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Abstract The intrinsic vulnerability of a karstic aquifer

system in central Greece was jointly assessed with the use

of a statistical approach and PI method, as a function of

topography, protective cover effectiveness and the degree

to which this cover is bypassed due to flow conditions. The

input data for the index-overlay PI method were derived

from field works and 71 boreholes of the area; the infor-

mation was obtained, subsequently its critical factors were

compiled which included lithology, fissuring and karstifi-

cation of bedrock, soil characteristics, hydrology, hydro-

geology, topography and vegetation. The aforementioned

parameters were processed jointly with the aid of a GIS and

yielded the final estimation of intrinsic aquifer vulnera-

bility to contamination. Results were compared with an

equivalent spatially distributed probability map obtained

through a stochastic approach. The calibration and test

phase of the latter relied on morphometric conditions

derived by terrain analyses of a digital elevation model as

well as on geology and land use from thematic maps. This

procedure allowed taking into account the topographic

influences with respect to a deep system such as the local

karstic aquifer of eastern Kopaida basin. Finally, results

were validated with ground truth nitrate values obtained

from 41 groundwater samples, highlighted the spatial

delineation of susceptible areas to contamination in both

cases and provided a robust tool for regional planning

actions and water resources management schemes.

Keywords Aquifer vulnerability � Groundwater � PI
method � Kopaida plain

Introduction

Groundwater resources are often highly vulnerable to

contamination from human activity, emerging the need for

the appropriate protection measures. This point is high-

lighted in the EU Water Framework Directive (European

Water Directive 2000). Karstic aquifers are well known for

their particularly high vulnerability to contamination aris-

ing from their special characteristics, like thin soil covers,

point recharge in dolines, shafts and shallow holes, as well

as preferential flow paths in the epikarst and vadose zone.

These characteristics result in contaminants easily reaching

groundwater, where they are transported rapidly in karstic

conduits over large distances (Zwahlen 2003). With respect

to agricultural areas with intense activities that involve use

of fertilizers and pesticides, groundwater is often threat-

ened and should be appropriately managed (Giambelluca

et al. 1996; Soutter and Musy 1998; Shaffer et al. 2001;

Lake et al. 2003; Chae et al. 2004; Almasri 2008). Thus,

defining integrated protection schemes for karstic ground-

water systems is of vital importance for local communities

and stakeholders to define and apply water management

master plans, especially in environmentally sensitive

regions.

The term ‘vulnerability of groundwater to contamina-

tion’ was first introduced by Margat (1968) and was based

on the assumption that the physical environment provides
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to a degree natural protection to groundwater with regard to

contaminants entering the subsurface environment. It is a

relative, non-measurable and dimensionless property and

can be distinguished into intrinsic vulnerability which

accounts for the physical systems’ characteristics (e.g.,

geology, soil, etc.) and specific which additionally takes

into account the properties of a contaminant (Vrba and

Zaporozec 1994).

Until now, several methods have been proposed for

mapping the vulnerability of karstic aquifers; the most well

know and frequently used include: EPIK (Dörfliger and

Zwahlen 1998), REKS (Malik and Svasta 1999), RISKE

(Pételet-Giraud et al. 2000) and RISKE 2 (Plagnes et al.

2005), PI (Goldscheider 2005), the Slovene approach

(Ravbar and Goldscheider 2007), KARSTIC (Davis et al.

2002), COP (Vias et al. 2002), COP?K method (Andreo

et al. 2009) and PaPRIKa (Kavouri et al. 2011). As a result,

several researches worldwide have focused on assessing

the vulnerability of diverse aquifer systems and can be

found elsewhere (e.g., Prasad et al. 2011; Jayasekera et al.

2011; Kaliraj et al. 2014; Akpan et al. 2015; Kumar et al.

2015). However, results may differ significantly depending

on the method applied and the study area. Therefore, the

selection of the appropriate method chiefly depends on the

specific site characteristics and availability of the required

data. Conversely, very limited efforts have been generally

made to support aquifer vulnerability studies using spatial

predictive models, with the majority of these contributions

focussed on factor weighting (Burkart et al. 1999; Nolan

2002; Worrall et al. 2002; Masetti et al. 2007; Mair and El-

Kadi 2013; Nohegar and Riahi 2014; Pacheco et al. 2015).

