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Abstract
Geostatistical methods are one of the advanced techniques used for interpolation of groundwater quality data. The results 
obtained from geostatistics will be useful for decision makers to adopt suitable remedial measures to protect the quality of 
groundwater sources. Data used in this study were collected from 78 wells in Varamin plain aquifer located in southeast of 
Tehran, Iran, in 2013. Ordinary kriging method was used in this study to evaluate groundwater quality parameters. According 
to what has been mentioned in this paper, seven main quality parameters (i.e. total dissolved solids (TDS), sodium adsorption 
ratio (SAR), electrical conductivity (EC), sodium (Na+), total hardness (TH), chloride (Cl−) and sulfate (SO4

2−)), have been 
analyzed and interpreted by statistical and geostatistical methods. After data normalization by Nscore method in WinGslib 
software, variography as a geostatistical tool to define spatial regression was compiled and experimental variograms were 
plotted by GS+ software. Then, the best theoretical model was fitted to each variogram based on the minimum RSS. Cross 
validation method was used to determine the accuracy of the estimated data. Eventually, estimation maps of groundwater 
quality were prepared in WinGslib software and estimation variance map and estimation error map were presented to evaluate 
the quality of estimation in each estimated point. Results showed that kriging method is more accurate than the traditional 
interpolation methods.

Keywords  Estimation variance · Geostatistical method · Groundwater quality · Ordinary kriging · Variogram · Varamin 
plain

Introduction

Groundwater is the most important natural resource used for 
drinking by many people around the world, especially in arid 
and semi-arid areas. The resource cannot be optimally used 
and sustained unless the quality of groundwater is assessed. 

Having a clear view of groundwater quality, decision mak-
ers can plan and organize the operation and maintenance of 
groundwater resources in a much better way. In Iran, ground-
water resources are not only the most important resources 
for drinking purpose, but also they are extensively used in 
agricultural, domestic and industrial sections (Sadat-Noori 
et al. 2014). Understanding the spatial and temporal varia-
tion of groundwater quality is a crucial aspect for applying 
the optimal management of groundwater resources. Reliable 
data are essential for assessing and monitoring groundwater 
quality, but in many cases data collection all over the area is 
time-consuming and not possible, so interpolation methods 
can save time and money significantly (Sahebjalal 2012).

Applied environmental sciences often deal with regional-
ized data with the purpose of investigating the behavior of 
one or more spatially distributed attributes. Geostatistics sci-
ence provides a number of methods based on random func-
tions theory, which are frequently used to estimate the value 
of a spatially measured variable at the unsampled places. 
The main subject regarding any geostatistical method is the 
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evaluation of spatial correlations, through parametric classes 
of covariance and variogram functions, which present the 
spatial regression among a dataset based on the spatial vari-
ability of couple of points at the specific spatial distances 
(lags) (Barca et al. 2017). Geostatistics focuses on spatial 
and temporal varying phenomena and can be considered as a 
collection of numerical techniques dealing with the descrip-
tion of spatial properties, employing chiefly random models 
in a manner similar to the way in which time series analysis 
characterizes temporal data. It offers a way of describing the 
spatial continuity of natural phenomena and provides adap-
tations of classical regression techniques to take advantage 
of this continuity (Bohling 2005). In the previous decades, 
the accuracy of interpolation methods for predicting ground-
water properties has been investigated in several studies. 
Some studies are presented in the following.

