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Abstract In this study, a hydrophilic polyethersulfone

membrane was used to modify the expensive and low

efficient conventional treatment method of wheat starch

production that would result in a cleaner starch production

process. To achieve a cleaner production, the efficiency of

starch production was enhanced and the organic loading

rate of wastewater that was discharged into treatment

system was decreased, simultaneously. To investigate the

membrane performance, the dependency of rejection

factor and permeate flux on operative parameters such as

temperature, flow rate, concentration, and pH of feed were

studied. Response surface methodology (RSM) has been

applied to arrange the experimental layout which reduced

the number of experiments and also the interactions

between the parameters were considered. The maximum

achieved rejection factor and permeate flux were 97.5%

and 2.42 L min-1 m-2, respectively. Furthermore, a

fuzzy inference system was selected to model the non-

linear relations between input and output variable which

cannot easily explained by physical models. The best

agreement between the experimental and predicted data

for permeate flux was denoted by correlation coefficient

index (R2) of 0.9752 and mean square error (MSE) of

0.0072 where defuzzification operator was center of

rotation (centroid). Similarly, the maximum R2 for

rejection factor was 0.9711 where the defuzzification

operator was mean of maxima (mom).

Keywords Starch � Membrane � FIS � Permeate flux �
Rejection factor

List of symbols

V Valve

ST Storage tank

PL Pipeline

CP Centrifugal pump

HE Heat exchanger

FM Flow meter

B Barometer

TMP Trans membrane pressure

T Temperature

F Flow rate

C Concentration

RSM Response surface methodology

FIS Fuzzy inference system

RMSE Root mean square error

R2 Correlation coefficient index

PF Permeate flux

RF Rejection factor

Mom Mean of maxima

Centroid Center of rotation

Probor Probabilistic

Prod Product

Som Self-organization map

a Specific cake resistance

Rc Cake resistance
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Introduction

Starch production plants produce high strength wastewater.

Several planted crops such as corn, potato, tapioca, wheat,

etc. are used to extract starch. Starch wastewater properties

vary according to the type of feed stocks, extraction method,

level of technology, and the purity of products. The type of

feed stocks and wastewater properties of several starch fac-

tories are presented in Table 1. As it is shown, high chemical

oxygen demand (COD), high biochemical oxygen demand

(BOD), high solid contents, and acidic pH are the common

characteristics of starchy wastewaters.

It is important to note that according to Tehran Province

Water and Wastewater organization (TPWW), the maxi-

mum allowable COD of wastewater that is allowed to

directly discharge into the surface waters is 60 mg L-1.

The technologies that are used in starch wastewater

treatment plants are classified into three categories: (1)

biological, (2) physical, and (3) chemical methods.

Colin et al. (2007) have studied the treatment of cassava

starch wastewater using anaerobic horizontal flow filter. At

steady state conditions and maximum organic loading rate

(11.8 g COD L-1 d-1), 87% of the inlet COD was

removed. Rajbhandari and Annachhatre (2004) assessed

the possibility of an anaerobic pond system for treatment of

starchy wastewater. Wastewater was treated in a series of

anaerobic ponds with a total area of 7.39 ha followed by

facultative ponds with an area of 29.11 ha. Overall COD

and TSS removal of 90% was observed. Movahedyan et al.

(2007) treated the starchy wastewater using an anaerobic

baffled reactor. In optimum conditions, the COD removal

of 67% was reported. Rajasimman and Karthikeyan (2007)

used a fluidized bed bioreactor with low density particles to

treat high organic concentration wastewater of starch

industry. At the COD of 2250 mg L-1 and the hydraulic

retention time of 24 h, the optimum COD removal of

93.8% was reported. Furthermore, there are several meth-

ods using aerobic biological processes to treat starch

wastewater (Pirmoradian 1997; Kian 2010).

It is worthwhile noting that during biological and chem-

ical treatment of wastewater, the possibility of starch

extraction would be eliminated. Furthermore, the efficiency

of chemical treatment is low and insufficient to achieve the

stringent discharge standard. So, in current study, membrane

technology has been selected to improve the efficiency of

starch production process and wastewater treatment.