In this research, the reference model has been generated by

adopting the protective cover–infiltration conditions

(hereafter PI) method as its comprehensive application

takes into account a broad spectrum of intrinsic causative

factors (Goldscheider 2005). This result has been subse-

quently compared to a statistically derived model whose

predictor space has been built to primarily represent

superficial properties. The two different methodological

approaches of index-overlay and statistical methods are

combined and validate the final assessment of aquifer

vulnerability.

The study area (Eastern Kopaida plain) is located in

central Greece (Fig. 1). Kopaida plain is a highly cultivated

region over the last decades; the eastern part which consists

the study area of this research is characterized by intense

farming activities and land use is dominated by agricultural

land, apart from the hilly outcrops of the surrounding

hydrological catchment. Despite the fact that Kopaida plain

is a highly environmental vulnerable area, there are several

scattered contamination sources, related to both point (e.g.,

manure from farms) or diffuse sources (fertilized plots).

Eastern Kopaida is also characterized by a unique

karstic environment which is controlled by extended

karstification phenomena (Tziritis 2009). These in general

include a great number of sinkholes that enhance the rate of

infiltration and subsequent water recharge and impose a

significant potential threat to groundwater quality. The

geological setting (Pagounis et al. 1994; Allen 1986;

Tziritis 2008) (Fig. 1) at the bottom of the strata consists of

a heterogeneous formation of Triassic dolostones and

dolomitic limestones (G2); accordingly at the typical col-

umn follows a stratigraphical sequence of a tectonically

driven metamorphic complex (mélange) of schists (F); this

layer has no surface occurrence at the study area but occurs

within the bedrock; locally due to intense tectonics F layer

is absent and there is a direct stratigraphical contact

between the lower (G2) and the upper formations (G1).

Stratigraphy continues with a series of upper Jurassic

bituminous limestones (G1). At their top is developed a

paleo-karst surface filled by the chemically weathered

material of the surrounding parent ultra-basic formations

(C), composed by ophiolites and located only at the

northern and northwestern part of the wider area. The upper

bedrock sequence is completed with a highly karstified

Cretaceous limestone (E) and the typical flysch (D). Post-

Alpine formations at the spatial extension of the study area

are composed of Quaternary fluvial, lacustrine and terres-

trial deposits (A). However, Neogene formations (B) can

be found in the wider region but do not exist in the typical

column of research’s study area.

The hydrogeological setting is controlled by the karstic

network which drives the general groundwater flow from

west to east; piezometric level varies locally from few

meters to *160 m depending on substrate (Tziritis 2010).

The main aquifer bodies in terms of water storage and yield

are developed within the variable calcareous formations

(dolostones and limestones) and are often karstified.

Although typically can be distinguished three individual

aquifers (e.g., cretaceous limestones, Jurassic limestones,

and Triassic dolostones–limestones) their hydraulic con-

nection creates a unified heterogeneous system, with vari-

able permeabilities and degrees of karstification.

Methods and materials

Index-overlay method (PI)

The estimation of intrinsic aquifer vulnerability was con-

ducted with the index-overlay PI method (Goldscheider

et al. 2000). PI was selected due to its critical factors which

were considered as more suitable for the specific conditions

of the area (e.g., significant importance of protective cover,
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occurrence of ‘‘sinking stream’’, etc.). Input data were

derived from various sources, including groundtruth values

from 71 boreholes (Fig. 1) of the karstic aquifer as well as

from field work and literature (Tziritis 2008). The param-

eters used included the following: vertical stratigraphy of

the boreholes, piezometric level, aquifer’s depth from the

surface, fissuring and karstification degree of the substrate,

topographic slope, lithology of the bedrock, type and origin

of the quaternary deposits, occurrence of katavothres and

sink holes, occurrence and route of blind river (a river

sinking in a karstic formation) which in this case is River

Melas, and finally spatial delineation of the hydrological

sub-basins.

The PI method is a GIS-based approach with special

consideration of karstic aquifers. It is based on an origin–

pathway–target model (Fig. 2), where the origin is con-

sidered at the ground surface and the target is the upper-

most aquifer. The pathway includes all the layers interfered

between the extreme points of origin and target. The

acronym stands for two factors, protective cover (P) and

infiltration conditions (I). The simplified flowchart of the PI

method is shown in Fig. 3.

