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Abstract
In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the 
most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To 
simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes 
modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization 
algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization 
(ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge 
coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using 
simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and 
ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.

Keywords  ANFIS · Differential evaluation · Discharge coefficient · Genetic algorithm · Hybrid method · Modified side 
weir · Particle swarm optimization

Introduction

Side weirs are among the principal parts in several hydraulic 
structures, such as irrigation and drainage, flood control and 
sewer network structures. De Marchi (1934) introduced the 
first mathematical relation of side weirs. The author assumed 
that the specific energy of the downstream and upstream 
of a side weir is equal. Equation (1) is introduced by the 
author to calculate the discharge changes by moving along 
the side weir.

where dQ/dx is the discharge change by moving along the 
side weir, Cd is the discharge coefficient, y is the flow depth 
and w is the channel width.

The simplest side weirs have a rectangular shape. Many 
studies have been conducted to specify the characteristics of 
rectangular side weirs. However, besides the advantages of 

rectangular side weirs like easy construction, such side weirs 
have low efficiency (Bilhan et al. 2011). In case of overflow, 
there are two choices: first, the length of the rectangular 
side weir can be increased, and second, side wire efficiency 
can be increased. Increasing the side weir length leads to 
increasing the tributary channel—a choice that seems costly. 
The economical alternative is to increase the side weir effi-
ciency. Modifying side weir shape could increase side weir 
efficiency between 1.5 and 4.5 times (Kumar and Pathak 
1987; Cosar and Agaccioglu 2004; Ghodsian 2004; Emiro-
glu et al. 2010b; Aydin and Emiroglu 2013; Mirnaseri and 
Emadi 2013).

The ANFIS method, as a hybrid soft computing method 
of the Artificial Neural Network (ANN) and fuzzy logic 
knowledge, is widely used in various modeling (Khajeh et al. 
2009; Talei et al. 2010; Petkovic et al. 2013a, b) and predic-
tion (Dastorani et al. 2010; El-Shafie et al. 2011; Wahida 
Banu et al. 2011; Wu and Chau 2013) engineering problems.

In numerous studies, the ANFIS method has been suc-
cessfully used to simulate the characteristics of side weirs. 
Dursun et al. (2012) applied ANFIS to predict the character-
istics of semi-elliptical side weirs. Kisi et al. (2013) simu-
lated the discharge coefficient of rectangular side weirs using 
ANFIS and concluded that ANFIS performs much better 
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than linear and non-linear regression methods. Emiroglu 
and Kisi (2013) utilized ANFIS to simulate the discharge 
coefficient of trapezoidal side weirs and compared the 
results with the ANN method. The authors concluded that 
the ANFIS model could predict the trapezoidal side weir 
discharge coefficient with higher accuracy. Seyedian et al. 
(2014) used ANFIS to investigate the effect of changing the 
side weir length, flow depth and side weir height on the 
discharge coefficient.

The ability to predict the modified side weir discharge 
coefficient is significant in their design process. Soft com-
puting methods are broadly used for the evaluation of modi-
fied side weir characteristics (Bilhan et al. 2010; Kisi et al. 
2012; Onen 2014a, b).

Discharge coefficient of the modified side weir that is 
investigated in the present study is simulated in various stud-
ies. Zaji and Bonakdari (2014) compared the performance 
of Multi-Layer Perceptron Neural Network (MLPNN), 
Radial Basis Neural Network (RBNN), and linear and non-
linear PSO based equations in modeling the modified side 
weir discharge coefficient. The authors concluded that the 
RBNN model has higher performance compare with the 
other regression methods in simulating the considered 
side weir discharge coefficient. Zaji et al. (2015) simulated 
the present side weir discharge coefficient using the PSO 
based RBNN method. The authors concluded that the PSO 
algorithm successfully improved the RBNN performance. 
Bonakdari et al. (2015) used ANFIS as sensitivity analyzer 
to find the most appropriated input variables in simulat-
ing the discharge coefficient of the present side weir. Zaji 
et al. (2016b) applied two types of Support Vector Machine 
(SVM) to simulate the considered modified side weir. In the 
first type, the radial basis kernel function is used and in the 
second type, the polynomial kernel function is employed. In 
addition, the sensitivity analysis on the input variables was 
done by examining six different input combinations. The 
results showed that both types of SVM method perform bet-
ter when higher number of input variables are used and the 
radial basis kernel function performs better compare with 
the polynomial kernel function. Zaji et al. (2016a) compared 
the firefly based SVM with the simple SVM in simulating 
the present side weir discharge coefficient. The authors con-
cluded that firefly optimization algorithm has a high role in 
accurate simulation of the side weir discharge coefficient. 
Shamshirband et al. (2016) uses the simple ANFIS in pre-
dicting the discharge coefficient of the present side weir. 
The authors concluded that ANFIS has a high capability in 
simulating the discharge coefficient of side weirs. Zaji and 
Bonakdari (2017) tried to find the optimum SVM method 
in simulating the considered side weir’s discharge coeffi-
cient. To do that, eight different SVM models with linear, 
polynomial, Gaussian, exponential, Laplacian, sigmoid, 
rational quadratic, and multiquadratic kernel functions and 

