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Abstract
Papua New Guinea (PNG) is saddled with frequent natural disasters like earthquake, volcanic eruption, landslide, drought, 
flood etc. Flood, as a hydrological disaster to humankind’s niche brings about a powerful and often sudden, pernicious change 
in the surface distribution of water on land, while the benevolence of flood manifests in restoring the health of the thalweg 
from excessive siltation by redistributing the fertile sediments on the riverine floodplains. In respect to social, economic and 
environmental perspective, flood is one of the most devastating disasters in PNG. This research was conducted to investigate 
the usefulness of remote sensing, geographic information system and the frequency ratio (FR) for flood susceptibility map-
ping. FR model was used to handle different independent variables via weighted-based bivariate probability values to generate 
a plausible flood susceptibility map. This study was conducted in the Markham riverine precinct under Morobe province in 
PNG. A historical flood inventory database of PNG resource information system (PNGRIS) was used to generate 143 flood 
locations based on “create fishnet” analysis. 100 (70%) flood sample locations were selected randomly for model building. 
Ten independent variables, namely land use/land cover, elevation, slope, topographic wetness index, surface runoff, landform, 
lithology, distance from the main river, soil texture and soil drainage were used into the FR model for flood vulnerability 
analysis. Finally, the database was developed for areas vulnerable to flood. The result demonstrated a span of FR values 
ranging from 2.66 (least flood prone) to 19.02 (most flood prone) for the study area. The developed database was reclassified 
into five (5) flood vulnerability zones segmenting on the FR values, namely very low (less that 5.0), low (5.0–7.5), moder-
ate (7.5–10.0), high (10.0–12.5) and very high susceptibility (more than 12.5). The result indicated that about 19.4% land 
area as ‘very high’ and 35.8% as ‘high’ flood vulnerable class. The FR model output was validated with remaining 43 (30%) 
flood points, where 42 points were marked as correct predictions which evinced an accuracy of 97.7% in prediction. A total 
of 137292 people are living in those vulnerable zones. The flood susceptibility analysis using this model will be very useful 
and also an efficient tool to the local government administrators, researchers and planners for devising flood mitigation plans.
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Introduction

High intensity downpours in a region often lead to flood-
ing in the downstream areas. Floods happen when overland 
flow of waters inundates land (Merz et al. 2010). Natural 
disasters, like floods, are causing massive damages to natural 
and human resources (Du et al. 2013; Youssef et al. 2011). 
An average of 140 million people is affected per year due 
to flooding (WHO 2003). In respect of socioeconomic and 
environmental consequences, widespread flood analysis is 
very significant (Markantonis et al. 2013). Control of a flood 
and prevention measures are necessary to reduce potential 
damages to natural resources, agriculture, infrastructure etc. 
(Billa et al. 2006; Huang et al. 2008). Therefore, analysis of 
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flood susceptibility is an important task for early warning 
system, emergency services towards management strategies 
of prevention and mitigation of the future flood episodes 
(Tehrany et al. 2015). There are several comprehensive tools 
available and used by many research organizations world-
wide, for example HAZUS, a GIS-based natural hazard 
analysis tool developed for assessing flood hazard; HEC-
FDA, a computer program to assist crop engineers through 
vulnerability analysis of flood risk reduction policy. RS and 
GIS techniques offer a suitable platform to manipulate and 
analyse all relevant information in order to easily demarcate 
suitable hazard zones (Khan et al. 2008; Saha et al. 2005; 
Wang et al. 2013; Pourghasemi et al. 2014). RS and GIS 
techniques are useful widely to demarcate and assess flood-
related damages (Pradhan et al. 2014; Patel and Srivastava 
2013) caused by excessive rain in a catchment area or sea 
wave surges in the coastal regions. During last decade, sev-
eral models were applied for estimation of flood by many 
researcher and scientists (Kisi et al. 2012; Talei et al. 2010). 
Alternatively, the conventional flood modelling methods 
were not reliable for accurate prediction (Tehrany et al. 
2014b; Li et al. 2012). Currently, geospatial techniques pro-
vide a wide range of data sources for the modelling of flood 
(Wanders et al. 2014). Analytical hierarchy process (AHP) 
is one of the most popular and satisfactory methods in dis-
aster modelling like flood monitoring, mapping and analys-
ing complex problems (Billa et al. 2006; Yalcin 2008; Chen 
et al. 2011). Apart from AHP, multi-criteria decision sup-
port approach (MCDA) (Samanta et al. 2016a), weights of 
evidence (WofE) (Rahmati et al. 2016a), logistic regression 
(LR) (Tehrany et al. 2014a, b, 2015), adaptive neuro-fuzzy 
interface system (Sezer et al. 2011), artificial neural net-
works (ANN) (Pradhan and Buchroithner 2010; Tiwari and 
Chatterjee 2010) and FR model (Lee et al. 2012; Rahmati 
et al. 2016b; Liao and Carin 2009) were the other known 
acceptable models for hazard analysis. ANN method was 
used in prediction of flood, where researchers attempted to 
show relationship between conditioning parameters and the 
outcome (Pradhan and Buchroithner 2010). It was reported 
that ANN method can handle all inputs which are uncer-
tain to extract meaningful information (Lohani et al. 2012). 
MCDA, RS and GIS techniques are extremely useful in reli-
able and accurate analysis and mapping of plausible flood 
prone zones. MCDA approach is suitable for flood analysis 
and mapping in the no-data regions and could be practi-
cal for local planners in mitigation of flood. AHP model 
was applied in China for flood diversion (Zou et al. 2013). 
According to Chen et al. (2011), the weakness of AHP 
model was correlated to its enslavement on the information 
provided by experts, which is the main source of uncertainty. 
FR model may be considered as an important method which 
is easily understandable and can be used to produce accept-
able flood risk analysis and mapping (Liao and Carin 2009). 