Estimation of P-factor (protective cover)

The P-factor describes the protective function of the layers

(soil, subsoil, non karstic rock, and karstic rock) between

the ground surface and the water table, and is calculated

according to a slightly modified version of the German

(GLA) method (Holting et al. 1995) which is divided into

five classes from 1 (very low protection) to 5 (very high

protection). It expresses the impact of the protective cover

on the basis of soils’ effective field capacity (eFC), sub-

soil’s grain size distribution, lithology, fissuring and kars-

tification of the non-karstified and the karstified rock,

thickness of all strata and mean annual recharge.

The above parameters were related to the ‘‘total pro-

tective function’’ (Goldscheider et al. 2000) to define the

degree of total protection (PTS):

PTS ¼ T þ
Xm

i¼1

Si �Mi þ
Xn

j¼1

Bj �Mj

 !" #
� Rþ A ð1Þ

where T is the T-factor that refers to topsoil, S is the

S-factor that refers to subsoil, B is the B-factor that refers

to bedrock, M is the thickness (m) in the unsaturated zone,

Fig. 1 Geological map and

typical stratigraphic column of

the study area (adopted and

modified by Tziritis 2008)
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R is the R-factor that refers to recharge in terms of pre-

cipitation height, and A is the A-factor that refers to arte-

sian conditions, if present.

The joint consideration of the above sub-factors resulted

in the calculation of the final P-factor which is spatially

distributed in Fig. 4. The range of PTS values corresponds

to a P-factor value (for more details see Goldscheider et al.

2000 and Goldscheider 2005) which ranges from P = 1 for

an extremely low degree of protection to P = 5 for very

thick and protective overlying layers.

Estimation of the I-factor (infiltration)

The I-factor describes the infiltration conditions, and

more specifically the bypass degree of protection cover,

due to lateral and subsurface water flow in the catchment

Fig. 2 Illustration of PI method

concept (after Zwahlen 2003)

Fig. 3 Conceptual approach of

the PI method (after Zwahlen

2003)
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of karstic holes and sinking (blind) streams. If the pro-

tective cover is completely bypassed by a shallow hole

through which surface water may pass directly into the

karstic aquifer, then I = 0, while I = 1 if the infiltration

occurs diffusely (e.g., on a flat, highly permeable and

free draining surface). The intermediate values occur in

catchment areas of variable slopes, depending on the

proportion of lateral flow components. The final pro-

tection factor ‘‘p’’ is extracted by the combination of

P and I (p = Q 9 I) and subdivided into five classes,

where p B 1 indicates very low degree of protection

leading to extreme vulnerability, while p = 5 indicates a

very high protection with subsequent very low vulnera-

bility (Vrba and Zaporozec 1994; Goldscheider et al.

2000). The spatial distribution of ‘‘p’’ factor with the use

of a GIS system defines the final outcome which is the

assessment of the karstic aquifer’s intrinsic

vulnerability.

Fig. 4 Spatial distribution of

the P-factor (P-map),

corresponding to the

effectiveness of the protective

cover in the study area
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To determine the I-factor, three consecutive steps were

carried out: firstly, the dominant flow process was esti-

mated as a function of (1) topsoil’s (or the uppermost layer)

saturated hydraulic conductivity (m/s), and (2) the depth to

low-permeability layers inside or below the topsoil (or the

uppermost layer). The combination of the above produced

a map (GIS coverage) which determined the final result of

dominant flow process.

Subsequently followed the estimation of the I0-factor
which depends on (1) results from the previous step

(dominant flow process), (2) topographic slope, and (3)

vegetation. The values (raster files) of each cell grid of the

aforementioned parameters were added and finally yielded

the I0 factor which ranged from 0.0 to 1.0. The result (GIS

coverage) is called I0-map and shows the occurrence and

intensity of lateral surface and subsurface flow.

