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Abstract Correct estimation of soil loss at catchment level

helps the land and water resources planners to identify

priority areas for soil conservation measures. Soil erosion

is one of the major hazards affected by the climate change,

particularly the increasing intensity of rainfall resulted in

increasing erosion, apart from other factors like landuse

change. Changes in climate have an adverse effect with

increasing rainfall. It has caused increasing concern for

modeling the future rainfall and projecting future soil

erosion. In the present study, future rainfall has been

generated with the downscaling of GCM (Global Circula-

tion Model) data of Mandakini river basin, a hilly catch-

ment in the state of Uttarakhand, India, to obtain future

impact on soil erosion within the basin. The USLE is an

erosion prediction model designed to predict the long-term

average annual soil loss from specific field slopes in

specified landuse and management systems (i.e., crops,

rangeland, and recreational areas) using remote sensing and

GIS technologies. Future soil erosion has shown increasing

trend due to increasing rainfall which has been generated

from the statistical-based downscaling method.

Keywords Soil erosion � Downscaling method � GCM �
USLE

Introduction

Climate change is an important factor in the present sce-

nario for planning and management of water resources.

Global Circulation Models (GCMs) are tools that are used

in the simulation of the present and future climate chan-

ges. These are numerical models that represent the various

physical processes of the earth-atmosphere–ocean system

(Wilby and Wigley 1997; Prudhomme et al. 2003).

However, hydrological variability at the local scale is

required for the assessment of the regional climate.

Therefore, downscaling of the GCM data to the regional

scale is done with various approaches. These methods are

support vector machines, multiple linear regressions, and

artificial neural networks (Ghosh and Mujumdar 2006;

Raje and Mujumdar 2009; Aksornsingchai and Srinilta

2011). The SDSM model (Wilby and Dawson 2007)

applies multiple linear regression for future climate

change analysis.

Soil erosion is a diffuse process varying spatially over a

typical landscape. Soil erosion is caused by detachment and

removal of soil particles from land surface. It is a natural

physical phenomenon which helped in shaping the present

form of earth’s surface (Das 2002). Modeling soil erosion

is the process of mathematically describing soil particle

detachment, transport, and deposition on land surface.

Direct measurement of soil erosion at many points

across a region is impractical. Physically, erosion is diffi-

cult to measure, and variation of climate requires at least 10

years of data to obtain an accurate measure of average

annual erosion. Consequently, researchers commonly use

erosion prediction methods to make regional assessments

of the impact of erosion on crop productivity, off-site

sedimentation, or in selecting conservation methods for

specific fields.
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Planning for conservation measures within an area

requires assessing the magnitude of soil erosion, which

enables resource planners in deciding what is considered

acceptable, and the effects of different conservation

strategies can be determined. What is required, therefore, is

a method of predicting soil loss under a wide range of

conditions (Morgan et al. 1984).

Soil erosion is one of the major environmental hazards

today experienced by the human community. It has been

estimated that in India about 5344 m-tonnes of soil is being

detached annually due to different reasons (Narayan and

Babu 1983). These huge soil losses are not only responsible

for the reduced storage reservoir capacity in India but also

reduction in nutrient laden agricultural land at many areas.

Fig. 1 Location map of the study area
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Several researchers have attempted to estimate the soil

erosion loss in the different regions of the country utilizing

remote sensing and GIS technologies (Jain et al. 2001;

Chowdary et al. 2004; Pandey et al. 2007; Dabral et al.

2008; Ismail and Ravichandran 2008; Dalu et al. 2013;

Gajbhiye et al. 2014). Effect of climate change on soil

erosion has been observed by Routschek et al. (2014) due

to changes in the rainfall, and a study shows that increased

intensity of various climatic parameters, particularly rain-

fall, has caused an increase in the sediment load (Mukun-

dan et al. 2013). Higher rate of soil erosion is observed by

various researchers in different parts of India using the

MMF (Morgan–Morgan-Finney), USLE (Universal Soil

Loss Equation), and RUSLE (Revised Universal Soil Loss

Equation) models (Prasannakumar et al. 2012; Patel and

Kathwas 2012; Pandey et al. 2009).

