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Abstract Since the flow entering a sewer contains solid

matter, deposition at the bottom of the channel is inevi-

table. It is difficult to understand the complex, three-di-

mensional mechanism of sediment transport in sewer

pipelines. Therefore, a method to estimate the limiting

velocity is necessary for optimal designs. Due to the

inability of gradient-based algorithms to train Adaptive

Neuro-Fuzzy Inference Systems (ANFIS) for non-deposi-

tion sediment transport prediction, a new hybrid ANFIS

method based on a differential evolutionary algorithm

(ANFIS-DE) is developed. The training and testing per-

formance of ANFIS-DE is evaluated using a wide range of

dimensionless parameters gathered from the literature. The

input combination used to estimate the densimetric Froude

number (Fr) parameters includes the volumetric sediment

concentration (CV), ratio of median particle diameter to

hydraulic radius (d/R), ratio of median particle diameter to

pipe diameter (d/D) and overall friction factor of sediment

(ks). The testing results are compared with the ANFIS

model and regression-based equation results. The ANFIS-

DE technique predicted sediment transport at limit of

deposition with lower root mean square error

(RMSE = 0.323) and mean absolute percentage of error

(MAPE = 0.065) and higher accuracy (R2 = 0.965) than

the ANFIS model and regression-based equations.

Keywords ANFIS � Bed load � Differential Evolution
(DE) � Non-deposition � Pipe � Sediment transport

Introduction

A significant concern regarding sediment transport with

inflow is solid matter deposition in the pipe channel. It is

essential to determine the limiting velocity (at a constant

slope) in dry weather flow (DWF) for sediment transport

without deposition. Moreover, the pipe diameter should be

sufficiently capable of transporting maximum flow in wet

weather flow (WWF). Sedimentation can increase the bed

roughness and decrease the cross-sectional area of the

channel. The long-term accumulation of sediment on the

bed can increase the risk of stabilization and cementation,

thus causing transport capacity reduction. Therefore, a

criterion for predicting the limiting velocity to prevent

sediment deposition is essential.

The simplest traditional method is to use a constant

limiting velocity value provided in many references for

different hydraulic and geographical situations (see more

details in Ebtehaj et al. 2014). This method is inaccurate in

some circumstances because the values do not consider

hydraulic and sediment characteristics, such as pipe

diameter, flow depth, hydraulic radius, median particle

diameter and volumetric sediment concentration.

Numerous experimental and analytical studies have

been done to identify which parameters influence sediment

transport (Mayerle et al. 1991; Nalluri and Ab Ghani 1996;

May 2003; Banasiak 2008; Vongvisessomjai et al. 2010;

Almedeij 2012; Bonakdari and Ebtehaj 2014a). These

studies yielded various equations for determining the lim-

iting velocity. The presented equations fall in two groups:

(i) semi-experimental equations derived from solving the

force acting on equilibrium and (ii) dimensional analysis-

based equations. May et al. (1996) used 7 different datasets

(Ackers et al. 1996) in 332 tests and presented a semi-

experimental relationship in the form of Eq. (1). It is
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recognized as the best semi-experimental equation for non-

deposition sediment transport (Vongvisessomjai et al.

2010; Ebtehaj and Bonakdari 2014a):

CV ¼ 3:03

� 10�2 D2

A

� �
d

D
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p y

d

� �0:47
; ð2Þ

where CV is the volumetric sediment concentration, D is

the pipe diameter, d is the median particle diameter, V is

the flow velocity, Vt is the incipient motion velocity of

sediment (Eq. 2), A is the cross-sectional area of the flow,

g is the gravitational acceleration, s (=qs/q) is the specific

gravity of sediment and y is the flow depth.

Ebtehaj et al. (2014) presented a regression-based

equation to determine the densimetric Froude number (Fr)

by dimensional analysis with a wide range of data as

follows:

Fr ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðs� 1Þd

p ¼ 4:49 C0:21
V

d

R

� ��0:54

: ð3Þ

The lack of knowledge and complexity of flow conditions

have led to uncertainty modeling. Due to the innate

uncertainty and insufficient accuracy of regression-based

equations, such equations do not perform well in some

hydraulic circumstances. Therefore, utilizing this method

leads to overestimated or underestimated plans (Bonakdari

and Ebtehaj 2014b).