concluded that the polynomial kernel function performs bet-
ter compare with the other kernels. Zaji et al. (2017) aim 
was to develop simple and practical equations to estimate 
the discharge coefficient of the considered side weir. The 
PSO algorithm is utilized to optimize the coefficients of the 
considered equations. The results showed that the side weir’ 
discharge coefficient could be modeled using simple and 
practical equations, accurately.

The aim of this study is to model the discharge coefficient 
of a modified triangular side weir using three novel hybrid 
ANFIS methods, i.e., ANFIS-DE, ANFIS-GA and ANFIS-
PSO. The models are investigated with eight different input 
combinations to find the most appropriated input variables. 
Training and validation of the ANFIS models were done 
using the experimental study of Borghei and Parvaneh 
(2011). The results of the most appropriate ANFIS model 
are compared with the previous findings of Borghei and 
Parvaneh (2011) and Emiroglu et al. (2010a).

Materials and methods

In the first part of this section, the experimental study by 
Borghei and Parvaneh (2011) is introduced. Then the optimi-
zation algorithms used namely DE, GA and PSO and ANFIS 
are presented. Finally, the statistics errors applied to find the 
performance of each model are presented.

Experimental study

The training and validation of the modified side weir was 
done using the experimental study by Borghei and Parvaneh 
(2011). The discharge coefficient of the proposed side weir 
is nearly twice higher than that of a simple rectangular side 
weir. A schematic overview of the modified side weir is 
shown in Fig. 1. The laboratory flume is made of glass walls 
with 11 m length and 0.4 m width. The experiments were 
done with various side weir parameters including length (L), 
height (w), weir included angle (θ), upstream flow depth 
(y1) and upstream Froude number (Fr1). Table 1 represents 
the parameter intervals considered. The experiments were 
carried out with ± 1 mm and ± 0.0001 m3/s accuracy in the 
head and discharge measurments.

Input variables

To evaluate the most appropriate input variables, eight dif-
ferent input combinations are studied in this research. The 
variables of each input combination are shown in Table 2. 
To use the hybrid ANFIS methods in practical situations 
as well as to compare the accuracy of the proposed mod-
els with previous studies, the input variables should be 
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non-dimensional. Therefore, all of the input variables used 
are non-dimensionalized.

According to Table 2, the input combinations from In#1 
to In#8 have 5, 4, 3, 3, 3, 3, 2, and 1 variables. Therefore, 
by moving from the first input combination to the last, the 
number of input variables decreases, but their complexity 
increases. The goal of investigating input combinations is to 
identify the performance of the ANFIS-DE, ANFIS-GA and 
ANFIS-PSO methods with more, but simpler input variables 

(such as In#1) compared with the less, but more complex 
input variables (such as In#8).