Cancino et al. (2006) used a hydrophilic polyethersul-

fone membrane to treat a corn starch wastewater. First,

they treated the wastewater using a microfiltration mem-

brane with a pore size of 0.2 lm at a trans-membrane

pressure (TMP) of 250 kPa. Permeate contained only 17%

of the original wastewater BOD5. In second step, they used

a reverse osmosis module for further treatment of

wastewater. The permeate had only 0.2% of the original

wastewater BOD5. In another study, Mannan et al. (2007)

investigated the possibilities of recycling the concentrated

retentate back to production line by using MF and RO

membranes. Permeate flux above 100 L m-2 h-1 was

achieved for the 100 nm membrane. The reported COD

and BOD5 removal percentages were approximately 60%.

There are several methods for wheat starch production.

In Fig. 1, the block process diagram of wheat starch pro-

duction (Dough–Batter process) is shown.

In hydro cyclone (Dough–Batter) process, two types of

starch are produced (type A and type B). The distinctive

difference between these two types of starch is the degree

of polymerization. The granule size of starch type A is

larger than the other one.

Table 1 Different starch wastewater characteristics

References pH COD (mg/L) BOD (mg/L) Total

solids (mg/L)

Volatile

solids (mg/L)

Total

dissolved

solids (mg/L)

Total

suspended

solids (mg/L)

Volatile

suspended

solids (mg/L)

Rajasimman and

Karthikeyan (2007)

4.5–4.8 8560–8910 5810–6020 7275–7815 5000–5230 6035–6120 1240–1695 900–1005

Rajbhandari and

Annachhatre (2004)

3.8–4.6 13,582–14,300 12,277–13,275 – – – 6063–12,197 –

Colin et al. (2007) 3.6–6.5 4200–7000 1100–3900 2300–6600 – – 700–2200 600–2050

Movahedyan et al. (2007) 3.5–4.2 16,200–26,500 – – – – 9440–11,940 8930–11,100

Yanagi et al. (1994) 3.7–4.5 15,200–20,800 10,700–14,300 – – – 1700–5300 –

Annachhatre and

Amatya (2000)

3.8–4.5 13,500–25,000 – – – 6000–8000 2200–4000 –
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First, dough, water, and salt are mixed for 2 h. Dough/

gluten hydration process takes place in a hydration tank. Then,

through using dough washer, gluten is separated from starch

solution, dried, grinded and prepared for sale. The resulted

solution contains two types of starch (A and B). Starch type A

and B are separated using centrifuge device and dried.

As illustrated in Fig. 1, a large portion of wastewater

originates from centrifuging the solution of starch type B.

In other words, centrifuge device is not capable of sepa-

ration of the starch type B from the solution completely and

some of the starch would be existed in the stream dis-

charged to wastewater treatment plant (Pirmoradian 1997;

BeMiller and Whistler 2009).

Cleaner production is not necessarily using expensive

tools to reduce the contamination of industries. Cleaner

production also means applying simple tools and making

innovativemethods to improve conventional systems, which

would result in less contamination (Sans et al. 1998). There

are a few researches (Bujak 2009; Dakwala et al. 2009;

Virunanon et al. 2012) that investigated the improvements in

starch production systems to achieve cleaner production.

There are some theoretical approaches to predict the

performance of membrane process. These approaches are

based on some models such as mass transfer model (Bhat-

tacharjee and Datta 1997; Lin and Juang 2001), gel-polar-

ization model (Palacios et al. 2002), osmotic pressure model

(Wijmans et al. 1984; Ghose et al. 2000), Brownian diffusion

model (Samuelsson et al. 1997), and shear-induced diffusion

model (Kromkamp et al. 2002;VincentVela et al. 2007). The

complexity of these mathematical models and their non-

universality would limit their application.

To face this issue, several works were fulfilled to

investigate the applicability of intelligent systems to sim-

ulate membrane processes. These methods would be clas-

sified as artificial neural networks (ANNs) (Bowen et al.