The main objective of the study is the assessment of the

impact of future change in climate (rainfall) on the soil

erosion of the Mandakini basin area with the USLE

(Universal Soil Loss Equation) and SDSM model. The

SDSM model (Wilby and Dawson 2007) has been used in

the present study for future climate change analysis with

the HadCM3 data of A2 scenario.

Description of the study area

The Mandakini basin draws its name from the river Man-

dakini, one of the tributaries of river Alaknanda, started

from Kedarnath which is one of the most auspicious shri-

nes in India. The basin falls in the district of Rudraprayag,

Uttarakhand, and comprises an area of 1646 km2 (approx).

The Mandakini river runs for a length of 80 km up to the

confluence, where it meets with Alaknanda river at

Rudraprayag with an average slope of 4.50 in percentage.

The annual rainfall in the region is about 1000–2000 mm.

The maximum rainfall is observed in the monsoon months.

The region witnesses comparatively cooler climate from

the main Indian land with maximum temperature ranges

from 30 to 36 �C while minimum between 0 and 8 �C. The
relative humidity is high in the monsoon season generally

exceeding 70 %. The climate in the study area is tropical

monsoon type with most of the rainfall concentrating in the

months of June to October. The region has steep valley

slopes with land slide and sediment movement, as debris

flow is frequent in these reaches. The population density in

the area is generally thin. The location map of the study

area is shown in Fig. 1.

Fig. 2 Flow chart of methodology

Appl Water Sci (2017) 7:2373–2383 2375

123



Methodology

Climate change

The daily observed predictor data of atmospheric variables

was derived from the National Center of Environmental

Prediction (NCEP) on 2.5� latitude 9 2.5� longitude grid-

scale for 41 years (1961–2001) from the website of

Canadian Climate Impacts Scenarios (CCIS) (http://www.

cics.uvic.ca/scenarios/sdsm/select.cgi). The predictors of

Hadley Center’s GCM (HadCM3) of A2 scenario for

139 years (1961–2099) on 2.5� 9 3.75� grid-scale are

obtained from the Canadian Climate Impacts Scenarios

(CCIS) website (http://www.cics.uvic.ca/scenarios/sdsm/

select.cgi). The SDSM model was used here which

requires two types of daily data for downscaling. One is

‘Predictand’ (rainfall) which are local data, and the other

one is ‘Predictors’(NCEP and simulated GCM data), which

are large-scale data of different atmospheric variables.

Model calibration is done to develop an empirical rela-

tionship between the predictand and predictors. The NCEP

data from 1961 to 1991 are used for model calibration, and

the rest (1992–2001) is used for validation.

Soil erosion model: the universal soil loss equation

(USLE)

The Universal Soil Loss Equation developed by Wis-

chmeier and Smith (1958 and 1978) was used to predict the

gross soil erosion (average annual soil loss) and its spatial

distribution on the basin. The USLE estimates soil loss for

a given area as product of six erosion factors, whose values

are determined separately using the area specific empirical

equation. The USLE is limited for predicting long-term

average of soil loss, and is expressed as follows:

A ¼ R� K � LS� C � P ð1Þ

where A is average annual soil loss rate (t ha-1year-1), R is

rainfall erosivity factor (MJ mm ha-1h-1year-1), K is soil

erodibility factor (t ha h ha-1MJ-1mm-1), LS is topo-

graphic factor expressed as slope length and steepness, C is

crop management factor, and P is conservation supporting

practice factor. The flow chart showing the processes is

given in Fig. 2.

Development of database for USLE

Rainfall erosivity (R) factor

R factor is a function of the falling raindrop and rainfall

intensity (Wischmeier and Smith 1958) and is estimated as

the product of the kinetic energy (E) of the raindrop and the

maximum intensity of rainfall (I30) over duration of 30 min

in a storm. The erosivity of rain is calculated for each

storm, and these values are summed up for each year. The

kinetic energy is calculated by the following formula

(Wischmeier and Smith 1978):

E ¼
X

Ei ¼
XN

i¼1

ð210:3þ 89 log10 IiÞ ð2Þ

where E is the total kinetic energy of rainfall (t m ha-1-

cm-1), Ei is the rainfall kinetic energy of the ith increment

per storm (mt ha-1cm-1), Ii is the average intensity of

rainfall during the ith increment for each storm (cm ha-1),

and N is the total number of discrete increment.