Differential evolution

Differential evolution, introduced by Storn and Price (1997), 
is a population-based optimization algorithm. The main 
difference between DE and other evolutionary algorithms 
is the utilization of the direction and difference between 

Fig. 1   Schematic overview of 
the improved triangular side 
weir (Borghei and Parvaneh 
2011)

Table 1   Variations in the 
experimental parameters of the 
improved triangular side weir 
(Borghei and Parvaneh 2011)

θ/2 (°) L (m) w (mm) w/Y1 Q1 (m3/s) F1 Number 
of runs

30 0.3
0.4

50,75,100,150
50,75,100,150

0.46–0.83 0.019–0.030 0.19–0.96 40

45 0.3
0.4
0.6

50,75,100,150
50,75,100,150
50,100,150

0.46–0.83 0.019–0.030 0.19–0.96 55

60 0.3
0.4
0.6

50,75,100,150
50, 100,150
50, 100,150

0.46–0.83 0.019–0.030 0.19–0.96 50

70 0.3
0.4
0.6

50,75,100,150
50,75,100,150
50,100,150

0.46–0.83 0.019–0.030 0.19–0.96 55

Table 2   Input combinations Input combina-
tions

Input variables

In#1 w/b y1/b L/b sin(θ/2) Fr1

In#2 w/y1 L/b sin(θ/2) Fr1

In#3 w/y1 L × sin(θ/2)/b Fr1

In#4 w/y1 L × Fr1/b sin(θ/2)
In#5 w × sin(θ/2)/y1 L/b Fr1

In#6 w × Fr1/y1 L/b sin(θ/2)
In#7 w × L/(b × y1) Fr1 × sin(θ/2)
In#8 w × L × Fr1 × sin(θ/2)/

(b × y1)
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individuals. In the DE algorithm, initially, the mutation pro-
cess is performed on the individuals, after which the crosso-
ver process is done. In the mutation process, the following 
steps are taken: (i) Select a parent individual, such as xi(t); 
(ii) Randomly select two other individuals from the current 
population, (xj(t) and xk(t)); (iii) Calculate the trial vector 
according to Eq. (2).

where β is the scale coefficient. Next, using the trial vector 
determined from the mutation process, crossover is done and 
a new child is created as follows:

where J represents the crossover points. There are many 
ways to determine the J parameter as presented in more 
detail by Storn and Price (1997). Following crossover evalu-
ation, the fitness function is used to calculate the cost of the 
crossover child f (x�

i
(t)) and to compare it with the cost of 

the parent f (xi(t)) . If the child cost is lower than the parent 
cost, x�

i
(t) is transferred to the next generation; otherwise, the 

parent ( xi(t) ) is transferred to the next generation directly. 
The DE algorithm is represented in Fig. 2.

Genetic algorithm

The genetic algorithm (Holland 1975) is one of the most 
common optimization algorithms employed in various engi-
neering problems. A schematic overview of the GA is shown 
in Fig. 3. The GA begins the optimization process with a 
random initial population. The goodness of each individual 
is then evaluated using the fitness function. The goodness of 
the individuals is represented as the cost of each individual. 
In a minimization problem, the individual that has a lower 
cost is sorted as a better one. After evaluating the cost of 
the initial population, the individuals are sorted according 
to their cost. The best individuals are separated according 
to elite percentage and put into an elite population. The elite 
population is directly transferred to the next generation. 
The other individuals of the next generation are obtained by 
crossover and mutation processes. These processes serve to 
differentiate the next generation from the current one. The 
crossover process uses two individuals of the current genera-
tion as the parents and evaluates the two new children and 
transfers them to the next generation. The crossover process 
is described in more detail by Olariu and Zomaya (2005). 
The mutation process is meant to maintain diversity between 
current and subsequent generations (Glover and Kochen-
berger 2003).

(2)ui(t) = xi(t) + �
(
xj(t) − xk(t)

)
,

(3)x�
i
(t) =

{
ui(t) if j ∈ J

xi(t) otherwise
,

Particle swarm optimization

Particle swarm optimization (Kennedy and Eberhart 1995) is 
a common optimization algorithm used in various problems. 

Start

Initial individuals generation

For each individual 

Calculate the individual cost f (xi(t))

xi'(t) < xi(t)

Storage the best 
Individual

End

YesNo

Transfer the xi(t) to the next 
generation

Calculate the trial vector ui (t)

Calculate the child by using the crossover 
xi' (t)

Transfer the xi'(t) to the 
next generation

The termination 
criteria achieved?

Yes

No

Fig. 2   DE flowchart
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A schematic overview of the PSO is shown in Fig. 4. PSO 
starts with some random particles. Using the fitness function, 
the cost of particles is evaluated according to their positions.