WofE and FR model are relatively new for flood vulnerabil-
ity modelling, and they were widely used in other natural 
hazards like landslide susceptibility mapping (Rahmati et al. 
2016b). Both models are almost similar and yield compara-
ble results for flood susceptibility mapping. Flood risk map 
through FR model was expected to be used in programmes 
to reduce the flood and its damage (Lee et al. 2012).

Modelling of flood is a complex exercise where a lot of 
factors are supposed to be considered. RS technique pro-
vides a significant contribution in flood mapping and risk 
assessment. RS and GIS are quick and more efficient, which 
can provide the best opportunity to capture, store, combine, 
manipulate, retrieve, analyse and display the information for 
the determination of potential hazard areas. This research is 
an ensemble method, which proves the efficiency in GIS-
based flood modelling. To estimate flood probabilities, the 
frequency ratio (FR) approach was combined with RS and 
GIS.

The main goal of the present research is to examine the 
usefulness of Remote Sensing (RS), GIS and the frequency 
ratio (FR) models for flood susceptibility analysis and map-
ping in the Markham river basin under Morobe province, 
Papua New Guinea. The main aim of this study is to identify 
and map out flood risk zones in the Markham river basin. 
The objectives of this research are to create wall-to-wall data 
sets that are considered as input into the FR model to catego-
rize potential flood prone area, create a flood hazard map of 
the Markham river basin and also to carry out impact analy-
sis which can be useful to local government administrators, 
researchers and planners for devising flood mitigation plans.

Study location and materials used

The study was carried out in the final basin (basin-14) of 
Markham, which is located in the Morobe province of PNG 
and encloses an area of 1806.85 km2. The longitudinal and 
latitudinal extensions of the study area are 146.09–147.04° 
east and 6.23–6.78° south, respectively (Fig. 1). The climate 
is tropical humid with about 4200 mm of average annual 
rainfall in the study area. Markham river emanates from the 
runoff contributed by 12,450 km2 catchment (Fig. 1a) with 
huge bed load (Tilley et al. 2006). This is the fourth longest 
river in PNG born at Finisterre range (approximately 457 m 
altitude) and flows into the Huon Gulf near to the downtown 
of Lae, which is the second largest city of PNG after 180 km 
of checkered path (Samanta et al. 2016b). The upper basin 
is dominated by natural forests, steep slopes and rugged ter-
rain (Pal et al. 2012; Solin 2012). Mining activities for allu-
vial gold extraction on the river path and logging activities 
in the surroundings areas result in accelerated soil erosion 
within the basin area. Final 125 km downstream flow of the 
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Fig. 1   Location map of the study area: (a) Entire Markham river basin and (b) The study area-sub-basin 14
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Markham river which is covered by sub-basin number 14 
was selected for this study (Fig. 1b).

The Markham river catchment in Morobe province of 
PNG is exposed to flood due to intensive rainfall, peak dis-
charge and physiographic conditions (Tilley et al. 2006; 
Samanta et al. 2016a). During 2012, higher magnitude of 
floods was measured by the global flood detection system 
(Kugler et al. 2007). On March of 2004, Markham riverine 
zones experienced an overwhelming flood on the spate of 
Markham river. Earlier on, during the month of February 
(2004), 120-m-long road on Lae-Bulolo road was washed 
out just 1.5 km away towards upstream from Markham 
bridge. The estimated peak discharge was about 2600 m3/s 
to 3200 m3/s with an average velocity as 3.4 m/s (Tilley 
et al. 2006).