Istok and Cooper (1988) used the kriging method to 
estimate heavy metal concentration in groundwater and 
concluded that this method was the best estimator for spa-
tial prediction of lead. Bardossy and Kundzewicz (1990) 
studied two geostatistical techniques, point kriging and the 
IRF-k, for detection of outliers in groundwater quality. Their 
results showed the usefulness of these methods to assess the 
groundwater quality. Das Gupta et al. (1995) investigated 
groundwater resource quality in a Bangkok aquifer by geo-
statistical methods, and their results showed the usefulness 
of applying this method to issues related to groundwater 
quality. D’Agostino et al. (1998) investigated the spatial and 
temporal variability of nitrate in groundwater via kriging and 
co-kriging methods. Finke et al. (2004) used simple kriging 
to estimate water surface changes in the Netherlands and 
introduced it as a suitable method for mapping water surface. 
Huysmans and Dassargues (2009) studied the application of 
geostatistics on modeling groundwater flow and transport in 
a cross-bedded aquifer in Belgium. Their study showed that 
geostatistics is a powerful tool to determine subsurface het-
erogeneity for hydrogeological applications in a wide range 
of complex geological environment by applying geostatistics 
tool to a real aquifer. Zehtabian et al. (2013) carried out a 
study to find the most appropriate interpolation techniques to 
assess the spatial relationship of groundwater quality param-
eters (EC, TDS and TH) in Garmsar, Iran. They applied 
common geostatistical methods including Co-kriging, global 
kriging as well as some deterministic methods and con-
cluded that co-kriging is one of the best approaches.

In this study, kriging estimation maps have been prepared 
to assess the efficiency of the geostatistical methods. Also, a 
focus has been made on applying more accurate variogram 
models on the experimental variograms, and variogram 
parameters have been validated. It has also been emphasized 
on a practical application of estimation variance to assess 
the uncertainty, and residual analysis to evaluate the error 
distribution. Furthermore, error map of the kriging method 

has been prepared, indicating the prospective sampling pat-
terns. Although many geoscience researchers have applied 
geostatistical techniques, especially in groundwater, in the 
present study the anisotropy has been defined more reliably 
and the kriging method has been improved compared to pre-
vious researches. Since groundwater management requires 
awareness of the quality variations in their resources, in this 
research the groundwater quality situation of the Varamin 
plain aquifer, Iran, has been assessed followed by attempts 
to study the spatial distribution to identify places with the 
best quality. Geostatistical method (ordinary kriging) has 
been applied to predict and estimate groundwater quality 
parameters, and the desired maps have been compiled more 
significantly.

Materials and methods

The study area

Varamin plain is located in southeast of the Tehran plain 
and northwest of central desert of Iran. This plain is located 
in the southern slopes of the Alborz Mountains, northern 
Iran. The study area is about 1535 km2. The Varamin plain 
is located between the longitudes of 51° 30′ and 51° 55′ and 
latitudes of 35° and 35° 38′ (Fig. 1). The average height of 
the plain is about 950 m above sea level. The annual aver-
age rainfall is about 172 mm and evaporation rate is about 
2439 mm per year. The climate of this area is dry to semi-
dry, but the southern part tends to be hot and dry due to its 
location in the desert border (Mokhtari and Espahbod 2009).

The main source of water in the Varamin plain is Jajrood 
River and groundwater sources are also considered as a sig-
nificant source. Jajrood River is sometimes used for irri-
gation, while the groundwater is utilized for both drinking 
and irrigation purposes via pumping wells. The geologi-
cal structures play an important role in the occurrence of 
groundwater in the plain. The Varamin aquifer is considered 
as a natural unconfined aquifer and is recharged across its 
entire surface by infiltrating rainfall and streams leaking into 
the subterranean system (Razandi et al. 2015). Based on the 
existence of two large anticlines, the aquifer is divided into 
the northern and southern parts. The northern part has more 
transmissibility and better water quality. From the north-
east toward the southwest, both the quantity and quality of 
groundwater resources become more inappropriate. The 
Varamin plain has one major aquifer as well as several sub-
sidiary aquifers in the central and southern parts. The rate of 
precipitation in this plain is very low, so it plays little role in 
recharging underground aquifers (Mollaie and Sorbi 2008).

As far as the geomorphological properties are concerned, 
the area is divided into the uplands, piedmont and plain. 
Uplands are located in the northeastern part of the region 



Applied Water Science (2018) 8:23	

1 3

Page 3 of 13  23

and its slope decreases toward the south. Piedmont areas are 
formed from old and new sediments. New sediments are in 
the form of an alluvial fan, and this aquifer has been formed 
on it. The northeastern part is formed from fine-grained and 

medium-grained particles. The northern uplands are formed 
from impenetrable and compressed formations; therefore, 
they have no influence on the storage of water (Mollaie and 
Sorbi 2008).