In this study, the storm wise rainfall data were not

available for the computation of rainfall erosivity factor

(R); therefore, the relationship between seasonal value of R

and average seasonal (June–September) rainfall has been

used, recently defined by RamBabu et al. (2004). The

rainfall erosivity factor has been defined by following

equation:

R ¼ 71:9þ 0:36X ð3Þ

where R is the average seasonal erosivity factor (metric

tonnes ha-1 cm h-1 100-1), and X is the average seasonal

rainfall (mm).

In and around the study average rainfall of 10 years have

been taken from the rain gauge station for the estimation of

rainfall erosivity. The rainfall erosivity factor (R) has been

calculated using Eq. 3 for annual average rainfall of

Table 1 Soil erodibility factor for different types of soils of Mandakini basins

SS.N. Soil codes Soil type Erosion rate KK

11 1,2,38,39, 43,44,47 Moderately—deep/soil of side sloes/fluvial Slight erosion 0.10

22 8,12,14,15,18,19,20,27,28,29,30,

32,33,35,36,37,40,41,42,45,46

Moderately shallow/soil of side sloes Moderate erosion 0.15

43 7,10,11,13,21,23,24,25,26,34, Shallow/soil of side sloes Severe erosion 0.25

44 3,4,5,6,16,17,22,31 Very shallow/soil of side sloes Very severe erosion 0.325

55 9,48,49 Soil at CLIFF Very very severe erosion 0.40
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observed and simulated data. The values from R have been

adopted in this study to calculate soil erosion using USLE.

Soil erodibility (K) factor

The K factor is an expression of the inherent erodibility of

the soil or surface material at a particular site under stan-

dard experimental conditions. It is a function of the parti-

cle-size distribution, organic-matter content, structure, and

permeability of the soil or surface material. As per the soil

codes and soil types available in the study area, the soil has

been classified in five major categories. Fine-textured soils

with high clay content are resistant to detachment, thereby

considered a low K factors ranging from 0.05 to 0.15.

Coarse-textured soils, such as sandy soils, also have low

K values from 0.05 to 0.2 because of high infiltration

resulting in low runoff even though these particles are

easily detached. Medium-textured soils, such as a silt loam,

have moderate K values (about 0.25), because they are

moderately susceptible to particle detachment and they

produce runoff at moderate rates. Soils having high silt

content are highly susceptible to erosion and have high

K values, which can range from 0.25 to 0.4; thus, an

average value of 0.325 is assigned. Soil with very severe

soil erosion is considered a K value of 0.4. The various

classes of soil and the values of K are given in Table 1 as

below:

Prior to the preparation of the K map, soil map for the

area has been generated. Then, K map is prepared for the

Mandakini basin by considering the soil map after

assigning suitable K values for the different types of soils,

as given in Table 1. The K map, finally, generated in GIS

environment and is presented in Fig. 3. Table 2 describes

the existing soil status in the study area.

Topographic (LS) factor

The LS factor is an expression of the effect of topography,

specifically hill slope length and steepness, on rates of soil

loss at a particular site. The value of ‘LS’ increases as hill

slope length and steepness increase, under the assumption

that runoff accumulates and accelerates in the down-slope

direction. This assumption is usually valid for lands

experiencing overland flow, but may not be valid for forest

and other densely vegetated lands.

Hill slope-length factor (L)

The L-factor was calculated based on the relationship

developed by Weismeier and Smith (1965). The equation is

as follows:

L ¼ ðk=22:13Þm ð4Þ

where k = slope length measured from the water divide of

the slope (m), m = exponent dependent upon slope gradi-

ent and may also be influenced by soil properties and type

of vegetation. m is taken as 0.5 for slopes exceeding 5 %,

0.4 for 4 % slopes, and 0.3 for slopes less than 3 %. In the

study, the percent slope was determined from the DEM,

accordingly m has been taken as 0.4. Different slope

classes in the study area are shown in Fig. 4.