1998; Farshad et al. 2011; Chen and Kim 2006), adaptive

neuro-fuzzy inference systems (ANFISs) (Shahsavand and

Chenar 2007; Rahmanian et al. 2012), and fuzzy inference

systems (FISs) (Sargolzaei et al. 2008; Altunkaynak and

Chellam 2010). Accordingly, these methods that are based

on the direct analysis of obtained data could simulate the

membrane processes. Also, they have the ability to deter-

mine the unpredictable relations between input and output

variables in many processes, which are complicated

(Raasimman et al. 2010).

In general, the main preference of the systems such as

FIS over other methods is that the desired predictions can

be performed in an easy, fast, and accurate way which is

not achievable using other forecasting tools.

In this study, a hydrophilic polyethersulfone membrane

fixed in a plate and frame module was applied to modify

hydro cyclone (Dough–Batter) process. The aim of this

modification is to (1) improve the efficiency of starch

production line and (2) decrease the organic loading rate

and COD discharged into wastewater treatment system or

environment. Also, FIS was applied to model non-linearity

of this system. Several operators (implication, aggregation,

and defuzzification) were applied and their abilities to

model the permeate flux and rejection factor values were

examined and the best structures for each output were

selected. Finally, a comparison has been made between

actual values and data obtained by FIS.

Methods and materials

Membrane properties

Hydrophilic polyethersulfone membrane (GE com-

pany,USA)with pore size of 0.65 lm,minimumbubble point

Kneader

flour

Water+salt

Fermentation
tank

First
dough
washer

water

second
dough
washer

water

Gluten
dryer

Gluten mill

Fiber
removalfiber

A/B
separator

A/B
separator

Centrifuge A

Starch
dryer Starch type A

Centrifuge B

Starch
dryer Starch type B

Wastewater
treatment
plant

Fig. 1 Block flow diagram of

hydro cyclone production

process (Dough–Batter)
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of 19 psi, typical flow rate of 100.875 mL min-1 cm-2,

operating pH 1–14, membrane thickness 110–150 lm, and

maximum operating temperature of 130 �C was used. The

membrane area was 49 cm2 (7 9 7 cm). The plate and frame

membrane module was made of steel.

Modifying the process

The process flow diagram of the modified process is

shown in Fig. 2. The outlet stream from the centrifuge B

that previously was discharged into wastewater treatment

plant, in this way, is forwarded to a storage tank (ST).

To prevent the starch settling in the tank, a mixer is also

installed. Using a pipeline (PL-1), the feed stream con-

taining low concentration of starch, leaves the tank and

passes through a valve (V-1) and enters into the cen-

trifugal pump (CP) with the maximum head of 50 m and

maximum flow rate of 50 L min-1. In this study, several

values of flow rates must be investigated; so the feed is

divided into two streams. One is recycled to the storage

tank (PL-4), and the other stream enters the heat

exchanger (HE), after passing from a valve (V-2). The

flow rate is regulated by valves V-2 and V-3. The effect

of temperature on starch separation could be important

due to affecting coagulation phenomena; so the temper-

ature variations should be studied. To achieve the

appropriate temperature interval, a heat exchanger (HE)

which is mentioned earlier was used. As it is shown, the

feed with the adjusted temperature passes through a flow

meter (FM) with a maximum flow rate of 20 L min-1

and a valve (V-4) to enter into the plate and frame

membrane module.

To measure and adjust the operative pressure, two

manometers are installed on the feed stream (B-1) and the

retentate stream (B-2). The operative pressure is adjusted

using valves V-4 (inlet pressure) and V-5 (outlet pressure).

TMP is calculated using the following equation:

TMP ¼ pi þ po

2
� pp; ð1Þ

where pi and po are inlet and outlet pressure, respectively,

and pp is the pressure of permeate side.

The permeate flow leaves the membrane module

through the valve (V-6). A portion of the retentate stream is

recycled to the feed tank, and the left would be recycled to

the centrifuge B for re-extracting the starch type B. It is

worthwhile considering that the ratio of these two streams

is adjusted by valve V-5.