To perform flood susceptibility analysis and risk assess-
ments, researcher suggested different factors which are not 
fixed (Tehrany et al. 2015). There are some common condi-
tioning factors which indicate their role in flood mapping. 
Recent studies by Rahmati et al. (2016a, b) have achieved 
high accurate results, where they used the least number of 
independent parameters. Total of 15 parameters are exam-
ined as a preliminary analysis. Demarcation of flood suscep-
tibility zones was carried out using ten (10)-folds of geospa-
tial data sets, viz. land use and land cover (LULC), elevation, 
slope, topographic wetness index (TWI), surface runoff, 
landform, lithology, distance from the main river, soil texture 
and soil drainage. These geospatial layers are selected after 
consulting local hydrological and natural disaster experts 
based on their effectiveness in creating a flood. Wall-to-wall 
geospatial database was developed from remotely sensed 
data sets like satellite image and digital elevation model and 
National GIS database of PNG. All data sets were rectified 
carefully using Erdas imagine software. UTM projection, 
zone 55S and WGS-84 datum were selected for the image 
and map registration purpose. Advanced space-borne ther-
mal emission and reflection radiometer (ASTER) provides 
digital elevation model (DEM) with the spatial resolution 
of 30 m that was used in this research. Elevation and slope 
database were derived from the ASTER DEM. LULC was 
derived from optical bands with false colour combination 

of Landsat 8, operational land imager (OLI). A flood inven-
tory database was prepared using PNGRIS national data-
base, field investigation and by examining remote sensing 
data. Every detail of the data sets used in FR model is given 
in Table 1.

Methodology

It is essential to analyse the occurrence of historical flood 
events to estimate future flood (Manandhar 2010). So the 
flood inventory database is the essential factor for flood 
susceptibility mapping. Flood inventory map was prepared 
after generating 143 flooded points through “create fishnet” 
analysis of PNGRIS national database, field investigation 
and satellite data before and after flood events. Seventy 
percent (70%) of total, i.e. 100 flood points, were selected 
randomly as the training data set for flood modelling and 
the rest 30% or 43 points were used for validating the flood 
model (Rahmati et al. 2016b) (Fig. 1b).

Selection of effectual parameters is vital to produce a 
flood hazard map in any catchment (Kia et al. 2012). It is 
always tricky to choose factors unanimously for use in flood 
susceptibility mapping (Tehrany et al. 2014a, b). Flood-
related geospatial database like land use/land cover, eleva-
tion, slope, topographic wetness index (TWI), surface run-
off, landform, lithology, distance from the main river, soil 
texture and soil drainage were prepared using ArcGIS and 
Erdas Imagine software.

LULC directly or indirectly influence infiltration, 
evapotranspiration and surface runoff generation. LULC 
map was prepared (Fig. 2a) from the Landsat-8 OLI satel-
lite imagery through supervised classification technique 
(Samanta et al. 2011). The altitude and slope are important 
parameters in flood risk and vulnerability mapping. Vari-
ations of elevations have a definitive impact on climate 
characteristics (Samanta et al. 2012). Such different rain-
fall and temperature regimes engendered varied vegetation 
and soil forms (Aniya 1985). Slope controls the surface 
runoff, the ferocity of water flow aggravating soil erosion 
(Adiat et al. 2012) as well as vertical percolation (Youssef 

Table 1   Data sets used for flood vulnerability mapping

Sl. No. Data description Data type/resolution Year Source

1 LANDSAT-8, OLI 15 m Pan-Sharpen 2013 Department of Surveying and Land Studies, 
The PNG University of Technology2 ASTER-DEM 30 m 2001

3 Rainfall, Polygon/shape file 2009 PNGRIS—PNG Resource Information System
4 Soil texture and drainage
5 Lithology
6 Landforms
7 Historical flood inventory database Point location
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Fig. 2   Parameters used for FR modelling: (a) land use/land cover, (b) altitude, (c) slope, (d) TWI index, (e) surface runoff, (f) landforms, (g) 
lithology and (h) soil texture characteristics of the study area
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et al. 2011). Both altitude and slope map were prepared 
using ASTER data in ArcGIS 3-D analysis algorithms 
(Fig. 2b, c).