Hill slope-gradient factor (S)

The hill slope-gradient factor, S, reflects the effect of hill

slope-profile gradient on soil loss. The slope-gradient factor

(S) is the ratio of soil loss from a plot of known values of the

factor S. In this study, slope-gradient factor (S) is calculated

using the following equation (McCool et al. 1987),

Fig. 3 Soil erodibility factor (K)

Table 2 Area under different types of soil

Soil type Area (Km2) Area (%)

1 96.44 5.86

2 823.11 50.02

3 554.38 33.69

4 130.19 7.91

5 41.48 2.52

Total 1645.60 100
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S ¼ 10:8 sin h þ 0:03 for slopes[ 4 m; and s\ 9 %

ð5Þ

S ¼ 16:8 sin h � 0:50 for slopes [ 4 m; and s [ 9%

ð6Þ

where h = field slope in degrees = tan-1(field slope/100).

Therefore, the final LS map has been prepared in the

ARC GIS environment by multiplying L & S factor using

above Eqs. 5, 6 and shown in Fig. 4. Different LS classes

in the study area are presented in Table 3.

Crop management (C) factor

The C factor is an expression of the effects of surface

covers and roughness, soil biomass, and soil-disturbing

activities on rates of soil loss at a particular site. The value

of C decreases as surface cover and soil biomass increase,

thus protecting the soil from rain splash and runoff. In the

present study, the landuse/land cover map was generated

from the satellite images and used in the allocation of

C factor for different landuse classes. Table 4 furnishes the

crop management factors used in the model under different

landuse/land cover. The spatial distribution of C-values is

shown in Fig. 5.

Conservation practice (P) factor

The P factor is an expression of the effects of supporting

conservation practices, such as contouring, buffer strips of

vegetation, and terracing, on soil loss at a particular site. It

is the ratio of soil loss with specific support practice to the

corresponding loss with up- or down-slope cultivation. In

the present study, the P factor has been considered as one,

assuming no conservation practices followed in the area,

thereby the soil loss estimated by the model will be very

high.

Fig. 4 Slope and LS map

Table 3 Area under different LS categories

LS Class Area (Km2) Area (%)

\3 79.72 4.84

3–6 310.61 18.87

6–9 508.03 30.87

9–12 471.96 28.68

12–15 236.69 14.38

[15 38.59 2.35

Total 1645.6 100

Table 4 Crop management factor of different landuse/land cover

Landuse Type C value

Dense forest 0.01

Open forest 0.01

Snow cover 0.01

Barren outcrop 0.35

Scrub 0.10

Water body 0.00
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GIS database preparation

Different layers were created in vector format for the

analysis of study area as given in Table 5. Most of the

analysis and overlay operations are easily and efficiently

done in the raster model, and therefore, all maps in vector

model were converted into raster structure using the Arc

GIS software. Boundary, soil, and landuse maps which

were already in polygon form were rasterized through

polygon to raster mode.

Landuse classification

Using Landsat imageries of resolution 30-m landuse/land

cover map was prepared. Unsupervised classification was

done using the ERDAS 9.0 software. The study area has

been classified into six different landuse classes namely:

(1) water body, (2) open forest, (3) dense forest, (4) barren

outcrop, (5) scrub, and (6) snow cover that were generated

for study area. The classified map depicting various lan-

duse/land cover classes of the study area is shown in Fig. 5.

The landuse/land cover statistics of the study area is also

presented in Table 6.

The overall kappa statistics (K
^
) estimated based on the

minimum 120 samples taken from different landuse cate-

gories are 0.80. A kappa value of 1 indicates a perfect

agreement between the categories. A value greater than

0.75 indicates a very good-to-excellent agreement, while a

value between 0.40 and 0.75 indicates a fair-to-good

agreement. A value less than or equal to 0.40 indicates a

Fig. 5 Landuse/land cover map

for the year 2010

Table 5 List of input database

SSl. No. Name of layer Shape file layer (.shp) Source Software used

1. Boundary Polygon Toposheet Arc GIS 9.3.1

2. Main stream Polyline Toposheet Arc GIS 9.3.1

3. Soil map Polygon Toposheet Arc GIS 9.3.1

4. Landuse map Polygon Satellite Imagery Arc GIS 9.3.1, ERDAS 9.0

5. Rainfall Thissen Polygon IMD, Pune Arc GIS 9.3.1

6. DEM Aster – Arc GIS 9.3.1

Table 6 Landuse/land cover statistics

Landuse Type Area (Km2) Area (%)