Finally, the last step included the compilation of blind’s

river (sinking stream) catchment map. The conceptual

approach of using this map is based on the assumption that

lateral surface and subsurface flow may pose a risk to

groundwater only if the contaminated water enters the

karstic aquifer in a concentrated way, e.g., via a sinking

stream, called as blind River; in the study area is Melas

river (Fig. 5) sinks in a karstic hole at the northeastern

region (great katavothre of Aghios Ioannis). According to

the criteria imposed by the original PI method (Gold-

scheider et al. 2000), River Melas catchment was delin-

eated in four buffer zones depending on relevant distances

from the riverbed and the superficial occurrence of sinking

holes and katavothraes. The obtained results included the

construction of a relevant map (River Melas catchment

map according to PI method criteria) with the aid of a GIS.

The final calculation of the I-factor embraced the com-

bination of the previously assessed data and in turn com-

piled the I-map (Fig. 5) which shows the degree to which

the protective cover is bypassed. Each grid cell is attributed

a value derived from the intersection between I0-map

(showing the occurrence and intensity of lateral flow) and

River Melas catchment map (showing the sinking streams

and their catchments).

Data processing and estimation of intrinsic aquifer

vulnerability

The parameters/sub-factors which were considered to be

spatially continuous (e.g., those derived by maps like soil,

land use, surface geology, etc.) were input to GIS without

any pre-processing as individual raster files, having a

unique value for each grid cell. On the contrary, water

table and thickness of subsoil were based on the spatial

interpolation (IDW algorithm) of the data obtained from

the 71 boreholes. In addition, the thickness of subsoil as

well as the spatial distribution of subsurface stratigraphy

(including fissuring and karstification degree) was assessed

with the aid of the derived geological map and further

optimized with groundtruth data from the 71 boreholes.

Hence, each cell was attributed a unique value which was

derived by the combinational (joint) overlay of the all the

considered parameters/sub-factors.

The final estimation of intrinsic aquifer vulnerability

resulted from the combination of the individual P and I

factors (Q 9 I) for the entire coverage of study area,

divided into 25 9 25 m grid cells. The final outcome is the

map of Fig. 6 which shows the spatial distribution of

karstic aquifer’s intrinsic vulnerability.

Statistical method

Despite the limited adoption of statistical methods for

aquifer vulnerability studies, other branches of the earth

sciences have extensively used these approaches in a wide

range of applications (e.g., Conoscenti et al. 2013; Lom-

bardo et al. 2014; Sahragard and Chahouki 2015). The

procedure involves the identification of a dependent vari-

able that a given algorithm, among the several available in

literature, multivariately explains through a set of covari-

ates. A calibration phase takes place initially when the

selected algorithm learns to discriminate (through classifi-

cation or regression) presence (in case of presence-only

methods (Renner et al. 2015) or presence and absence [for

presence–absence methods (Corani and Mignatti 2015)] of

the dependent. A functional relation between predicted and

predictors is subsequently derived and used to calculate

probability of occurrences over broad areas such as

catchments or regions. This prediction is then used to

validate the model by testing its correctness against an

unknown dataset. In this contribution, we adopted a pres-

ence-only approach known as maximum entropy (Phillips

et al. 2006).

The dependent dataset has been generated by selecting

among the 41 groundwater samples those with nitrate

concentration above the screening value of 37 mg/L

imposed by the Water Framework Directive (EU 2000).

To increase the sample number a 73 m radius has been

spanned from each borehole location defining as vulner-

able all the centroids falling within these buffers in a

synthetic 25-m grid coinciding with the study area. This

operation has increased the vulnerable samples number to

258 points (virtual samples) spread across the eastern

Kopaida plain but clustered in the proximity of the

available boreholes. The predictor space coincides with

the same 25-m grid being originally set by the available

DEM. Primary and secondary topographic attributes have

been calculated from the DEM obtaining: (1) elevation;

(2) slope (Horn 1981); (3) profile curvature; (4) plan

curvature; (5) catchment area; (6) topographic wetness
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index (Beven and Kirkby 1979); (7) landform classifica-

tion (Tagil and Jenness 2008). These predictors have been

selected to represent superficial and shallow topographic

influences on the aquifer vulnerability. Geology and land

use have been also added as predictors being analogously

gridded. The predictor types thus include both continuous

and categorical classes, the latter being coded as shown in

Table 1. Furthermore, the calibration phase has exploited

the random 75 % of the 258 vulnerable points while the

validation has been performed onto the remaining 25 %.