Because artificial intelligence (AI) performs adequately

(Gholami et al. 2011;Al-Abadi 2014;Gorai et al. 2014;Mondal

et al. 2015), techniques such as neural networks (Ebtehaj and

Bonakdari 2013), decision trees (Ivanovich and Hamid 2014),

fuzzy logic (Demirci and Baltaci 2013), evolutionary com-

puting (Ebtehaj and Bonakdari 2016), and gene expression

programming (Ab Ghani and Azamathulla 2014) have been

successfully applied in sediment transport modeling. Shoore-

hdeli et al. (2007) developed a new hybrid particle swarm

optimization (PSO) algorithm forANFISnetwork training. The

authors modified the PSO for the training scheme in the ante-

cedent part of the fuzzy rules, inspired by the genetic algorithm

and using adaptive weighted by PSO. They demonstrated that

the new ANFIS is less complex and more accurate than the

gradient-based method in ANFIS training.

Moosavi et al. (2013) applied hybrid models based on

Wavelet, Wavelet-ANFIS and Wavelet-ANN for ground-

water level forecasting during different prediction periods.

The results of ANFIS, Wavelet-ANFIS, ANN and Wave-

let-ANN indicated that the hybrid methods exhibit superior

precision to both ANFIS and ANN, while Wavelet-ANFIS

performs the best of all models. Ebtehaj and Bonakdari

(2014b) optimized the MLP-ANN weights in sediment

transport prediction using two evolutionary algorithms

(EA): the imperialist competitive algorithm (ICA) and

genetic algorithm (GA). A comparison of the hybrid

methods (ANN-ICA and ANN-GA) with the general ANN

indicated that EA performs significantly better than ANN.

Ebtehaj and Bonakdari (2014a) evaluated the ANFIS per-

formance in predicting sediment transport. The authors rec-

ommended applying evolutionary algorithms for the optimum

selection of ANFIS membership functions. Therefore, in this

study, ANFIS is coupled with the DE algorithm for the first

time to develop a hybrid model and assess sediment transport

in sewers. The main goal is to increase prediction accuracy

and reliability by benefiting from the specific nature of each

approach. The DE algorithm is applied to optimize the

membership function of the ANFIS network using three

datasets with a wide range of data. The parameters affecting

limiting velocity (i.e. Fr) prediction are identified initially by

examining the influential factors on sediment transport.

Thereafter, six models are proposed to assess the effect of

different parameters onFr prediction. The developedANFIS-

DEmodel predictions are comparedwith the ANFISmodel as

well as existing sediment transport equations.

Theoretical background of the method used

Overview of ANFIS

Adaptive neuro-fuzzy inference systems (ANFIS) (Jang

et al. 1997) are a hybrid soft computing (SC) technique

where artificial neural networks (ANN) are combined with

fuzzy logic (FL). The fuzzy membership values are

obtained through ANN training (Bui et al. 2017a). This

method’s process entails rapid convergence and high

accuracy. A fuzzy inference system (FIS) with two inputs

(x and y) and f as an output is an example of this process.

For sediment transport in pipe channels, the x and y pa-

rameters are considered the volumetric sediment concen-

tration (CV) and a dimensionless parameter (the ratio of

hydraulic radius to median particle diameter d/R). More-

over, F as an output parameter represents the Fr function.

This example is examined for two input parameters. For a

first-order Takagi–Sugeno fuzzy model, it is possible to set

a sample rule with two IF–THEN rules as follows:

Rule 1 : IF x ¼ A1; y ¼ B1 THEN f1 ¼ p1xþ q1yþ r1

ð4Þ
Rule 1 : IF x ¼ A2; y ¼ B2 THEN f1 ¼ p2xþ q2yþ r2:

ð5Þ

The antecedent part (IF) and consequent part (THEN) of a

fuzzy rule are fuzzy in nature and the crisp function of the
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variable is a linear equation or rule (respectively). If CV and

d/R are considered Fr model input variables, Eqs. 1 and 2

can be rearranged as follows:

Rule 1 : IF CV is LOWand ðd=RÞ is LOW; THENFr

¼ p1CV þ q1ðd=RÞ þ r1 ð6Þ

Rule 1 : IF CV is HIGH and ðd=RÞ isMedium; THEN Fr

¼ p2CV þ q2ðd=RÞ þ r2;

ð7Þ

where pi, qi and ri (i = 1, 2, 3,…, n) are the set of

parameters. Figure 1 presents the overall structure of

ANFIS with two inputs and ANFIS with four inputs used in

this study. The performance of the different layers shown

in this figure is as follows:

First layer Each node in this layer produces the mem-

bership degree from an input variable.