Dense forest 706.53 42.93

Open forest 485.55 29.51

Snow cover 183.23 11.13

Barren outcrop 140.14 8.52

Scrub 130.15 7.91

Water body 0.0063 0.0004

Total 1645.60 100.00
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poor agreement between the classification categories

(Manserud and Leemans 1992). Based upon these criteria,

the kappa value indicates a good-to-excellent agreement.

The accuracy assessment parameters for different classifi-

cations are presented in Table 7.

Results and discussion

Downscaling

The predictors and their corresponding correlation coeffi-

cients, partial correlation, and P value are provided in

Table 8.

The model calibration process is based on the multiple

regressions between the predictand (observed rainfall) and

NCEP predictors (Table 8). Since the relationship between

the predictand and predictor is governed by the occurrence

of wet-day, a threshold value of 0.3 mm of rainfall has

been considered during model calibration. The calibration

(1961–1991) and validation (1992–2001) results of the

model are given in Table 9. The observed results show that

the SDSM model has good agreement between the

observed and simulated daily mean rainfall, standard

deviation, and variance. The correlation coefficient is 0.59

and 0.48 during calibration and validation, respectively.

The root mean square error (RMSE) value for calibration is

17.25 and validation is 19.85, the normalized mean square

error (NMSE) value for calibration is 10.47 and for vali-

dation is 12.95, the Nash-Sutcliffe coefficient (NASH)

value for calibration is 0.85 and validation is 0.82, and the

Correlation coefficient (CC) value for calibration is 0.82

and for validation is 0.80. Similar types of model perfor-

mance methods have also been used in the studies of soil

erosion by Mondal et al. (2016b, c).

The annual average rainfall corresponding to future

erosion is presented in Table 10. The result depicts an

increase in annual rainfall successively. In the 2020s, the

simulated rainfall is about 270 mm higher than the present

scenario. Likewise, 2050 and 2080 rainfalls are 1595.21

and 1977.89 mm, respectively.

Soil erosion

The results obtained after analyzing different data are

presented in Table 10 that shows future erosion of the

catchment in the 2020s, 2050s, and 2080s due to changing

rainfall. The rainfall erosivity factors (R) estimated for the

study area are 459, 558, 646, and 784 metric tonnes

Table 7 Accuracy assessment

Class name Reference totals Classified totals Number of correct points Producers accuracy (%) Users accuracy (%)

Water Body 1 1 1 100.00 100.00

Snow Cover 14 14 12 85.71 85.71

Dense Forest 49 50 44 89.80 88.00

Open Forest 36 35 30 83.33 85.71

Scrub 10 10 8 80.00 80.00

Barren Outcrop 11 11 9 81.82 81.82

Total 120 120 103 NA NA

Overall kappa statistics (K
^
) = 0.80

NA not applicable

Table 8 Selected NCEP predictors with correlation coefficient, par-

tial correlation, and p value

Sl

No.

Selected

predictors

Correlation

coefficients

Partial

correlation

P value

1 ncepp_zas 0.354 0.128 0.0011

2 ncepp5_zas 0.330 0.085 0.0001

3 ncepp8_zas 0.335 0.059 0.0026

4 ncep_mslp_as -0.218 -0.048 0.0023

5 ncepp850as -0.242 0.056 0.0012

6 ncep_shum_as 0.184 -0.043 0.0105

7 ncep_rhum_as 0.182 0.041 0.0265

Table 9 Comparison between daily rainfall (Observed) and daily

rainfall (Computed) during model calibration and validation

Type Period Mean Standard

deviation

Variance Correlation

Model

Calibration

Precp_61-

91_Observed

3.12 10.71 129.83 0.59

Precp_61-

91_Computed

3.55 6.23 55.47

Model

Validation

Precp_92-

01_Observed

3.34 15.47 206.01 0.48

Precp_92-

01_Computed

3.46 5.67 38.81
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Table 10 Area under different classes of soil erosion