Each particle has three parameters: the current position, 
its best individual position and the best position among all 
particles. Using these parameters, the velocity of each par-
ticle is obtained as follows:

where xPbest is the best individual position of each particle, 
xGbest is the best position of all particles, w is the inertia coef-
ficient, c1 is the personal learning coefficient, c2 is the global 
learning coefficient, and r1 and r2 are random coefficients 

(4)
�i[t + 1] = w�i[t] + c1r1

(
xPbest[t] − xi[t]

)
+ c2r2

(
xGbest[t] − xi[t]

)
,

with uniform distribution. Determining the constants of c1, 
c2, w is presented in more detail by Poli et al. (2007). Next, 
the new position of each particle is calculated as:

Adaptive neuro‑fuzzy interface system

In the current paper, three bell-shaped membership functions 
are used for each input. The maximum and minimum of the 
membership functions are 1 and 0, respectively. An ANFIS 
schematic overview with four inputs is illustrated in Fig. 5.

The first-order Sugeno model with fuzzy IF-THEN rules of 
Takagi and Sugeno along with two inputs is used for modeling.

(5)xi[t + 1] = xi[t] + �i[t + 1]

(6)
if i is A and j is C and k is E and l is

G then f1 = p1i + q1j + r1k + s1l + t.

Start

Initial individuals generation

Calculate the individual costs

Sort the individuals

The termination
criteria achieved?

Storage the best 
Individual

End

Yes

No

Separate the dataset

Mutation Crossover

Create the new population

Elite

Fig. 3   GA flowchart

Start

Initial population generation with random 
positions and velocities

Evaluate the fitness of each particle

Determine the best personal position
(xPbest)

The termination 
criteria achieved?

Storage the best 
particleEnd

YesNo

Determine the best position of the entire 
particles (xGbest)

Calculate the vi[t+1]

Calculate the xi [t+1]

Fig. 4   PSO flowchart
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The first layer supplies the input variables to the next 
layer and formed from the input variables’ membership 
functions (MFs).

where �(i)i are MFs.
In this study, bell-shaped MFs (2) with maximum equal 

to 1 and minimum equal to 0 are chosen.

A bell-shaped function depends on three parameters a, b 
and c. Parameter b is a positive constant and c is located at 
the middle of the curve (Fig. 6).

For each MF, the membership layer (second layer) is 
checked for the weights. It receives the input values from 
the 1st layer and acts as MFs to represent the fuzzy sets of 
the respective input variables. The second layer send the 
products out by multiplying the incoming signals. The sec-
ond layer nodes are non-adaptive.

Each node output represents the firing strength of a rule 
or weight.

The third layer is called the rule layer.
The nodes of the third layer (rule layer) done the pre-

condition matching of the fuzzy rules. Therefore, by com-
putation the activation level of rules, with the number of 
layers being equal to the number of fuzzy rules. The third 
layer nodes are used to calculation the weights which are 
normalized. The third layer is also non-adaptive and every 

(7)O = �(i),

(8)f (x;a, b, c) =
1

1 + (
x−c

a
)2b

(9)wi = �(i)i ⋅ �(i)i+1

node calculates the ratio of a rule’s firing strength to the sum 
of all rules’ firing strengths as:

The outputs of this layer are called normalized firing 
strengths, or normalized weights.

The fourth layer is the defuzzification layer and it pro-
vides the output values resulting from the inference of rules. 
Every node in the fourth layer is an adaptive node with the 
node function:

where {pi, qi, ri, si, t} is the parameter set and in this layer it 
is denoted as consequent parameters.

(10)
w∗
i
=

wi

w1 + w2

i = 1, 2.

(11)O4

i
= w∗

i
p1i + q1j + r1k + s1k + t,

Fig. 5   ANFIS structure
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The last layer, namely the output layer, sums up all the 
inputs coming from the fourth layer and transforms the fuzzy 
classification results into a crisp (binary). The single node 
in the fifth layer is not adaptive and it calculates the overall 
output as the summation of all incoming signals:

In this paper, ANFIS works with three different evolution-
ary algorithms, DE, GA and PSO to adjust the parameters 
of the membership functions. The use of optimization tech-
niques has the benefit of being less computationally expen-
sive for a given network topology size. The membership 
functions investigated in this study are triangular-shaped.