O1
i ¼ lAi

ðCVÞ i ¼ 1; 2; ð8Þ

where CV is the input of the ith node and Ai is the linguistic

label related to this node’s function. For d/R (the second

input parameter), another function can be derived as in

Eq. 9:

O1
i ¼ lBi�2

ðd=RÞ i ¼ 3; 4: ð9Þ

Oi
1 is regarded as the membership function Ai (MF) and it

determines the degree that satisfies a given input (CV or d/

R) to the Ai quantity. These functions are smooth and have

concise notation; for this reason, the most accepted

membership functions in ANFIS are deemed to be the

Gaussian and bell shape functions (Bui et al. 2012). Both

have the advantages of smoothness and being non-zero at

all points. The bell shape MF (Eq. 10) has a greater

parameter than the Gaussian MF (Eq. 11); as a result, it can

approach the non-fuzzy set if the free parameter is tuned

(MATLAB and Statistics Toolbox Release 2009).

Therefore, the Gaussian MF is employed in this study.

AiðCVÞ ¼
1

1þ ½ðCV � CiÞ=ai�2bi
ð10Þ

AiðCVÞ ¼ exp � CV � cik k2

2r2i

 !
; ð11Þ

where {ai, bi, ci and ri} is the parameter set of Gaussian

MFs and l is the MF of Ai. Changing any of the parameters

leads to different MF results. Hence, representing different

forms of MFs is dependent on the linguistic label Ai. In

fact, many of the piecewise and continuous functions in

this node may be used. The parameters of this layer are

introduced as premise parameters. Three membership

functions are derived for each input model presented in

Fig. 2.

Second layer This layer consists of circular nodes

marked with G. The following equation is multiplied by the

input signal and these nodes are sent to the output

produced:

O2
i ¼ wi ¼ AiðCVÞBiðd=RÞ i ¼ 1; 2: ð12Þ

Each node’s output indicates the firing strength of a spec-

ified rule.

Third layer Here, circular nodes (Ns) calculate the ratio

of the firing strength rule (ith rule) to the sum of all firing

strength rules, as follows:

Fig. 1 ANFIS structures (general and quadruple)
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O3
i ¼ �wi ¼

w1

w1 þ w2

; i ¼ 1; 2: ð13Þ

This layer’s output is presented as the normalized firing

strength.

Fourth layer The parameter values of p, q and r are

optimized in this layer. All nodes in this layer adapt to a

node function as follows:

O4
i ¼ �wiðpiCV þ qiðd=RÞ þ riÞ; ð14Þ

where {pi, qi, ri} is the parameter set and �w is the nor-

malized weight. The parameters in this layer are known as

consequent parameters.

Fifth layer The circular single node in this layer, R, and
all outputs are calculated as the sum of all input signals as:

O5
i ¼

X
�wifi ¼

P
wifiP
wi

: ð15Þ

ANFIS is trained using backpropagation and a hybrid of

backpropagation with least squares. Hence, the hybrid

method employs backpropagation for input data (premise

parameters) and least squares for output MFs (consequent

parameters).

Ebtehaj and Bonakdari (2014a) showed that the

hybrid algorithm presents better results than backpropa-

gation. Hence, this algorithm is employed in the present

study to estimate Fr with the ANFIS network. In addi-

tion to these algorithms, the more recent use of hybrid

ANFIS has led to improved ANFIS prediction results

(Cus et al. 2009; Shoorehdeli et al. 2009; Chang et al.

2011; Chen 2013; Bui et al. 2016a, 2017b). Therefore,

Differential Evolution (DE) is employed in this study

and the results are compared with the hybrid algorithm

results.

Differential evolution

Differential evolution (DE) is a powerful evolutionary

global optimization method that was proposed by Storn and

Price (1997). The advantages of DE are its simple struc-

ture, quality of solutions found, and ease of implementation

(Liu and Lampinen 2002; Bui et al. 2016b). Thus, it has

been applied in many different practical cases. EA is

grouped as an optimization stochastic algorithm and is

inspired by biological processes, whereby survival of the

Fig. 2 Fuzzy membership functions for the input parameters
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fittest is required for compliance with environmental and

inherent genetic features (Bäck et al. 1997).