Topographic wetness index (TWI) refers to spatial 
distribution of wetness and controls the overland flow of 
water. TWI has significant impact on flood mapping. TWI 
was calculated based on Eq. 1 (Beven and Kirkby 1979; 
Regmi et al. 2010; Qin et al. 2011), and spatial distribution 
map of TWI was prepared using ArcGIS (Fig. 2d).

where a is the specific catchment area [a = A/L, total basin 
area (A) divided by length of contour (L)], and B is referred 
to the slope in degree.

Overland flow of water, called surface runoff, occurs in 
full throttle in the aftermath of saturated infiltration when 
the surplus water minus saturated infiltration component, 
emanating from the storm, melt water, etc. keep flowing 
over the Earth’s surface (Pal and Samanta 2011). Surface 
runoff in urban areas is normally reinforced owing to 
lack of infiltration surface, which gives rise to pernicious 
urban flooding. Surface runoff due to storm rainfall is very 
significant for forecasting floods which are very sudden, 
flashy and of short duration (Pal and Samanta 2011). Sur-
face runoff database was generated (Fig. 2e) based on soil 
conservation service (SCS) model (Eqs. 2–4).

where Q is actual surface runoff in mm; P is storm rainfall 
(mm); S is the potential maximum retention (mm), and Ia is 
0.4S [Initial abstraction (mm)].

So the modified form of Eq. 2 can be expressed in Eq. 3.

To calculate the value of potential maximum retention 
(S) of Eq. 3, another simple Eq. 4 was used.

where CN is curve number of hydrologic soil cover com-
plex, which happens to be a function of soil type, land cover 
and antecedent moisture condition (SCS 1972; Kumar et al. 
1991; Rao et al.1996).

Flood generally occurs near to the bank of the river and 
inundates low-lying flood plain areas. Distance from the 
river has significant impact on the flood and its magnitude. 
Distance from main river was considered as one parameter 
which was developed through proximity analysis in Arc-
GIS. Infiltration varies based on the spatial distribution of 
soil texture and it controls overland flows and inundation. 
Database on landform, lithology, soil texture (Fig. 2f–h) 

(1)TWI = Ln

(

a

tanB

)

,

(2)Q = (P−Ia)2
/

(P−Ia + S),

(3)Q = (P−0.4S)2
/

(P + 0.6S).

(4)S = (25400∕CN) − 254,

and soil drainage was prepared based on PNGRIS data sets 
after verifying them based on field observations.

It is essential to analyse past flood record to estimate the 
future flood event in any area (Manandhar 2010). Therefore, 
mapping the flood locations from past episodes in the study 
area is instrumental in elucidating the correlation among 
the flooding and the condition factors. It is essential to pre-
pare an inventory database with high precision (Jebur et al. 
2013). FR model was adopted for this study chosen from 
a plethora of bivariate statistical techniques. The approach 
offers a quantitative relationship between the ‘frequency of 
flood episodes’ and various conditioning parameters. The 
FR index was calculated using the following Eq. 5 (Tehrany 
et al. 2014a, b).

where FSI is the flood susceptibility index and FR is the 
frequency ratio for each factor.

The FR can be expressed as the proportion of flooded area 
in the total study area (Eq. 6); it is the ratio of the probabili-
ties of the ‘flooded’ to ‘not flooded’ area for a given attribute 
(Bonham-Carter 1994).

where E is the number of flood episodes for each factor; F 
is the total number of flood episodes; M is the histogram of 
a class; L is the total histogram of the study area.

The frequency ratio model was used to establish the cor-
relation between historical flood locations and the probable 
supporting factors. FR value indicates (Table 2) the types 
of correlation between factors and floods. A FR value lower 
than 1 indicates weak correlation; on the other hand a value 
of more than 1 refers to strong correlations. The overall 
methodology that was applied for flood susceptibility map-
ping is shown as a flowchart in Fig. 3.

Results and discussion

There are many independent variables, called condition-
ing factors that play specific role in order to perform flood 
susceptibility mapping (Pradhan 2010; Pourghasemi et al. 
2012; Kia et al. 2012). Spatial distribution and statistical 
database for all ten (10) conditioning factors namely, LULC, 
elevation, slope, topographic wetness index (TWI), surface 
runoff, landform, lithology, distance from the main river, soil 
texture and soil drainage were constructed with their sub-
classes (Fig. 2 and Table 2). Classification of satellite data 
was done (Samanta et al. 2012) considering nine (9) land 
use/land cover categories, namely dense forest, low dense 
forest, shrub land, outcrop/cleared/burnt lands, mountain/
upland grassland, settlement, inland water, river water and 