The performance of membrane filtration was evaluated

by two variables; permeate flux and rejection factor. The

permeate flux was defined as follows:

Jp ¼
V

A� t
; ð2Þ

where Jp is the permeate flux (L m-2 min-1), V is the

permeate volume (m3) that has been collected during time

t (min), and A is the active area of membrane. The rejection

factor was defined as follows:

R ¼ 1� CODp

CODf

; ð3Þ

where CODp and CODf are the value of COD in permeate

and feed streams, respectively. Influent and effluent COD

were measured by standard methods (APHA 1998). Foul-

ing could limit using membrane technology, strongly. In

other works of these authors, the procedure of flux

retrieving, type of backwashing, etc. for starch wastewater

treatment using membrane filtration have been discussed in

details (Moghaddam et al. 2013a, b, 2016).

Fig. 2 Process flow diagram of

modified process
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Fuzzy inference system

Fuzzy inference systems (FISs) have the ability to fig-

ure out unpredictable relations between input and output

variables in many processes, which are too complicated to

model by other techniques. Many investigations have been

carried out in using FIS to model the membrane processes

and wastewater treatment (Sadrzadeh et al. 2009). Model-

ing and simulation by FIS consist of two steps: (1) deter-

mining the input–output space partition and the number of

rules that have to be used by the fuzzy system, and (2)

finding the optimum value of the parameters that were

involved in the fuzzy system (Lin and Ho 2005). The fuzzy

rules that are used in fuzzy set theory are very close to

human language. Therefore, this property would make the

explanation and justification of the predictions easier

(Rahmanian et al. 2011).

Figure 3 shows a FIS, which consists of fuzzifier,

defuzzifier, and fuzzy inference engine. In Fig. 3 X and

Y are input and output data sets, respectively. A fuzzy set is

characterized by a membership function lf e[0, 1], which
determines a grade of membership for each element within

the fuzzy set (Freissinet et al. 1999).

The two most important types of fuzzy inference method

are Mamdani’s fuzzy inference method, which is used to

predict the permeate flux and rejection factor, and so called

Sugeno or Takagi Sugeno–Kang method (Yaqiong et al.

2011).

In the Mamdani fuzzy model, the ‘‘if–then’’ rules take the

placeof theusual set ofequationsused to characterize a system.

Thegeneral ‘‘if–then’’ rule structure of theMamdani algorithm

is given in the following form (Rahmanian et al. 2011):

If X is Ai and Y is Bi and . . . then Z is Ci and. . .

ð4Þ

i = 1, 2,…, n where X and Y are input variables and Z is

the output.

The first step is to fuzzify the input variables. The

fuzzifier maps the input data X into the fuzzy set A, Y into

the fuzzy set B, and so on. The next step is to evaluate the

truth value for the premise of each rule, and then applying

the result to the conclusion part of each rule using the fuzzy

implication. The membership functions defined on the

input variables are applied to their actual values to deter-

mine the degree of truth for each rule premise. MATLAB

software R2010a (7.10.0.499) was used to construct and

simulate the membrane performance.

Design experiment

The operative parameters that affect the performance of the

membrane process are TMP, flow rate, temperature, pH,

and feed concentration. It was found that TMP has no

considerable influence on rejection factor but improves the

value of permeate flux (Sargolzaei et al. 2008). So, during

conducting the experiments, the value of TMP was set at

possible maximum value of 2.5 bar. The experiments lay-

out that was adjusted by response surface methodology

(RSM) and output variables, have been shown in Table 2.

Sometimes, there are variables, out of control, that would

affect the result of experiment. In these situations, the

effects of these variables (noises) would be alleviated using

blocks. In Table 2, one block was introduced because no

uncontrollable variable has been detected.

The experimental plan and data analyzing generation

were performed using Design Expert software (Vaughn

2011). Applying RSM to arrange experimental layout

resulted in a considerable decrease in the number of

experiments and also the interactions between parameters

were considered. In previous work (Moghaddam et al.