If the objective functions to be optimized and named are

f, we have:

f ðVÞ : RD ! R; ð16Þ

where R is related to real data and D represents the

objective function parameters f (V). The DE algorithm aims

to minimize the objective function using the optimized

parameter values:

V ¼ ðv1; . . .; vDÞ; V 2 RD; ð17Þ

where V is a vector including the parameters of the

objective function of D. The objective function is the mean

squared error between the actual and estimated Fr. The

objective function parameters are defined as follows:

v
ðLÞ
i � vi � v

ðUÞ
i ; ð18Þ

where vi
(L) and vi

(U) are related to the lower and upper

boundaries, respectively.

Like other evolutionary algorithms, DE acts on a pop-

ulation (PG) of candidate solutions and not only on a single

solution. If G is considered the generation of a population,

the population evaluated by DE can be stated as follows:

PG ¼ ðv1;G; v2;G; . . .;VNP;GÞ G ¼ 0; . . .;Gmax; ð19Þ

where Gmax is the maximum generation that usually serves

as the stopping criterion of DE (Bui et al. 2016b). Each

vector contains the exact parameter of D considered an

individual chromosome.

vi;G ¼ ðv1;i;G; v2;i;G; . . .;VD;i;GÞ i ¼ 1; 2; . . .;NP
G ¼ 0; . . .;Gmax:

ð20Þ

An initial population should be created to establish a

starting point for the optimal search. In general, there is no

information about the optimal solutions except the

optimum problem parameters. Therefore, one of the

methods to determine the initial population, PG = 0, is

the random selection of restrictions given as follows:

vj;i;0 ¼ randj½0; 1� ðvðUÞ
j � v

ðLÞ
j Þ þ v

ðLÞ
j i ¼ 1; 2; . . .;NP

j ¼ 1; 2; . . .;D;

ð21Þ

where randj [0, 1] is a random value distributed consistently

in the [0, 1] range, which is selected for every new j. The DE

procedure differs from other evolutionary algorithms. From

the primary production to the regular population of vectors,

PG is combined and sampled randomly to produce candidate

vectors for the next generation, PG ? 1.

A candidate population of vectors obtained from dif-

ferent trials, P=
Gþ1

= UiG?1 = uj, I, G ? 1, is calculated as

follows:

uj;i;Gþ1 ¼
vj;r3;G þ Fðvj;r1;G � vj;r2;GÞ if vðLÞj \yj;i;Gþ1\v

ðUÞ
j

otherwise andj½0; 1� ðvðUÞj � v
ðLÞ
j Þ þ v

ðLÞ
j

8<
:

otherwise vj;i;G

8>><
>>:

9>>=
>>;
;

ð22Þ

where r1, r2 and r3 are values that differ in each run and i is

a parameter whose value should be specified. The correct

values of parameters r1, r2 and r3 are randomly selected for

each i value.

The next generation population, PG ? 1, is selected from

the current population (PG) and the population of children

follows this equation:

Vi;Gþ1 ¼
Ui;Gþ1 if f ðUi;Gþ1Þ� ðVi;GÞ

Vi;G otherwise

( 9>=
>; ð23Þ

Thus, the temporary population of individuals is

compared with their peers’ population. Assuming the

objective function is minimized, the vector with the

lowest objective function value gains a new position in

the next generation. As a result, every individual from the

next population is good or better than peers from the

general population.

Statistical measure

To evaluate the performance of each method, the following

statistical indicators are calculated: the coefficient of

determination (R2), Root Mean Squared Error (RMSE),

Mean Absolute Error (MAE), Mean Absolute Relative

Error (MARE) and average absolute deviation (d).

R2 ¼ 1�
Pn

i¼1 ðOi � tiÞ2Pn
i¼1 ðOi � �OiÞ2

ð24Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
Oi � tið Þ2

r
ð25Þ

MAE ¼ 1

n

Xn

i¼1
Oi � tij j ð26Þ

MARE ¼ 1

n

Xn

i¼1

Oi � tij j
Oi

ð27Þ

d ¼
Pn

i¼1 Oi � tij jPn
i¼1 Oi

: ð28Þ

Methodology

Experimental and analytical studies of sediment transport

in pipe channels indicate the effects of the hydraulic

parameters of flow and sediment characteristics on the

velocity of flow. Therefore, to determine the limiting
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velocity that would prevent solids from settling on the

channel bed, a functional relationship is given as follows:

V ¼ f ðR; y; d;CV ;A; g; q;qsksÞ: ð29Þ

To estimate the limiting velocity parameters, the

dimensionless parameters should be defined. Several

studies in this field (Ab Ghani 1993; Vongvisessomjai

et al. 2010; Azamathulla et al. 2012; Ebtehaj and

Bonakdari 2013) presented the influential parameters on

sediment transport in non-deposition state as follows:

Fr ¼ V=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðs� 1Þd

p
¼ f ðCV ;Dgr; d=D; d=R;R=D;D

2=A; ksÞ; ð30Þ

where R is the hydraulic radius, y is the flow depth, d is the

median particle diameter, CV is the volumetric sediment

concentration, A is the cross-sectional area of the flow, g is

the gravitational acceleration, q is the water density, qs is
the sediment density, ks is the overall friction factor of

sediment, Fr is the densimetric Froude number, s is the

specific gravity of sediment (=q/qs), Dgr (=d(g(s - 1)/m2)1/
3) is the dimensionless particle number and D is the pipe

diameter.

In some recent studies, Ebtehaj and Bonakdari (2013;

2014a; 2014b; 2016) classified the dimensionless parame-

ters presented in the above equation with respect to the

nature of each parameter in the dimensionless groups of

transport (CV), transport mode (d/R, D2/A and R/D), flow

resistance (ks), movement (Fr) and sediment (Dgr and d/D).

Thus, the Fr parameter is the target selected to estimate

the limiting velocity parameter. By considering the effect

of each of the following categories, four inputs are derived

for the models. The inputs obtained from ‘‘transport ‘‘and

‘‘flow resistance’’ are constant, while ‘‘sediment’’ and

‘‘transport mode’’ have more than one parameter. Hence,

different models are presented to investigate the effect of

each parameter, as follows:

Model 1 : Fr ¼ f ðCV ; Dgr; d=R; ksÞ

Model 2 : Fr ¼ f ðCV ; Dgr; D
2=A; ksÞ

Model 3 : Fr ¼ f ðCV ; Dgr; R=D; ksÞ

Model 4 : Fr ¼ f ðCV ; d=D; d=R; ksÞ

Model 5 : Fr ¼ f ðCV ; d=D; D
2=A; ksÞ

Model 6 : Fr ¼ f ðCV ; d=D; R=D; ksÞ;

The study site and data used

In this study, three datasets are used to predict sediment

transport in the non-deposition condition in pipe channels

(Ab Ghani 1993; Ota and Nalluri 1999 and Vongvisessomjai

et al. 2010). The data employed in this study are all

associated with non-deposition in different hydraulic con-

ditions, such as pipe diameter, channel slope, particle size

and channel length. Details of the datasets are provided in

studies carried out by Ebtehaj et al. (2014) and Ebtehaj and

Bonakdari (2014a, b(. The samples are in the following

ranges: 1\CV (ppm)\1280; 0.005\R (m)\ 0.136;

0.013\ ks\ 0.053; 0.1\D\0.45; 0.237\V (m/

s)\ 1.216; 0.072\ d (mm)\ 8.3; 0.153\ y/D\ 0.84

and 5.06\Dgr\ 142.

Proposed hybrid method for non-deposition
sediment transport prediction

This section describes the hybrid comprising ANFIS and a

global optimization method, i.e. Differential Evolution

(ANFIS-DE). ANFIS-DE is used for modeling sediment

transport at limit of deposition in sewer networks. The

proposed ANFIS-DE is encoded in MATLAB Environ-

mental. First, an initial ANFIS model is produced for the

sediment transport data using the training dataset. Subse-

quently, DE is utilized to optimize the premise and con-

sequent parameters of the model. Once the optimum

parameter values are determined, the ANFIS-DE regres-

sion model is acquired and it can be used to predict the

limiting velocity for non-deposition sediment transport in

sewer systems.

Data preparation

The data utilized in this study are arranged as four inputs

and one output parameter (Fr). To present a useful pre-

dictive model with scientific significance, model validation

is essential in the analysis. Therefore, all datasets collected

from the literature are divided in two subsets at a ratio of

70–30 for training and testing. The training dataset com-

prised 150 samples that were selected randomly, whereas

the rest of the samples (68) were utilized for testing to

confirm the prediction accuracy of the proposed model.