(5)FSI =
∑

FR,

(6)FR = (E∕F)∕ (M∕L),
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Table 2   Conditioning parameters used for flood vulnerability mapping through FR model

Value Class name or description Histogram % of Histogram Flood numbers % flood numbers Frequency Ratio

Land use/land cover
1 Dense forest 50700 2.5 1 1.0 0.40
2 Low dense forest 703420 35.0 33 33.0 0.94
3 Shrub land 533068 26.6 26 26.0 0.98
4 Outcrop/cleared/burnt lands 37806 1.9 0 0.0 0.00
5 Mountain/upland grassland 433316 21.6 28 28.0 1.30
6 Settlement 18728 0.9 0 0.0 0.00
7 Inland water 5406 0.3 0 0.0 0.00
8 River water 133552 6.7 11 11.0 1.65
9 Agriculture 91612 4.6 1 1.0 0.22
Elevation (in m)
1 Up to 100 m 746583 37.2 59 59.0 1.59
2 100–200 m 544304 27.1 25 25.0 0.92
3 200–300 m 301652 15.0 11 11.0 0.73
4 300–400 m 120706 6.0 5 5.0 0.83
5 400–500 m 69673 3.5 0 0.0 0.00
6 500–1000 m 177557 8.8 0 0.0 0.00
7 More than 1000 m 47133 2.3 0 0.0 0.00
Slope (in degree)
1 up to 2.5° 336363 16.8 21 21.0 1.25
2 2.5–5.0° 513214 25.6 40 40.0 1.56
3 5.0–10.0° 563975 28.1 29 29.0 1.03
4 10.0–15.0° 209103 10.4 2 2.0 0.19
5 15.0–20.0° 131856 6.6 5 5.0 0.76
6 20.0–25.0° 100073 5.0 2 2.0 0.40
7 More than 25° 153024 7.6 1 1.0 0.13
Topographic wetness index (TWI)
1 up to 6.0 129577 6.5 1 1.0 0.15
2 6.0–6.5 226488 11.3 6 6.0 0.53
3 6.5–7.0 250979 12.5 3 3.0 0.24
4 7.0–7.5 387731 19.3 16 16.0 0.83
5 7.5–8.0 449732 22.4 32 32.0 1.43
6 8.0–8.5 299489 14.9 28 28.0 1.88
7 More than 8.5 263612 13.1 14 14.0 1.07
Surface runoff (in mm)
1 Up to 50 mm 682498 34.0 41 41.0 1.21
2 50–100 mm 281239 14.0 8 8.0 0.57
3 100–150 mm 486606 24.2 28 28.0 1.16
4 150–200 mm 406985 20.3 13 13.0 0.64
5 More than 200 mm 150280 7.5 10 10.0 1.34
Landform
1 Dissected relict alluvial, colluvial mudflow and fans 75020 3.7 0 0.0 0.00
2 Mountains and hills with weak or no structural 

control
476893 23.8 0 0.0 0.00

3 Braided floodplains 296938 14.8 36 36.0 2.43
4 Composite alluvial plains 94495 4.7 10 10.0 2.12
5 Composite bar plain and alluvial fan complex 46996 2.3 1 1.0 0.43
6 Little dissected recent alluvial fans 779505 38.8 41 41.0 1.06
7 Homoclinal ridges and cuestas 77006 3.8 0 0.0 0.00
8 Back plains 46935 2.3 4 4.0 1.71
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agriculture land (Fig. 2a). The predominant land cover in the 
study area is ‘low density forest’ (35%) in the eastern region 
and some pockets of north-west and southern region of the 
study area. The ‘river class’ along the centre (main river) and 
north (Erap river) of the study area covers only 6.7% of the 

study area, but the FR value was calculated as 1.65 which 
is highly correlated to flood (Table 2). The elevation ranged 
from 0 m to 1790 m of the study area. The spatial distribu-
tion of the elevation map was prepared after reclassifying 
the elevation layer into seven (7) classes (< 100, 100–200, 

Table 2   (continued)

Value Class name or description Histogram % of Histogram Flood numbers % flood numbers Frequency Ratio