Fig. 1   Sampling locations on the geological map of the Varamin plain
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All of the groundwater samples were taken from the deep-
est parts of the wells with an average depth of about 85 m; 
however, they belonged to a mutual alluvium. Therefore, 
all the data are prepared from one groundwater system that 
its formation type is alluvial; as a result, the geostatistical 
method can show their correlation as well. In this study, 
78 samples from the Iran Water Resources Management 
Company sampled in 2013 have been gathered to specify 
the groundwater quality of the Varamin plain aquifer. These 
wells are observation wells and the data of the Iran Water 
Resources Management Company are controlled during the 
field inspection of the observation wells on a monthly basis 
with an emphasis in the first half of the month.

Kriging method

Geoscientists often have to deal with spatial and modeling 
problems in the analyzing step of sparse data recorded from 
field observations. Geostatistics is an interesting tool used 
for describing and modeling spatial or temporal phenom-
ena. Geostatistics provides a set of statistical tools for the 
analysis of data distributed in space and time domain. It 
allows the description of spatial patterns in a dataset, the 
incorporation of multiple sources of information in the map-
ping of features, the modeling of the spatial uncertainty and 
its propagation through decision making (Goovaerts 2014).

Kriging is a method for linear optimum unbiased inter-
polation with a minimum mean interpolation error. Further-
more, it is known to be an exact estimator in the sense that 
observation points are correctly re-estimated. This method 
does not necessarily require observation networks where 

data are normally distributed, and for the estimation of the 
structure of the regionalized variables, it considers only the 
neighboring points of estimation data (De Marsily 1986). 
The procedure facilitates the estimation at unsampled loca-
tions. Kriging estimates are calculated as weighted sums of 
the adjacent sampled concentrations. That is, if data appears 
to be highly continuous in spatial domain, the values closer 
to those estimated receive higher weights than those farther 
away (Ersoy et al. 2004).

One of the main advantages of kriging is that it presents 
the interpolation error of the values of the regionalized vari-
able where there are no initial measurements. This feature 
offers a measure of the estimation accuracy and reliability 
of the spatial distribution of the variable (Theodossiou and 
Latinopoulos 2006). The spatial variability of a regionalized 
variable is described by a semi-variogram. The experimental 
semi-variogram is a graphical representation of the mean 
square variability between two neighboring points of dis-
tance h as shown in Eq. (1):

where �(h) is the estimated value of the semi-variance for 
the h; N(h) is the number of experimental pairs separated by 
vector h; Z(x) and Z(xi + h) are values of the variable Z at the 
point xi and at a point of distance h from the point xi. At the 
experimental semi-variogram, a theoretical one is adjusted 
whose equation is derived based on the principle that kriging 
re-evaluates correctly the measurements at the observation 
points (Journel 1989).

(1)�(h) =
1

2N(h)

N(h)∑

i=1

[Z
(
xi

)
− Z

(
xi + h

)
]2,

Table 1   Descriptive statistics of groundwater quality parameters

a Normalized data

Groundwater quality Min Max Median Mean Variance SD Kurtosis Skewness

TH (mg/l) 106.79 3172.64 315.58 587.55 443,969.67 666.31 4.19 2.19
THa (mg/l) − 2.49 2.49 0.00 0.00 1.00 1.00 − 0.19 0.00
EC (μS/cm) 378.00 10,810.00 903.50 1935.49 5,776,774.18 2403.49 3.60 2.11
ECa (μS/cm) − 2.49 2.49 0.00 0.00 1.00 1.00 − 0.19 0.00
TDS (mg/l) 196.00 6161.00 496.00 1174.42 2,335,218.00 1528.14 3.37 2.09
TDSa (mg/l) − 2.49 2.49 0.00 0.00 1.00 1.00 − 0.19 0.00
Na (mg/l) 0.85 70.00 2.75 8.76 190.10 13.79 6.53 2.57
Naa (mg/l) − 2.49 2.49 0.00 0.00 1.00 1.00 − 0.19 0.00
Cl (mg/l) 0.60 60.00 2.20 8.21 177.86 13.34 5.25 2.40
Cla (mg/l) − 2.49 2.49 0.00 0.00 1.00 1.00 − 0.19 0.00
SO4 (mg/l) 1.00 52.52 2.95 8.31 145.80 12.07 3.77 2.17
SO4