Model configuration

The values of the antecedent and consequent parameters

related to the initial model generated with the training

dataset are not optimized. In this study, the grid partition-

ing method is employed for Fuzzy Inference System (FIS)

generation (Ebtehaj and Bonakdari 2014a). Moreover,

there are 3 MFs for each input. The MFs were selected by

trial and error between the objective function values of the

ANFIS-DE model vs. the number of MFs. The best ante-

cedent and consequent parameter values related to the rules

are attained in the optimization process. The parameter

values are presented in Table 1.
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ANFIS model training using PSO

The structure of the proposed hybrid ANFIS-DE for sedi-

ment transport modeling is illustrated in Fig. 3. The net-

work training process is defined by having to reach the

convergence criterion and continuing until the number of

iterations or objective functions determined is reached. The

DE algorithm selection process is as follows:

First, to avoid expansion process duplication, the values

of the objective function and constraint functions for

parameter Vi,G are stored in the variables. Ui, G ? 1 refuses

constraint function values greater than the Vi,G value and

rejects these constraint functions without reassessment. If

Vi,G is not convinced of all constraints, Ui,G ? 1 probing is

done because the constraint is still much less than Vi,G. As

the Ui,G ? 1 and Vi,G values are searched, the membership

function to probe the new UG ? 1 should be evaluated. This

practice continues until the value of Ui,G ? 1 becomes

greater than Vi,G. In this case, the membership function

value is not evaluated once more.

Stopping criteria

The maximum number of iterations and minimum defined

error are utilized as stopping criteria, such that if one of the

conditions is satisfied the optimization process in termi-

nated. In this case, the objective function defined as RMSE

(Eq. 25) is the smallest and the antecedent and consequent

parameters are assigned to the ANFIS-DE model. The

validation dataset is employed to validate the final model

for accuracy and to predict the limiting velocity required to

prevent sedimentation in sewer systems.

Results and discussion

The results of the Artificial Intelligence methods (ANFIS

and ANFIS-DE) and regression equations in predicting

sediment transport at limit of deposition in sewer systems

are presented in this section. Figure 4 shows the results of

Fr estimation using the ANFIS and ANFIS-DE methods.

Model 1 that employs CV, Dgr, d/R and ks as inputs pro-

duced good results with both methods. Fr estimated by

ANFIS-DE mostly had less than 10% relative error.

According to Table 2, the average relative error of Model 1

for all samples in testing mode was about 8%

(MARE = 0.076), but with ANFIS it was often more than

10%. The estimates were both under and overestimates

(MARE = 0.099). Other indicators presented in the

table also indicate the superiority of ANFIS-DE over

ANFIS. Therefore, the DE evolutionary algorithm in

Model 1 outperformed the hybrid algorithm (backpropa-

gation with least squares).

In Models 1, 2 and 3, the influence of parameters related

to the transport mode (d/R, D2/A & R/D) is examined. By

applying the constant parameters of sediment (Dgr), trans-

port (CV) and flow resistance (ks), besides using parameter

D2/A instead of d/R (Model 2), the performance of both

methods significantly decreased compared with Model 1.

The statistical indices show that the relative error in esti-

mating Fr reached over 20% (MARE for ANFIS = 0.24;

MARE for ANFIS-DE = 0.232) and the RMSE of both

methods was double that for Model 1. In this model, most

estimations were considered underestimations, and using

its results would lead to excessive solid deposition on the

channel bed and reduced transmission capacity. Therefore,

using D2/A as a transport mode parameter in addition to CV,

Dgr, and ks has a negative impact on ANFIS and ANFIS-

DE performance in predicting the limiting velocity (Fr).

This resulted in high error values, low accuracy (R2 for

ANFIS = 061 and R2 for ANFIS-DE = 0.72) and high

sediment deposition.

Based on the statistical indices presented in Table 2 and

the scatter plot in Fig. 4, Model 3 outperformed Model 2

but was inferior to Model 1. ANFIS-DE estimated Model 3

with fairly good accuracy, whereby the relative error

decreased from 24% in Model 2 to about 13% in Model 3.

However, Model 3 still made underestimations. The Fr

predicted by ANFIS and the input combination of Model 3

that employed R/D as a transport mode parameter led to a

decrease in relative error by 3% compared with Model 2.

Hence, the Fr value had high relative error and was

underestimated. Models 2 and 3 were relatively similar in

accuracy. Model 3 had only 4% relative error, which was

lower than Model 2, but it had a mean relative error of over

20%. Consequently, using Model 3 is not reliable, as the

results would decrease sediment transport capacity and

increase sedimentation on the bed channel. The results

obtained for Models 1, 2 and 3 signify that considering ks,
Dgr and CV as part of the ‘‘flow resistance,’’ ‘‘sediment’’

and ‘‘transport’’ groups (respectively) led to the best per-

formance of ANFIS and ANFIS-DE when employing d/R

as a ‘‘transport mode’’ parameter.