2013a, b), according to the results that have been shown in

Table 2, two regression models for the permeate flux (PF),

rejection factor (RF), and COD of permeate were generated

as follows:

PF ¼ 2:22þ 0:54� F þ 0:028 � T � 0:20 � pH

� 0:15� C � 0:04� F2 � 0:0006632� T2; ð5Þ

RF ¼ 78:26� 0:43� F þ 0:54� T � 0:11� pHþ 2:04

� C � 0:023� T � pH� 0:029� T � C; ð6Þ

CODf ¼ 93912� C � 516� F � C þ 648� T � C � 132

� pH� C þ 2448� C2 � 27:6� T � pH� C

� 34:8� T � C2: ð7Þ

The accuracy of models was measured using correlation

coefficient index (R2) and mean square error (MSE), which

are defined as follows:

MSE ¼
P

yexp: � ypred:
� �2

N
; ð8Þ

R2 ¼ 1�
P

yexp: � ypred:
� �2

P
yexp: � �y
� �2 ; ð9Þ

�y ¼
P

yexp:

N
; ð10Þ

Fig. 3 Fuzzy expert system approach
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where yexp: and ypred: are experimental and predicted val-

ues, respectively, and N is the number of data.

Result and discussion

Fuzzy model

The ranges of four input variables were divided into three

sections: low (L), middle (M) and high (H). In Fig. 4 the

membership function of flow rate has been illustrated. The

membership function of other input variables is just like

flow rate. As it is shown in Fig. 5, to improve the pre-

ciseness of the model, nine membership functions were

defined for permeate flux and rejection factor. For input

and output parameters, Gaussian and triangle membership

functions were used, respectively. Gaussian membership

function is as follows:

f xð Þ ¼ e
� x�cð Þ2

2r2 ; ð11Þ

where c and r are the parameters for the determination of

the shape of the curve.

Figure 6 shows the architecture of FIS that was built for

modeling the permeate flux and rejection factor. To

increase the model accuracy, two separate FIS were gen-

erated for permeate flux and rejection factor. In current

research, both Mamdani and Sugino model were investi-

gated and no distinctive difference was observed between

the data predicted by these two models. So, only Mamdani

results have been shown.

Permeate flux (Jp)

Several structures of FIS have been generated and their

ability to predict the output variables was examined in

terms of the decreasing values of R2 and MSE. As is

Table 2 Design layout of experiments in one block

Standard

run no.

Flow

(L min-1)

Temp.

(�C)
pH Conc. of

starch (g L-1)

Permeate flux

(L m-2 min-1)

COD removal

(%)

COD of

feed (ppm)

COD of

permeate (ppm)

1 4.00 26.00 7.50 1.00 1.75 86.5 1200 162

2 9.00 26.00 7.50 1.00 1.63 84.8 1200 182

3 4.00 54.00 7.50 1.00 1.77 95.2 1200 58

4 9.00 54.00 7.50 1.00 0.87 92.3 1200 92

5 4.00 26.00 11.00 1.00 0.97 84.3 1200 188

6 9.00 26.00 11.00 1.00 1.52 81.3 1200 224

7 4.00 54.00 11.00 1.00 1.71 91.5 1200 102

8 9.00 54.00 11.00 1.00 1.12 89.2 1200 130

9 4.00 26.00 7.50 5.00 1.05 92.4 6000 456

10 9.00 26.00 7.50 5.00 0.89 89 6000 660

11 4.00 54.00 7.50 5.00 1.06 97.5 6000 150

12 9.00 54.00 7.50 5.00 0.36 97 6000 180

13 4.00 26.00 11.00 5.00 0.62 89.3 6000 642

14 9.00 26.00 11.00 5.00 1.35 86.6 6000 804

15 4.00 54.00 11.00 5.00 0.97 90.2 6000 588

16 9.00 54.00 11.00 5.00 2.3 91 6000 540

17 2.96 40.00 9.25 3.00 0.52 92 3600 288

18 10.04 40.00 9.25 3.00 2.42 88 3600 432

19 6.50 20.20 9.25 3.00 0.88 84.3 3600 565

20 6.50 59.80 9.25 3.00 2.2 96.4 3600 130

21 6.50 40.00 6.78 3.00 1.22 91.5 3600 306

22 6.50 40.00 11.72 3.00 1.73 88.4 3600 418

23 6.50 40.00 9.25 0.17 1.3 88 204 24

24 6.50 40.00 9.25 5.83 1.83 93.5 6996 455

25 6.50 40.00 9.25 3.00 1.77 90.6 3600 338
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presented in Table 3, the best agreement between experi-