Performance evaluation

To determine the performance of the investigated methods 
and also to compare the models with each other, the statisti-
cal parameters used are Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), coefficient of determination 
(R2) and average absolute deviation (δ%). δ% calculates the 
non-dimensional error of the model in percent, but RMSE 
and MAE calculate the model error on the same scale as the 
output parameters. Therefore, it can be concluded that to 
evaluate a models’ performance, it is necessary to consider 
these statistics together. RMSE, MAE, R2 and δ% are defined 
as follows:

(12)O5

i
=
�

i
w∗
i
⋅ f =

∑
i wi ⋅ f∑
i wi

(13)
RMSE =

������
N∑
i=1

(oi − ti)
2

N

(14)MAE =
1

N

N∑
i=1

||oi − ti
||

where ti is the observed values of Cd obtained from the labo-
ratory results, oi is the numerical method’s output of Cd, and 
N is the number of samples.

Results

Investigation of input combinations

In the present study, the performance of three hybrid meth-
ods, namely ANFIS-DE, ANFIS-GA and ANFIS-PSO is 
investigated with regards to discharge coefficient predic-
tion. The hybrid methods were considered with eight differ-
ent input combinations according to Table 2. Table 3 dem-
onstrates the performance of the ANFIS-DE models with 
the different input combinations. From this table, it can be 
concluded that the first and second input combinations with 
RMSE of 0.077 and 0.078, respectively, in the test data-
set perform much better than the other input combinations. 
In addition, it is clear that by moving from the first input 
combination to the eighth, the modeling error significantly 
increases. Therefore, it is concluded that ANFIS-DE pre-
forms much better with more, but simpler input variables 
rather than less, more complex input variables.

The scatterplot of the ANFIS-DE method for various 
input combinations is shown in Fig. 7. In this figure, the 

(15)
R2 = 1 −

N∑
i=1

(oi − ti)
2

N∑
i=1

(oi − oi)
2

(16)�% =

N∑
i=1

��(oi − ti)
��

N∑
i=1

oi

× 100,

Table 3   ANFIS-DE 
performance evaluation for 
various input combinations

ANFIS-DE Training dataset Testing dataset

RMSE MAE %δ RMSE MAE %δ

In#1 0.057 0.042 6.432 0.077 0.055 7.725
In#2 0.057 0.042 6.417 0.078 0.056 7.794
In#3 0.119 0.098 15.270 0.130 0.104 14.469
In#4 0.068 0.051 7.758 0.115 0.086 11.333
In#5 0.080 0.062 9.474 0.091 0.071 10.323
In#6 0.065 0.046 7.007 0.090 0.063 8.820
In#7 0.105 0.083 12.364 0.128 0.095 14.309
In#8 0.123 0.103 15.067 0.143 0.125 16.043
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trendline and trendline equation are shown. The trendline 
equation is defined as:

where C1 and C2 are the equation constants. A value of C1 
closer to 1 and a value of C2 closer to 0 represent a more 
accurate model. This figure indicates that for all input 
combinations, ANFIS-DE is trapped in overestimation for 
Cd < 0.8 and trapped in underestimation for Cd > 0.8. In 

(17)y = C1x + C2,

addition, the ANFIS-DE method exhibits close performance 
when using the first and second input combinations.

ANFIS-GA was modeled with the investigated input com-
binations. Table 4 represents the performance of the ANFIS-
GA method with various input combinations. From this table, 
it is obvious that ANFIS-GA has significantly higher perfor-
mance when using the first input combination. One of the 
most important parameters in the performance evaluation 
of a model is training dataset performance. When training 

Fig. 7   Scatterplots of ANSIS-
DE for various input combina-
tions
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dataset accuracy is much higher than testing dataset accuracy, 
it can be concluded that the model is trapped in over-fitting. 
Therefore, the comparison between the best ANFIS-GA and 
ANFIS-DE models signifies that despite the models’ close 
performance in the testing dataset, the training dataset perfor-
mance of the ANFIS-GA with RMSE of 0.040 is most likely 
trapped in over-fitting, and the ANFIS-DE result with RMSE 
of 0.057 in the training dataset is more reliable. Table 4 
shows that similar to the ANFIS-DE method, ANFIS-GA has 
higher performance when five simple input variables (In#1) 
are used for modeling rather than fewer but more complex 
input variables (such as In#7 and In#8).