Regarding Models 4-6, the influence of the transport

mode group parameters was investigated when d/D was

used as a dimensionless parameter from the ‘‘sediment’’

Table 1 DE control parameters

Number of dimensions D 4

Population size NP 20

Mutation constant F 0.5

Crossover constant CR 0.9

parameters; boundaries Vj
(U) 12

(j = 1, …, 4) Vj
(L) -12
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group in this study. Model 4 produced good results with

both methods: ANFIS (R2 = 0.929; RMSE = 0.452;

MAE = 0.385; MARE = 0.091 and d = 0.088) and

ANFIS-DE (R2 = 0.965; RMSE = 0.323; MAE = 0.281;

MARE = 0.065 and d = 0.064), whereby most Fr pre-

dictions had less than 10% relative error. The difference

between Models 1 and 4 is in their input combinations, as

their parameters from the ‘‘sediment’’ group are Dgr and d/

D and the other parameters are the same. A general com-

parison of these models demonstrate their high accuracy.

Both ANFIS and ANFIS-DE methods in Model 4 estimate

with less than 10% relative error, but ANFIS showed an

insignificantly greater relative error. A quantitative com-

parison of these models indicates that using d/D in Model 4

rather than Dgr in Model 1 decreased the relative error

about 1.1 and 0.8% for ANFIS-DE and ANFIS, respec-

tively. Models 5 and 2 were compared to survey the effect

of the ‘‘sediment’’ parameters (Dgr and d/D) and D2/A as a

‘‘transport mode’’ parameter. It was found that Model 5 had

nearly the same conditions as Model 2 and often under-

estimated but had a lower relative error. Consequently, the

mean error of ANFIS-DE and ANFIS decreased from 24 to

18% and 23 to 16%, respectively. Evidently, the simulta-

neously use of d/D and D2/A may decrease the lack of

effect of d/R as an input on limiting velocity estimation.

By ANFIS-DE, for input combination presented in

the form of Model 6 reasonable results were obtained.

However, this model had significant error of over 10%

as overestimation and underestimation, which would

reduce its reliability and lead to uneconomical plans or

sedimentation, respectively. Using ANFIS to estimate

Fr with the input combination of Model 6 presented

weaker results than ANFIS-DE, with about 15% error.

A comparison of Models 6 and 3 shows that the

simultaneously use of of d/D and R/D has insignificant

impact in comparison with Dgr and R/D because the Dgr

is a function of d as well d/D. In addition, the D is

absent in Dgr but is considered in R/D in both models.

Fig. 3 Flowchart of proposed method (ANFIS-DE)
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Fig. 4 Scatter plot of Fr predicted using ANFIS and ANFIS-DE (Testing)
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In general, using the d/D parameter as a representative

of the sediment group improves Fr estimation.

According to the explanations given, in addition to the

parameters related to transport (CV) and flow resistance (ks)
that are constant, using parameter d/D from the sediment

group and parameter d/R from transport mode offers the

best performance (Model 4). A comparison of ANFIS and

ANFIS-DE for all models signifies the superior perfor-

mance of the hybrid method presented in this study.

Table 3 compares the model presented in this study

(ANFIS-DE) with existing regression-based equations

using different statistical indicators. According to the

table and all indicators, the proposedmodel produced better

results than the regression equations. Among the presented

models, most indicators for May et al. (1996) equation

indicated better results than Ebtehaj et al. (2014), but the

difference is not significant enough to deem one better than

another. It is worth noting that May et al. (1996) equation

was superior to other equations in terms of MSE, MAE,

MARE and d, and a lower R2; therefore, it is quite different

from the estimate achieved by May et al. (1996), which

increases its unreliability.

Additionally, existing equations were compared with

ANFIS-DE in terms of discrepancy ratio (DR), which is

equal to the ratio of the predicted value to the actual value.