mental and predicted data for permeate flux is specified by

R2 of 0.9752 and MSE of 0.0072 where defuzzification

operator was centroid. It is important to note that the

number of rules for FIS of permeate flux is 48. Figure 7

shows the values of residuals vs. run number for permeate

flux predicted by FIS. According to Fig. 7, the maximum

difference between the actual and the predicted value in

this case is 0.2. Figure 8 represents a comparison between

the actual and the predicted permeate flux through a bar

plot. As is shown, there is a good agreement between

predicted and actual values. This agreement shows the

excellent ability of this model in data predicting.

Figure 9 shows the relationship between the permeate

flux and four operative parameters through surfaces gen-

erated by FIS.

It would be expected that the cake resistant would be

raised after increasing the concentration, and the permeate

flux would decrease. But, as it is shown in Fig. 9, the

permeate flux increases with increasing concentration at

20 �C. In the following, the reason of this unusual phe-

nomenon would be explained:

Fig. 4 Membership function of

flow rate

Fig. 5 a Membership function

of permeate flux, b membership

function of rejection factor (VL

very low, L low, VMO very

moderate, MO moderate,

M medium, I increase, VI very

increase, H high, VH very high)

Fig. 6 The generated fuzzy inference system
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Specific cake resistance, a, is defined as the cake

resistance, Rc, normalized by the accumulated cake mass

per unit of membrane area (Listiarini et al. 2009):

a ¼ Rc

M=A
; ð12Þ

where M is the mass of the cake deposited on membrane

surface, and A is the effective area of membrane.

According to the Carman–Kozeny equation, a is

inversely proportional to cake porosity (Chang and Kim

2005):

a ¼ 180 1� eð Þ
qd2pe

3
; ð13Þ

where dp is the particle diameter, e is the porosity of cake

layer, and q is the particle density.

According to Eq. 12, specific cake resistance is strongly

dependent on dp. So that by increasing the size of solids the

cake resistant would decrease. In this case, increasing

concentration at low temperature led to forming larger

particles that caused decreasing cake resistant and

increasing permeate flux.

Rejection factor

Similarly to permeate flux, the values of R2 and MSE

corresponded to several structures of FIS for the rejection

factor have been shown in Table 4.

To check the adequacy of the final model, the predicted

rejection factor vs. the actual values was checked and

illustrated in Fig. 10. It is important to note that these

predicted values were corresponded to the best FIS struc-

ture. In this case, the points that follow a straight line

(y = x) confirm that errors are normally distributed with a

mean of zero. Furthermore, the R2 of 0.9711 implies the

normal distribution of predicted values versus experimental

values.

In Fig. 11, four 3-D plots that show the rejection factor

in terms of two operative parameters have been illustrated.

Table 3 Comparison and selection of the best structures of FIS by Mamdani method for permeate flux

Output Operators Degree of agreement

And Or Implication Aggregation Defuzzification Average error R2 MSE

Permeate flux Min Max Min Max Centroid 0.0378 0.8242 0.0513

Min Max Min Max Bisector 0.0129 0.8781 0.0356

Prod Probor Prod Sum Centroid 0.0078 0.9752 0.0072

Min Max Min Sum Bisector 0.0763 0.6466 0.1031

Min Max Min Probor Mom 0.0370 0.8846 0.0337

Prod Max Min Sum Mom 0.0300 0.9704 0.0086

Min Max Min Max Mom 0.0056 0.9712 0.0084

Prod Max Min Sum Som 0.0802 0.9552 0.0131

Prod Probor Prod Sum Mom 0.0572 0.9422 0.0169
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As is shown, in middle range, change in temperature has no

considerable effect on rejection factor and the rejection

factor remains relatively constant. But at temperature

below 30 �C or higher than 50 �C, considerable change in

rejection factor would be seen by changing the tempera-

ture. Similar effect was observed for change in pH values.