9 Back swamps 40223 2.0 5 5.0 2.50
10 Hilly terrain with weak or no structural control 27365 1.4 0 0.0 0.00
11 Lake 6416 0.3 0 0.0 0.00
12 Meander floodplains 8914 0.4 1 1.0 2.25
13 Undifferentiated swamps 30902 1.5 2 2.0 1.30
Lithology
1 Pleistocene sediments 75020 3.7 0 0.0 0.00
2 Coarse grained sedimentary 290647 14.5 0 0.0 0.00
3 Alluvial deposits 1344906 67.0 100 100.0 1.49
4 Mixed or undifferentiated igneous 19162 1.0 0 0.0 0.00
5 Mixed or undifferentiated sedimentary 61629 3.1 0 0.0 0.00
6 Limestone 74653 3.7 0 0.0 0.00
7 Mixed sedimentary and limestone 14059 0.7 0 0.0 0.00
8 Mixed sedimentary and volcanic 16871 0.8 0 0.0 0.00
9 Acid to intermediate igneous 27385 1.4 0 0.0 0.00
10 Lake 6416 0.3 0 0.0 0.00
11 Low grade metamorphic 76860 3.8 0 0.0 0.00
Distance from river in m
1 up to 1000 m 393500 19.6 26 26.0 1.33
2 1000–2000 m 243382 12.1 19 19.0 1.57
3 2000–3000 m 206855 10.3 9 9.0 0.87
4 3000–4000 m 175027 8.7 13 13.0 1.49
5 4000–5000 m 149073 7.4 4 4.0 0.54
6 5000–6000 m 133660 6.7 4 4.0 0.60
7 More than 6000 m 706111 35.2 25 25.0 0.71
Soil texture
1 Sandy clay loam 439768 21.9 20 20.0 0.91
2 Sandy loam 129127 6.4 13 13.0 2.02
3 Silty clay loam 377624 18.8 12 12.0 0.64
4 Peat 22672 1.1 1 1.0 0.89
5 Silty loam 22699 1.1 4 4.0 3.54
6 Sandy clay 634345 31.6 28 28.0 0.89
7 River course-gravel 216519 10.8 19 19.0 1.76
8 Sand 66418 3.3 2 2.0 0.60
9 Lake 6567 0.3 0 0.0 0.00
10 Silty clay 91869 4.6 1 1.0 0.22
Soil drainage
1 Well drained 1631997 81.3 62 62.0 0.76
2 Waterlogged (swampy) 45371 2.3 5 5.0 2.21
3 Poorly to very poorly drained 105842 5.3 14 14.0 2.66
4 River course 216519 10.8 19 19.0 1.76
5 Imperfectly drained 1312 0.1 0 0.0 0.00
6 Lake 6567 0.3 0 0.0 0.00
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200–300, 300–400, 400–500, 500–1000 and > 1000 m) 
where brown colour indicates maximum altitude found in 
north, north-west, and blue indicated < 100 m altitude zone 
in the east and south-east part in the study area (Fig. 2b). 
Up to 100 m altitude zone is the predominant class cov-
ering 37.2% of the total area, which refers to a higher FR 
value (1.59) than other classes (Table 2). Slope (in degree) 
was calculated from DEM data and reclassified into seven 
(7) classes, namely < 2.5°, 2.5–5°, 5–10°, 10–15°, 15–20°, 
20–25° and more than 25°. The flat or lower slope gradient 
(< 5°) area is situated on both sides of the river as shown 
with blue colour (Fig. 2c). Lower the slope gradient, the 
more is the possibility of flooding and flood events (Rah-
mati et al. 2016a). Two lower slope gradient classes, namely 
< 2.5° and 2.5–5°, indicates higher FR value of 1.25 and 
1.56, respectively, whereas > 25° slope area indicated lower 
FR value of 0.13 (Table 2).

Spatial database on TWI was calculated and categorized 
into seven (7) classes (< 6.0, 6.0–6.5, 6.5–7.0, 7.0–7.5, 

7.5–8.0, 8.0–8.5 and > 8.5) as shown in Fig. 2d. The high-
est TWI was recorded in the middle part of the study area 
represented with blue colour. Higher TWI value refers 
higher chances of flooding in a watershed (Rahmati et al. 
2016b). The FR value was calculated as 1.88 where TWI 
varied from 8.0 to 8.5, and 0.15 for the class with TWI 
< 6.0, respectively (Table 2). Surface runoff map was gen-
erated based on storm rainfall of 229.6 mm during 21–23 
October 2012. Maximum surface runoff was calculated as 
229 mm along the river class. High surface runoff during a 
storm indicates high probability of flood (Pal and Samanta 
2011). The surface runoff database was reclassified into five 
(5) classes, namely < 50, 50–100, 100–150, 150–200, and 
> 200 mm (Fig. 2e). FR value was calculated as 1.34 for 
highest runoff category (> 200 mm) (Table 2). Entire study 
area has been categorized into thirteen (13) landform units, 
namely (i) dissected relict alluvial, colluvial mudflow and 
fans, (ii) mountains and hills with weak or no structural con-
trol, (iii) braided floodplains, (iv) composite alluvial plains, 