Ultimately, the process has been repeated ten times to

allow evaluating the stability of the prediction across the

replicates. The performance-evaluation criterion has

focussed on three main steps. The first one assessed the

predictive skill of the models through area under the curve

(hereafter, AUC; Phillips et al. 2006). This parameter

represents the integer of a receiver operating character-

istic curve (hereafter ROC; Parolo et al. 2008) which links

Fig. 5 Spatial distribution of

the I-factor (I-map),

corresponding to the bypass

degree of the protective cover in

the study area
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the proportion of positives cases that are correctly iden-

tified to the false-positive rate, for which Maxent appli-

cations are randomly extracted in the geographic space.

Araújo and Guisan (2006) suggested AUC thresholds

indicating average prediction between 0.7 and 0.8, good

between 0.8 and 0.9 and excellent between 0.9 and 1. The

second metric we adopted, investigated the percent con-

tribution of each predictor with respect to the full model.

This is commonly referred as predictor importance

(Lombardo et al. 2015) and its computation establishes

how much a given predictor affects the final probability

value at a given cell. Complementarily, the role of each

predictor has been evaluated through response curves

(Lombardo et al. 2015). These curves show the relation

between the final probability and the domain of each

predictor. By setting a probability threshold at 0.5 it is

possible to distinguish anti-correlations and positive

relations between the dependent and each predictor.

Fig. 6 Spatial distribution of

karstic aquifer intrinsic

vulnerability (‘‘p’’ map)
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Validation of results

The validation of an intrinsic vulnerability map is always a

challenging and complex task that needs caution to avoid

any erroneous interpretations and misleading results. The

most common validation process is to measure the con-

centration of a surface-released potential contaminant and

to compare the spatial distribution of its value with the

vulnerability results. However, this process is not always

straightforward and further caution is needed. For example,

a common mistake is to ignore the interferences between

the contaminant and the geological environment which

may alter its concentrations and have a significant impact

on its overall fate and transport. The latter clearly high-

lights the importance of specific vulnerability which is by

nature linked with those processes and is regarded as the

most integrated approach for vulnerability assessment;

however, even in cases of intrinsic vulnerability assess-

ment, those interactions should be indirectly taken into

account to validation process, to acquire representative

results with minimized errors.

Another common error in vulnerability validation is the

ignorance of lateral contaminant fluxes. By definition,

aquifer vulnerability accounts for the vertical susceptibility

of the system and is not considered for any lateral cross-

flows of contaminant plumes from adjacent hydrogeologi-

cal units. Hence, practically validation with measured

contaminant values at the saturated zone should be only

performed at hydrologically ‘‘closed’’ systems, without any

hydraulic connections with other units (surface or under-

ground); if not, then potential migrations of contaminant

plume(s) have to be taken into account prior to validation.

In the case of eastern Kopaida plain, validation was per-

formed using the average nitrate values from 41 boreholes

(Tziritis 2008) of wet (November–April) and dry (May–

September) periods for the hydrological year 2004–2005.

Essential precautions regarding the potential interactions and

the migrating plumes were taken into account during vali-

dation process. Such interactions included abnormal devia-

tions from the typical range of concentrations, for example,

due to the development of strong anoxic zones within the

heterogeneous karstic aquifer that dramatically decreased

nitrates as a result of the reduction process. In addition,

migrating nitrate plumes from adjacent basins often impart

elevated values, which are not attributed to land use activities

and physical properties of the specific study area.

The abnormal nitrate values due to redox conditions

were excluded from the validation process as non-repre-

sentative; their screening was based on previous hydro-

geochemical assessments (Tziritis 2009, 2010) and it was

further confirmed by their statistical population which were

compiled by outliers, falling below the range of

m - 2s (where ‘‘m’’ is the mean statistical value and ‘‘s’’ is

the standard deviation). Accordingly, the borehole samples

which were proved to be affected by lateral crossflows and

contaminant migration were excluded from the validation

process too. The screening was performed on hydrogeo-

logical, hydrogeochemical and isotopic criteria from pre-

viously conducted researches (Tziritis 2009, 2010).