a (mg/l) − 2.49 2.49 0.00 0.00 1.00 1.00 − 0.19 0.00
SAR 0.57 16.61 1.75 2.90 8.75 2.96 6.33 2.38
SARa − 2.49 2.49 0.00 0.00 1.00 1.00 − 0.19 0.00
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Results and discussions

In this study, 78 data containing seven groundwater quality 
parameters sampled by the Iran Water Resources Manage-
ment Company in 2013 were used to determine the ground-
water quality of the Varamin plain. It must be investigated 
whether the data follow the normal distribution in advance. 
Since the aim is to apply ordinary kriging to map the param-
eters, identifying the statistical distribution of each param-
eter is of crucial importance, because ordinary kriging as a 
linear geostatistical tool will face biased results if the distri-
bution of data does not follow the normal distribution. In this 
study, data were examined statistically with GS+ software. 
Since the data did not show normal distribution, they were 
normalized by the Nscore method in the WinGslib software. 
A statistical summary of the groundwater quality properties 
is given in Table 1. Histograms of the parameters drawn 
before and after the normalization process are shown in 
the appendix (Fig. 8). Normalization of data also validated 
based on the normalization index of W is as follows:

where W is the normalization index of data, S is skewness 
and K is kurtosis (Howarth and Earle 1979).

After data normalization, experimental variograms were 
prepared. Experimental variograms show spatial coherence 
of the data. It can also indicate the heterogeneity and ani-
sotropy of the variable in the region. The best model for 
fitting a theoretical variogram was selected in GS+ software 
based on the minimum RSS and the maximum R2. If the sill 
or effective range is fluctuated in different directions, the 
studied region will show anisotropy. Interestingly, effective 
range and sill were relatively uniform after compiling the 
variograms in different directions. So, anisotropy was not 
observed in the study area. Figure 2 shows the directional 
variograms. Experimental variograms were fitted to the 
spherical models as the best theoretical variogram.

Table 2 shows the parameters of validated variograms 
obtained through groundwater quality. The ratio of nugget 
variance to sill is considered as a criterion for classifying 
the spatial dependence of groundwater quality variables. If 
this ratio is less than 0.25, the variables have strong spatial 
dependence; if the ratio is between 0.25 and 0.75, the varia-
bles indicate moderate spatial dependence; and if it is greater 
than 0.75, the variables show a weak spatial dependence 
(Mehrjardi et al. 2008). In this study, EC and TDS indicate 
moderate spatial dependence (0.36) and the other parameters 
show significant strong spatial structure. The effective range 
is estimated between 17.20 and 20.60 km for the parameters.

One of the advantages of kriging is the fact that it calcu-
lates the mean square interpolation error. Cross validation 
process is a step undertaken prior to geostatistical estima-
tion to ensure the validity of the variogram parameters. 

(2)W = |S| + |3 − K|,

Fig. 2   Directional variograms of the quality parameters
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Since nugget effect (C0), sill (C0 + C) and effective range 
(R) are used in kriging equation, it is important to assess 
how well these parameters can reproduce actual data. Before 
the implementation of any simulation or optimization math-
ematical model, its consistency with the original data must 
be verified. The proposed verification procedures do not 
aim to prove the correctness of the model, but to ensure 
the absence of systematic errors that could lead to biased 
estimations (Jolly et al. 2005). To determine the accuracy 
and validity of the process, the cross validation method was 
applied. In this method, the estimated values are plotted ver-
sus actual values. If the estimated values are equal to actual 
data, points will fall exactly on the line of the 45° (actual 
data = estimated data). More distribution points around the 
45° line present the difference between the actual and pre-
dicted values. Figure 3 shows the cross validation of qual-
ity parameters via jackknife kriging. Also, to validate the 
models, some validation indicators, including mean error 
(ME), mean square error (MSE), mean square deviations 
ratio (MSDR), median square deviations ratio (MeSDR) 
and relative mean absolute error (RMAE) were applied and 
evaluated. Equations for the indicators are as follows:

where z(xi) is the observed value at location xi, z*(xi) is the 
predicted value at location xi and N is the number of pairs of 