The scatterplots of the ANFIS-GA models with various 
input combinations are shown in Fig. 8. This figure shows 
that the ANFIS-GA method absolutely has an overestima-
tion tendency. Therefore, for the majority of input combina-
tions, the ANFIS-GA predictions are found above the exact 
line. The results indicate that ANFIS-GE cannot predict the 
discharge coefficient when using the six-input combination.

To compare the results of the three investigated hybrid 
ANFIS models, the ANFIS-PSO method was modeled with 
eight input combinations and the performance evaluation 
results are represented in Table 5. Much like the ANFIS-
DE and ANFI-GA, from this table it is obvious that the first 
input combination performs much better than the other input 
combinations. A comparison of the ANFIS-PSO with RMSE 
of 0.096 with the ANFIS-GA and ANFIS-DE with RMSE 
of 0.079 and 0.077 in the testing dataset, respectively, indi-
cates that the PSO did not perform as well as the GA and 
DE in the hybrid ANFIS methods for discharge coefficient 
prediction. In addition, by comparing the training and test-
ing dataset performance, it appears that the ANFIS-PSO is 
totally trapped in over-fitting and the results of this method 
cannot be used in practical situations.

The scatterplots of the ANFIS-PSO method are shown in 
Fig. 9. Like the ANFIS-GA method, PSO has a tendency to 
overestimate the discharge coefficient. However, the same as 
the other hybrid ANFIS methods, the ANFIS-PSO method 
performs much better when using the first input combina-
tion. Thus, it can be concluded that ignoring the modeling 

method, the discharge coefficient has high reliability to the 
w/b, y1/b, L/b, sin(θ/2), and Fr1. So, because of the non-
dimensionality of these input combinations, it can be suc-
cessfully used as the input variables of the modified side 
weir discharge coefficient.

An overview of the three considered hybrid ANFIS mod-
els with various input combinations is shown in Fig. 10. The 
performance of each model in the training and testing data-
sets is represented by RMSE statistic error. According to this 
figure, the close performance of ANFIS-DE in the testing and 
training datasets represents that this method is not trapped 
in over-fitting. However, the ANFIS-GA and ANFIS-PSO 
methods are often trapped in over-fitting. Hence, it can be 
concluded that the DE algorithm can be successfully used 
in the ANFIS hybrid method. In addition, according to the 
testing and training trendlines in Fig. 10, it can be absolutely 
concluded that the models have higher performance with the 
5–3 variable input combinations (In#1–In#6), but by decreas-
ing the input variable number to less than 3, the performance 
of the models decreases significantly.

Residual comparison between the hybrid ANFIS 
models

The residual scatterplots of the best ANFIS-DE, ANFIS-GA 
and ANFIS-PSO are presented and compared in this section. 
In Fig. 11, the residual of the three hybrid ANFIS methods 
with the first input combination is shown for the training and 
testing stages, separately. The horizontal axis of this figure is 
the number of samples and the vertical axis is the residual of 
the considered models. The comparison between the models 
is done using the concept of standard deviation (SD), which 
is defined as follows:

where Resi is the residual of the ith sample, Res is the aver-
age of all samples’ residuals and N is the number of samples. 

(15)SD =

√√√√ 1

N − 1

N∑
i=1

(
Resi − Res

)2

,

Table 4   ANFIS-GA 
performance evaluation for 
various input combinations

ANFIS-GA Training dataset Testing dataset

RMSE MAE %δ RMSE MAE %δ

In#1 0.040 0.032 4.927 0.079 0.055 7.453
In#2 0.041 0.033 5.008 0.092 0.056 7.929
In#3 0.069 0.055 8.471 0.156 0.129 15.947
In#4 0.044 0.034 5.192 0.114 0.095 11.919
In#5 0.067 0.051 7.777 0.363 0.149 20.279
In#6 0.056 0.041 6.252 0.665 0.395 110.944
In#7 0.089 0.070 10.556 0.145 0.111 17.726
In#8 0.111 0.088 13.382 0.190 0.136 16.877
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95% of all residual samples fall in the 2 × SD to − 2 × SD 
range. From Fig. 11, it can be seen that the ANFIS-GA 
method with 2 × SD of 0.134 has the lowest residual in 
the test dataset. However, the high difference between the 
ANFIS-GA training and testing residuals signifies that the 
ANFIS-GA is trapped in over-fitting. The ANFIS-DE with 
residuals of 0.115 and 0.152 in the training and testing pro-
cesses, respectively, shows an accurate and non-over-fitting 
model that could be used in practical situations. Figure 7 
represents that the ANFIS-PSO is the weakest among the 

considered methods, and with a low residual of 0.060 in the 
training process and high residual of 0.188 in the testing 
process, it falls extremely in over-fitting.