Fig. 3   Methodological flow chart of flood susceptibility mapping
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(v) composite bar plain and alluvial fan complex, (vi) lit-
tle dissected recent alluvial fans, (vii) homoclinal ridges 
and cuestas, (viii) back plains, (ix) back swamps, (x) hilly 
terrain with weak or no structural control, (xi) lake, (xii) 
meander floodplains and (xiii) undifferentiated swamps 
(Fig. 2f). The back swamps and meander floodplains have 
higher FR value of 2.50 and 2.43, respectively (Table 2). 

The lithology of the study area has been categorized into 
(i) Pleistocene sediments, (ii) coarse grained sedimentary, 
(iii) alluvial deposits, (iv) mixed or undifferentiated igneous, 
(v) mixed or undifferentiated sedimentary, (vi) limestone, 
(vii) mixed sedimentary and limestone, (vii) mixed sedi-
mentary and volcanic, (ix) acid to intermediate igneous, (x) 
lake and (xi) low grade metamorphic (Fig. 2g). Lithology is 

Fig. 4   Output map through FR model: (a) flood susceptibility index with all flood points and (b) overlay of villages and road on flood suscepti-
bility zones
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an important conditioning parameter in flooding because it 
has a direct influence on land permeability and thus surface 
runoff (Haghizadeh et al. 2017). The maximum FR value 
of 1.49 was recorded in alluvial deposits which covers 67% 
of the total study area (Table 2). Flood intensity became 
less in those locations far away from the river and the risk 
was higher in areas near to the river bank. Distances from 
the river in the range from 4000 to 5000, 5000 to 6000 and 
> 6000 m have a low probability of flooding, whereas dis-
tances in the range of < 1000 and 1000–2000 m together 
indicate highest FR values (1.42), which demonstrates the 
highest flood event (Haghizadeh et al. 2017). Soil texture 
and soil drainage are very important factors in flood sus-
ceptibility mapping. Well-drained soils produce less surface 
runoff than poorly drained soil group (Pal et al. 2012). The 
soil drainage database was generated with six (6) catego-
ries, namely (i) well drained, (ii) waterlogged (swampy), 
(iii) poorly to very poorly drained, (iv) river course, (v) 

imperfectly drained and (vi) lake. Within the soil drainage 
factor, poorly to very poorly drained class had the highest FR 
value of 2.66, followed by waterlogged (swampy) area with 
the FR value of 2.21. Finally, the soil texture map was gen-
erated for the study area where ten (10) soil texture classes 
could be found (Samanta et al. 2016b), namely sandy clay 
loam, sandy loam, silty clay loam, peat, silty loam, sandy 
clay, river course-gravel, sand, lake and silty clay (Fig. 2h). 
The FR value was calculated as 3.54 for sandy loam and 0.22 
for silty clay (Table 2).

Thus, the rating of each subclass of all conditioning param-
eter was generated based on the FR values as shown in Table 2. 
FR value varied from 0 to 3.54 in the study area. Calculated 
FR values were indicated as weak (< 1) to strong (> 1) correla-
tions with flood occurrence (Lee et al. 2012). Finally, based on 
FR model in Eq. 5, the flood probability database was devel-
oped (Fig. 4a). FR value in the model output varied from 2.66 
to 19.02. Greater FR value indicated the higher probability 
to flood occurrences. The developed database was reclassi-
fied into five (5) different flood susceptibility zones, namely 
very low (less that 5.0), low (5.0–7.5), moderate (7.5–10.0), 
high (10.0–12.5) and very high susceptibility (more than 12.5) 
(Fig. 4b). The result indicates that about 19.4% land area are 
demarcated as very high, 35.8% as high, 17.0% as moderate, 
17.6% as low and 10.3% as very low flood vulnerable class 
(Table 3). High to very high vulnerable classes are mostly 
located along the middle part of the study area (Fig. 4b). 
These high to very high flood susceptibility zones are charac-
terized with higher runoff potentiality, poorly to very poorly 
drained soil, alluvial deposits, braided flood plain, lower slope 

Table 3   Spatial distribution (statistics) of flood vulnerability classes 
in the study area

Sl. no. Flood vulner-
able class

FR value range Histogram % area

1 Very low < 5.0 206164 10.3
2 Low 5.0–7.5 353062 17.6
3 Medium 7.5–10.0 340554 17.0
4 High 10.0–12.5 718863 35.8
5 Very high > 12.5 388965 19.4