These results are presented in Fig. 5. The DR values for

ANFIS-DE, and Ebtehaj et al. (2014) and May et al. (1996)

equations are 0.99, 1.03 and 0.97, respectively. Although

Table 2 Performance evaluation of ANFIS and ANFIS-DE in predicting Fr for all models (training and testing)

Model No. Method R2 RMSE MAE MARE d

Train Model 1 ANFIS 0.933 0.579 0.456 0.120 0.117

ANFIS-DE 0.972 0.370 0.285 0.074 0.073

Model 2 ANFIS 0.707 1.136 0.876 0.260 0.224

ANFIS-DE 0.840 0.831 0.594 0.167 0.152

Model 3 ANFIS 0.670 1.199 0.904 0.258 0.232

ANFIS-DE 0.906 0.637 0.461 0.121 0.118

Model 4 ANFIS 0.963 0.406 0.336 0.094 0.086

ANFIS-DE 0.973 0.341 0.272 0.072 0.070

Model 5 ANFIS 0.798 0.960 0.716 0.188 0.183

ANFIS-DE 0.913 0.632 0.478 0.125 0.123

Model 6 ANFIS 0.819 0.902 0.646 0.171 0.165

ANFIS-DE 0.916 0.613 0.417 0.105 0.107

Test Model 1 ANFIS 0.882 0.590 0.448 0.099 0.102

ANFIS-DE 0.963 0.392 0.331 0.076 0.075

Model 2 ANFIS 0.611 1.375 1.103 0.240 0.252

ANFIS-DE 0.720 1.248 1.005 0.232 0.229

Model 3 ANFIS 0.635 1.232 0.955 0.209 0.218

ANFIS-DE 0.869 0.663 0.546 0.128 0.125

Model 4 ANFIS 0.929 0.452 0.385 0.091 0.088

ANFIS-DE 0.965 0.323 0.281 0.065 0.064

Model 5 ANFIS 0.735 0.866 0.749 0.185 0.171

ANFIS-DE 0.868 0.801 0.675 0.154 0.154

Model 6 ANFIS 0.752 0.867 0.636 0.142 0.145

ANFIS-DE 0.869 0.606 0.481 0.112 0.110

Table 3 Comparison of ANFIS-DE and existing regression-based equations (all data)

Method R2 RMSE MAE MARE d

ANFIS-DE 0.972 0.336 0.275 0.070 0.046

May et al. (1996) 0.916 0.574 0.358 0.080 0.055

Ebtehaj et al. (2014) 0.966 0.609 0.390 0.084 0.065
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the difference is not vast, model accuracy and the average

precision should be confirmed by considering the maxi-

mum relative error values as well. In Fig. 5 the DR value

for ANFIS-DE is 1 ± 0.15, while the estimation results of

the two regression equations indicate that some of the

estimated values have large error. Thus, overestimation

beyond a certain allowance results in non-economical

project assessment, while underestimation below a certain

value leads to sediment deposition and related problems.

Using the equations would also result in less confidence.

Fig. 5 DR values for ANFIS-

DE and existing regression-

based equations
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Conclusion

Sediment transport in pipe channels is a critical subject,

because using incorrect designs leads to sediment depo-

sition and non-economical assessments. Therefore, a

method that accurately estimates the limiting velocity to

prevent sediment deposition is essential. In this study, a

hybrid ANFIS was designed based on differential evolu-

tion called ANFIS-DE. It was used to predict the densi-

metric Froude number (Fr) parameter, which takes into

account the limiting velocity effect. Accordingly, the

factors affecting non-deposition sediment transport were

determined and the dimensionless parameters were

defined to propose six different models (Models 1–6).

According to the results obtained for the effect of each

dimensionless parameter on the estimated Fr parameter,

using D2/A as a parameter in ‘‘transport mode’’ leads to

significantly inferior performance of both methods. The

average relative error attained was over 20% for both

methods. The best result of each input combination was

achieved by selecting d/R as representative of the

‘‘transport mode’’ group. Besides, by taking into account

parameters related to ‘‘flow resistance,’’ ‘‘transport’’ and

‘‘transport mode,’’ using Dgr instead of d/D led to a minor

accuracy reduction of less than 2%. The best performance

in estimating the Fr parameter was attained by the model

that used the following dimensionless parameters: volu-

metric sediment concentration (CV), ratio of median par-

ticle diameter to hydraulic radius (d/R), ratio of median

particle diameter to pipe diameter (d/D) and overall

friction factor of sediment (ks) (Fr = f (CV, d/R, d/D,

ks)). Moreover, a comparison of ANFIS-DE with ANFIS

represented the superior performance of ANFIS-DE. Two

regression-based methods presented based on semi-ex-

perimental and dimensional analysis were also compared

with the results of ANFIS-DE. The comparison results

indicated the superior performance of ANFIS.
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