Comparison of the best hybrid ANFIS models 
with previous studies

In this section, the results of ANFIS-DE, the best hybrid 
ANFIS method with the first input combination are com-
pared with prior studies of Borghei and Parvaneh (2011) 

Fig. 8   Scatterplots of ANSIS-
GA for various input combina-
tions
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Table 5   ANFIS-PSO 
performance evaluation for 
various input combinations

ANFIS-PSO Training dataset Testing dataset

RMSE MAE %δ RMSE MAE %δ

In#1 0.030 0.023 3.444 0.096 0.072 10.551
In#2 0.028 0.021 3.132 0.240 0.181 21.064
In#3 0.079 0.064 9.656 0.215 0.174 19.971
In#4 0.035 0.027 4.046 0.098 0.082 10.727
In#5 0.046 0.034 5.099 0.124 0.095 14.811
In#6 0.051 0.035 5.252 0.108 0.087 11.550
In#7 0.069 0.053 7.997 0.191 0.138 21.777
In#8 0.107 0.086 13.023 0.184 0.135 16.875

Fig. 9   Scatterplots of ANSIS-
PSO for various input combina-
tions
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Fig. 10   Hybrid ANFIS meth-
ods’ performance in the training 
and testing datasets
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Fig. 11   Residual scatterplots of 
the considered hybrid ANFIS 
models
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(Eq. 16) and Emiroglu et al. (2010a) (Eq. 17). The compari-
son of the proposed models is shown in Fig. 12. This figure 
indicates that the ANFIS-DE method with R2 of 0.8488 per-
forms significantly better than Eqs. (16) and (17) with R2 of 
0.7208 and 0.0898, respectively. In addition, it is evident that 
Eq. (17) can absolutely not be employed for discharge coef-
ficient prediction. The low performance of Eq. (17) signifies 
that each modified side weir needs a separate study and the 
equation of a simple triangular side weir cannot be used for 
the modified triangular side weir.

Conclusion

In this study, three different hybrid ANFIS methods, namely 
ANFIS-DE, ANFIS-GA and ANFIS-PSO were used to 
evaluate the discharge coefficient of a modified triangular 
side weir. To evaluate the most appropriate hybrid ANFIS 
model, eight different input combinations were tested on the 
models. The first input combination consists of five simple 
input variables. By moving from the first input combina-
tion to the last, the number of variables decreases and their 
complexity increases. The results show that all of the con-
sidered methods performed significantly better when using 
the first input combination. Subsequently, the results of the 
three hybrid ANFIS models with the first input combina-
tion were compared with each other using standard devia-
tion. According to the results, the difference between the 
training and testing errors in the ANFIS-GA and ANFIS-
PSO models is very high and these models’ results are not 

(16)

Cd =

⎡⎢⎢⎢⎣
−0.18

⎛⎜⎜⎜⎝
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sin

�
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2
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− 0.15
�
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�0.44
+

�
w
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�0.7
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×
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−2.37 + 2.58
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w sin

�
�

2

�
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(17)
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[
18.6 − 23.535

(
L

b

)0.012

+ 6.769

(
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l

)0.112

−0.502

(
w

y1

)4.024

+ 0.094 sin � − 0.393F2.155

1

]−1.431

.

reliable to use in practical situations. Finally, the results of 
the ANFIS-DE method with the first input combination of 
w/b, y1/b, L/b, sin(θ/2), and Fr1 was compared with previous 
works by Borghei and Parvaneh (2011) and Emiroglu et al. 
(2010a). The results indicate that ANFIS-DE performs much 
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better compared with the previous equations. Therefore, it 
could be conceded that separate studies are required for each 
modified side weir and the results for the triangular side weir 
cannot be used as a modified triangular side weir discharge 
coefficient equation.
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