomic uses. Based on the hydrogeological 
investigation, two potential aquifers (volcanic sediment and 
weathered/fractured formation) have been identified both 
having substantial yield. Generally, the aquifers yield water 
containing significant concentration of fluoride exceed-
ing WHO guidelines. Fluoride concentrations were higher 
than WHO guidelines (1.5 mg/l) and Tanzanian standards 
(4.0 mg/l) by 82 and 36% of the analyzed groundwater sam-
ples, respectively. The northern and northwestern parts of 
the study area indicated high fluoride concentrations in both 
well and spring waters than southern zone. As mentioned 
earlier, high fluoride concentration in northern and north-
western parts is probably due to dominance in basaltic for-
mation and other fluoride-rich volcanic materials such as 
lahars and volcanic ash which are known to contain and 
release significant amount of fluoride into groundwater in 
the region. However, a detailed geological studies need to 
be conducted to precisely inform the entire spectrum of fluo-
ride distribution in the study area. Groundwater abstracted 
from the southern part of the study area is of better qual-
ity for human consumption than northern zones which is 
at high elevation on the foot of Mt. Meru. The influence 
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of anthropogenic pollutants was observed in shallow wells 
and spring sources. This was evidenced by relatively high 
concentrations of nitrate, chloride and sulfate in samples col-
lected from sources close to populated urban areas, waste-
water effluent disposal zones, and croplands. Spring water 
sources should be protected from anthropogenic activities as 
they produce water of good quality in terms of key chemical 
parameters including fluoride which seems to be critical in 
the study area.
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Fig. 11   Fluoride spatial distribution map for spring and well waters
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Fig. 12   Nitrate distribution map for spring and well waters
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Fig. 13   Chloride distribution map for spring and well waters
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Fig. 14   Sulphate distribution map for spring and well waters
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