(3)ME =
1

N

N∑

i=1

[z(xi) − z ∗ (xi)] ≅ 0,

(4)MSE =
1

N

N∑

i=1

[z(xi) − z ∗ (xi)]
2 ≅ minimum,

(5)MSDR =
1

N

N∑

i=1

[

(
z(xi

)
− z ∗ (xi))

2

s2
] ≅ 1,

(6)RMAE =
1

N

N∑

i=1

|||z
∗
(
xi

)
− z(xi)

|||
z(xi)

,

observed and predicted values (Adhikary et al. 2011). The 
cross validation indicators are listed in Table 3.

Since a linear regression model is not always appropriate 
for the data, the accuracy of the model should be evaluated 
by defining residuals (actual data-estimated data) and exam-
ining residual plots. If the histogram of the residuals shows 
normal distribution with mean of zero, the accuracy of vari-
ogram parameters will be approved statistically (Rossi and 
Deutsch 2014). As seen in Fig. 4, histograms of the residual 
analysis show normal distribution.

Figure 5 shows the estimated 2D maps of the parameters, 
prepared in WinGslib1.5.7 software. Also, Fig. 9 (refer to 
the appendix) shows the estimated 3D maps, prepared in 
GS+ software. These maps clearly show that the quality of 
groundwater in the eastern half of the study area is very 
high. Also, the results show that a very small part in the 
southwest of the study area is exposed to contamination.

The estimation variances of kriging are independent of 
the value being estimated and are related only to the spatial 
position of the collected sample, the number of points and 
the variogram model. Given a set of values at the sampled 
locations, kriging is based on a variogram that summarizes 
how the variance of values at different points separated by 
a particular distance changes with distance. Estimation 
variance is a measure of confidence in predictions and is a 
function of the form of the variogram, the sample configu-
ration and the sample support. It provides the information 
of regional variable in the regions with no recorded vari-
able, and uncertainties can be evaluated with the parameters 
raised by the kriging method (Journel and Huijbregts 1978). 
As seen in Fig. 6, areas with a high estimation variance 
determine the area with high uncertainty of the estimation; 
therefore, these areas need to be sampled and studied further 
in prospective researches to decrease the uncertainty.

Since variance and spatial variance depend particularly on 
the dimension of measurements, a reasonable and credible 
judgment cannot be made only by these parameters. Quan-
tifying errors allows researchers to qualify the uncertainty 
of the estimation method in a better way. Hence, defining a 
parameter which is independent of the dimension of data is 

Table 2   Best-fitted variogram 
models of groundwater quality 
and their parameters

Groundwater quality Model Nugget (C0) Sill (C0 + C) Range 
effect 
(Km)

(C0/C0 + C) R2 RSS

EC (μS/cm) Spherical 0.35 0.98 20.00 0.36 0.90 0.16
TDS (mg/l) Spherical 0.35 0.97 20.60 0.36 0.89 0.20
TH (mg/l) Spherical 0.24 0.97 17.90 0.25 0.80 0.19
Na (mg/l) Spherical 0.14 0.99 17.80 0.14 0.87 0.20
Cl (mg/l) Spherical 0.24 0.98 18.00 0.24 0.80 0.19
SO4 (mg/l) Spherical 0.21 0.98 18.00 0.21 0.83 0.17
SAR Spherical 0.10 0.99 17.20 0.10 0.85 0.24
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certainly appreciated. Estimation error depends also on the 
estimated value, and it is the ratio of estimation of standard 
deviation to the estimated value in a block. However, deter-
mining a parameter arising from data which is independent 
from actual and estimated value may determine the uncer-
tainties much better (Jalali et al. 2017). Figure 7 shows the 
error map of the estimated data for all the parameters.