Sl no. Time Mean rainfall (mm) Sediment load (t/year) Change (t/year) Change (%)

1 Current (1961–2001) 1077.41 586,337 0 0

2 2020s (2011–2040) 1349.63 711,328 124,991 21.32

3 2050s (2041–2070) 1595.21 824,050 112,722 15.85

4 2080s (2071–2099) 1977.89 999,746 175,696 21.32

Fig. 6 Soil erosion map
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ha-1 cm h-1 100-1 for 1961–2001 (current), 2020s,

2050s, and 2080s, respectively. Increased rainfall has

caused changes or increase in the soil erosion in the future.

There is a prominent increase in the future than the current

or observed period, but the percentage of change in the

2020s and 2080s are higher than the 2050s. However,

sediment load of 2050s is higher than 2020s, which indi-

cates that the sediment load in the future is gradually

increasing due to rainfall change.

The magnitude and spatial distribution of predicted soil

loss in the Mandakini basin are shown in Fig. 6. Areas

covered by different erosion classes are\5, 5–20, 21–50,

50–100, and[100 t ha-1 year-1. The last three classes with

higher erosion rate need an immediate attention and its

conservation and management are suggested. Major part of

the basin area is experiencing a soil loss of 5–20 t ha-1 yr-1

in the current year, which shows a gradual increase in the

future. Mostly, the northern part of the basin is showing

highest erosion of[100 t ha-1 yr-1, and the extreme north

shows lowest erosion of\5 t ha-1 yr-1. As observed from

the current map, erosion of\5 t ha-1 yr-1 is observed in a

few areas in the south and southeast, which is observed to

have converted into areas with higher erosion rate, as pro-

jected in the future maps. Hence, in the 2080s projection,

reduction in the areas of low-rate soil erosion and increased

areas with higher soil erosion is observed. Since a further

increase in soil erosion in the catchment is expected, veg-

etative and structural control measures are urgently needed

to minimize the menace of soil erosion.

Soil erosion is occurring in many parts of India and is

considered as grave due to loss of soil productivity. Cli-

mate change is causing changes in the behaviour of rain-

fall, which is also a major factor influencing soil loss.

Increased future rainfall is predicted by many researchers

in different parts of India. Increased rainfall is observed in

the works of Kannan and Ghosh (2011) and Rupa Kumar

et al. (2006). Increased rainfall is also observed in the

works of Meenu et al. (2013) and Mondal et al. (2014) in

different parts of India. An increase in the rate of soil

erosion due to changes in rainfall in the future is observed

in the works of Mondal et al. (2014, 2016a), showing

differences in erosion due to change in slope of the area in

the central part of India. Increase in soil erosion and

rainfall erosivity due to climate change is also observed in

the other parts of the world in the studies of Simonneaux

et al. (2015) in Morocco and Maeda et al. (2010) in Kenya.

Conclusions

A quantitative assessment of the annual soil erosion loss

with respect to the climate change was done in the Man-

dakini river basin— a hilly catchment of Uttarakhand,

India. Climate change scenario in the future has been used

with the HadCM3 GCM data (A2 scenario) by the SDSM

software, which is a regression-based model. Model output

is showing increasing rainfall in the future. The well-

known USLE soil loss estimation model is used to identify

the priority erosion prone region in the catchment. The

different USLE parameters are estimated using remote

sensing and GIS. Future soil erosion has been calculated

using the future rainfall data. Only rainfall has been con-

sidered in the study, which shows there will be increase in

soil erosion with increasing rainfall. However, other

parameters (soil type, landuse, DEM) are taken as con-

stants in the future. Therefore, the estimation of spatial soil

erosion loss can be made utilizing remote sensing and GIS

techniques. Although the output from the USLE model

during the study have been cross-checked with reference to

other governmental reports for the region in 2011, how-

ever, the study requires further validation of the model

output with the observed data from available gauging

networks in the basin outlet. The soil erosion study reveals

that there is an urgent need for soil conservation measures

in the catchment, where the area is found under critical

erosion condition with high and very high soil erosion. The

study shows the climate change will be very much

responsible for soil erosion in the future.
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