Amount of recovered starch

We assume a wheat starch production plant discharges

1500 m3 d-1 (1041.67 L min-1) of wastewater with the

average COD of 7000 ppm, pH of 6, and temperature

of 30 �C to the wastewater treatment system. Starch

Fig. 9 FIS surfaces for permeate flux

Table 4 Comparison and selection of the best structures of FIS by Mamdani method for rejection factor

Output Operators Degree of agreement

And Or Implication Aggregation Defuzzification Average error R2 MSE

COD removal Min Max Min Max Centroid 0.0409 0.8963 1.7038

Min Max Min Max Bisector 0.0164 0.9488 0.8404

Prod Probor Prod Sum Centroid 0.0688 0.9687 0.5141

Min Max Min Sum Bisector 0.1002 0.8899 1.8091

Min Max Min Probor Mom 0.0549 0.9475 0.8626

Prod Max Min Sum Mom 0.0423 0.9711 0.4743

Min Max Min Max Mom 0.0549 0.9359 1.0533

Prod Max Min Sum Som 0.3728 0.9516 0.7954

Prod Probor Prod Sum Mom 0.0164 0.9363 1.0470
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Fig. 10 Predicted rejection

factor by FIS vs. experimental

data

Fig. 11 FIS surfaces for rejection factor
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concentration of 5.83 g L-1 resulted in COD value of

7000 ppm.

As it is mentioned earlier, the performance of modified

system was evaluated by rejection factor and the permeate

flux. So, the optimum design of system was investigated in

two states. In states I and II, the aim is to obtain the

maximum permeate flux and the maximum rejection factor,

respectively.

State I

According to the values of COD, pH, and temperature,

Eq. 5 was simplified to the following equation:

PF ¼ 0:39þ 0:54� F � 0:04� F2: ð14Þ

Figure 12 shows block scheme of calculation for State I.

Using Eq. 14 it is found that the maximum permeate flux

would be obtained at the flow rate of 6.75 L min-1.

At this value of flow rate, according to Eq. 6, the value

of rejection factor was 93.58%. Consequently, 4787.48 kg

of starch would be recovered from wastewater, annually.

Additionally the COD value of wastewater decreased from

7000 to 449 ppm.

State II

According to Eq. 6, the rejection factor is maximum when

the flow rate is at its minimum value. So, the flow rate was

adjusted at 3 L min-1. 8183.24 kg of starch could be

recovered each year, accordingly. Figure 13 shows the

block diagram for calculating the recovered starch for state

II.
The minimum and maximum values of flow rate are 3

and 10 L min-1, respectively. Wastewater flow rate is

1041.67 L min-1. By selecting 347 and 104 membrane

module, minimum and maximum values of flow rate for

each membrane module would be achieved, respectively.

Figure 14 shows the permeate flux of each membrane

module (a), rejection factor (b), and total recovered starch

(c) vs. number of membrane modules. Just similar to state

II, the maximum starch would be recovered when the

number of membrane module was at maximum value or

flow rate was at minimum value. In Table 5, the amount of

water and energy saving achieved by modified system have

been shown.

Conclusion

In this study, a hydrophilic polyethersulfone membrane

was applied for recovering the starch and recycling it into

the production line. The maximum permeate flux and

rejection factor were observed to be 2.42 L m-2 min-1 and

97.5%, respectively, that were acceptable. Also, the capa-

bilities of several structures of fuzzy inference system

(FIS) for simulating the membrane filtration of starch were

investigated and compared with each other. The best cor-

relation coefficient index (R2) and mean square error

(MSE) for predicted permeate flux were 0.9704 and

0.0086, respectively. Similarly, R2 and MSE for predicted

rejection factor were 0.9711 and 0.4743, respectively.

According to the regression models that were obtained by

response surface methodology (RSM), the recovered starch

Fig. 12 The flowchart of calculating the total recovered starch for

state I

Fig. 13 The flowchart of calculating the total recovered starch for

state II
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under different conditions has been calculated. The maxi-

mum recovered starch was 8183.24 kg year-1, which

caused a huge amount of energy and water saving.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were made.
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