Table 4   Calculation of prediction accuracy and success rate for the flood susceptibility analysis

Sl. no. Susceptibility class Verification 
(30% flood 
points)

Accurate (high to very 
high class)

Prediction accuracy Training 
(70% flood 
points)

Success (high to very 
high class)

Success rate

1 Very low 0 42 0.977
or
97.7%

0 94 0.94
or
94.0%

2 Low 0 0
3 Medium 1 6
4 High 20 45
5 Very high 22 49
Total 43 100

Table 5   Flood susceptibility 
zone and the risk factor

Susceptibility class FR value range Village % of village under 
flood vulnerability

Total population

1 Very low < 5.0 1 0.3 733
2 Low 5.0–7.5 16 4.5 5021
3 Medium 7.5–10.0 83 23.2 30466
4 High 10.0–12.5 183 51.1 93860
5 Very high > 12.5 75 20.9 43432
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gradient, lower elevation and closer to the main river, which 
are the important conditioning factors for flood susceptibility 
mapping using the FR model.

There are many models as proposed by different research-
ers, but it is very important to evaluate the accuracy and suc-
cess rate to validate the model used for flood susceptibility 
analysis (Chung and Fabbri 2003; Tien Bui et al. 2012). The 
modelled output through FR model is validated in regard of 
success rate and prediction accuracy. The value of 1.0 repre-
sented the highest accuracy, which indicates the capability of 
the model in predicting natural hazards without any bias (Prad-
han and Buchroithner 2010). Success rate was calculated using 
100 training flood locations and prediction of accuracy, using 
remaining 43 flood locations which were not used during the 
model building. Class ranges from ‘high’ to ‘very high’ sus-
ceptibility are considered as potential flood that might occur in 
future. Success rate and prediction rate are calculated as 0.94 
and 0.977, respectively (Table 4). So the prediction accuracy 
corroborates to 97.7% which validates the FR model used in 
this flood susceptibility analysis.

Finally, an impact analysis was done to assess the risk fac-
tor by probable flood occurrences on the local community and 
population (Table 5). About 75 villages (20.9%) are situated 
in the very high flood vulnerable zone and 183 (51.1%) in the 
high flood vulnerable zone (Fig. 4b). A total of 137292 peo-
ple are living in those vulnerable zones which require special 
attention from various levels of governments to take appropri-
ate actions to prevent and mitigate future flood occurrence.

Conclusion

In the current research, the FR model is used to analyse 
flood susceptibility zone in the lower part of the Markham 
river basin (Sub-basin 14). Ten independent conditioning 
factors, like LULC, elevation, slope, TWI, surface runoff, 
landform, lithology, distance from the main river, soil tex-
ture and soil drainage were derived from the geospatial data 
sets and used as input into the FR model towards flood prone 
area mapping. As the result suggests, these ten variables are 
likely to be major factors to map flood-affected zone. The 
FR model was used to establish the relationship between 
past and future flood occurrences. 143 flooded points were 
generated through “create fishnet” analysis of the PNGRIS 
national database, field investigation and satellite data before 
and after flood events. Random sampling technique was used 
to select 70% input flood data and to calculate frequency 
ratio for each parameters and their subclasses (Rahmati 
et al. 2016b). The use of stratified random sampling would 
be difficult to generate frequency ratio for all classes under 
each parameter. So random sampling has been mooted by the 
authors as the prudent choice in this type of studies. FR val-
ues for different categories of all conditioning factors were 

calculated based on the 100 flood training points (70%). The 
validation report indicated a higher prediction accuracy of 
97.7% which had been enough to validate the FR model 
that was used for this study. It is obvious that a higher num-
ber of input data sets generate higher accuracy. FR model 
requires a large number of flood points as training like 70% 
(or 100 points) to generate Frequency Ratio, whereas a less 
number of input data do not fall under all classes of every 
parameter. In this point of view, we used 70% flood points 
for flood map development and 30% (70–30) for the valida-
tion process. In case we used 60–40 or 50–50, the results 
are not same. The accuracy varied 5–10% lower than 70–30 
selection method. To validate the superiority, we sought to 
compare the method used in this study (FR model) with 
another multi-criteria decision support approach (MCDA) 
(Samanta et al. 2016a) which was conducted in the same 
river basin. As per our assessment, FR model produced bet-
ter results compared to MCDA. This FR model can be used 
in any other geographical area to develop a flood risk map 
which can help planners and decision makers to perform 
proper flood management in future.
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