Conclusions and summary

Seven parameters including TH, TDS, Cl−, SO4
2−, Na+, SAR 

and EC were utilized in this study to compile the groundwa-
ter quality. These parameters have significant influence on 
groundwater quality. The parameters had high skewness, so 
they were normalized by the Nscore method in WinGslib 
software to decrease the uncertainties raised from biased 
estimation. Then, the best model for fitting a theoretical 
variogram was determined in GS+ software based on the 
minimum RSS for each parameter. The spatial structure 
model was moderate for TDS and EC, and very strong for 
the other groundwater parameters, indicating high accuracy 
in interpolation. the cross validation process (jackknife and 
residual analysis) was performed to validate the variogram 
theoretical model. Then, groundwater quality maps of the 
aquifer were prepared and areas with low quality were iden-
tified. As the interpolated maps show, at the eastern half of 
the Varamin plain, groundwater quality is very high, and 

Fig. 3   Cross validation results of the parameters showing the esti-
mated values versus actual values graphically

Fig. 3   (continued)
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also a very small part in the southwestern of the study area 
is exposed to contamination. In the other parts of the aquifer, 
the groundwater quality is below the critical values.

Effective range was estimated between 17.20 and 
20.60 km for all parameters. RSS for the parameters was 
very low, based on Table 2 introducing high accuracy of 

the fitted theoretical variograms. As it can be observed, the 
highest and lowest RSS were 0.24 and 0.16 for SAR and EC, 
respectively. The maximum values for ME and MSE were 
0.01 and 0.52, based on Table 2. Also, the maximum and 
the minimum values for RMAE were 0.47 and 0.01 for EC 
and TH, respectively.

Table 3   Cross validation 
indicators

Validation indi-
cators

TH SAR Na TDS EC Cl SO4

ME 0.00 0.01 0.00 0.01 0.00 0.00 0.00
MSE 0.52 0.37 0.35 0.44 0.46 0.50 0.45
MSDR 1.07 0.56 0.56 1.04 0.99 1.08 0.82
MeSDR 0.35 0.23 0.28 0.60 0.50 0.51 0.30
RMAE 0.01 0.33 0.07 0.42 0.47 0.07 0.08

Fig. 4   Histograms of the 
residual analysis calculated by 
jackknife kriging
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This paper has addressed an application of geostatistics 
to evaluate groundwater quality. Geostatistical methods are 
among the most appropriate tools to map the parameters in 
each block, because these techniques honor the spatial loca-
tion of each sample and the interpolation maps are assigned 
by allocating geostatistical coefficient on each point. This 
study proved that the ordinary kriging is an appropriate 
method for estimating the values and producing reliable 
data and increasing the accuracy of assessment. It also saves 
financial and time resources. Since smoothing is one of the 
main problems of linear geostatistics, ordinary kriging in 
this research, other methods such as universal kriging and Fig. 5   Interpolated 2D maps of the parameters based on the kriging tools

Fig. 5   (continued)
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Fig. 6   Map of the estimation variance of the parameters indicating the credibility of the kriging method

Fig. 7   Error map of the kriging 
method highlighting the pro-
spective sampling pattern
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geostatistical simulations can be used to increase accuracy 
and evaluate results in future studies. Despite the smoothing 
drawback of kriging, this technique has been optimized by 
compiling the residual analysis and estimation variance pro-
cedures. Also, in this study, the errors related to variography 
have been minimized and has been carried out through cross 
validation, jackknife kriging, to assess the accuracy of the 
fitted theoretical model. In addition, estimation error map 
of the parameters was drawn to highlight the prospective 
sampling patterns. We hope our method can be useful in 
different regions with different data all over the world. This 
article may shed light on managing the hydrogeochemical 
quality of groundwater in several databases.
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See Figs. 8, 9.

Fig. 8   Histograms of the frequency distribution: a before normaliza-
tion, b after normalization
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Fig. 9   Interpolated 3D maps of the parameters based on the kriging tools

Fig. 9   (continued)
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