Results

The application of PI method resulted in the estimation of

intrinsic aquifer vulnerability for the karstic system of

eastern Kopaida plain. Intermediate steps, as already

Table 1 Table linking the categorical codes to their real

correspondent

Land use

1 Discontinuous urban fabric

2 Industrial or commercial units

3 Road and rail networks and associated land

4 Mineral extraction sites

5 Non-irrigated arable land

6 Permanently irrigated land

7 Olive groves

8 Pastures

9 Complex cultivation patterns

10 Land principally occupied by agriculture,

with significant areas of natural vegetation

11 Natural grasslands

12 Sclerophyllous vegetation

13 Transitional woodland-shrub

14 Water courses

15 Water bodies

Geology

1 Alluvial deposits

2 Neogene formations

3 Upper jurassic limestones

4 Flysch

5 Upper cretaceous limestones

6 Triassic dolostones/limestones

7 Water bodies

Landform classification

1 V-shaped river valleys

2 Local valley in plains

3 Upland incised drainages

4 U-shaped valleys

5 Broad flat areas

6 Broad open slopes

7 Flat ridge tops mesa tops

8 Local ridge/hilltops within broad valleys

9 Local ridge in plains

10 Mountain tops
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described, included the estimation of P-factor (Fig. 4)

which accounts for the degree of the protection cover

effectiveness, and factor I (Fig. 5) which accounts for the

degree of which this protective cover is bypassed due to

flow conditions. Their joint assessment yields the intrinsic

vulnerability of the karstic system expressed by ‘‘p’’ map

(Fig. 6).

Based on the results of Figs. 4, 5 and 6, the regions with

very low and low vulnerability are located in districts A0,
D0 and E0, as well as in a part of Kastro sub-basin. The

above regions are characterized by thick series of Quater-

nary deposits and very low topographic slopes, which are

probably the key factors that control vulnerability. In

addition, significant contribution to the overall result of low

vulnerability at these areas should be given to the elevated

values of soil effective field capacity (eFC) which are

reflected at the high values of the topsoil sub-factor.

On the contrary, the higher values for vulnerability (high

and very high) mainly appear as hot spots within the study

area, except from the wider region around Akrefnio town

which is spatially dominated by the outcrops of the karstic

bedrock. Other key factors, mainly related to the afore-

mentioned hot spots, include the absence (total or partial)

of the protective cover, the increased degree of bypass

flow, the elevated water table, and the high degree of

karstification and fissuring of the bedrock (e.g., cretaceous

and upper Jurassic limestones are by far more karstified

and influenced by tectonic activity). The occurrence of

karstified forms in surface is also a profound element for

increased vulnerability values; for example, a local hot-

spot can be delineated at the end of Melas sinking stream

(eastern Kastro sub-basin—great katavothrae) which

directly enters the karstic network through a large sinkhole;

in addition local hot spots are developed as a result of the

great number of katavothraes at the fringes of hilly area

between districts A, D and E.

Statistically derived vulnerability

The vulnerability across the Eastern Kopaida plain by

means of statistical modeling has been assessed through the

model prediction skill, predictor role and importance and

spatial distribution of the probabilities. In terms of pre-

diction skill the model produced excellent AUC values

being on average 0.909. The corresponding ROCs are

shown in Fig. 7.

Figure 8 highlights a prevalent influence of the elevation

to the vulnerability, followed by the land use and plan

curvature. For the present analysis, the average response

curves of the nine adopted explanatory variables are shown

in Fig. 9. The elevation presents a clear vulnerable trend

between 90 and 110 m above sea level whilst the remaining

domain appears to play a negative role with respect to the

vulnerability. As regards the land use role within the mod-

eling procedure, the classes ‘‘road and rail networks and

associated land’’, ‘‘permanently irrigated land’’ and ‘‘com-

plex cultivation patterns’’ played a predominant role in

assigning the vulnerable status to each cell in the study area.

Negative plan curvature typically expresses surfaces side-

ward concave at a given cell thus affecting the convergence

of the overland flow. The corresponding response curve

shows a positive influence to the vulnerability with a con-

tribution to the final probability decreasing as the curvature

flattens, indicating linear water flows at zero. The positive or

sideward convex morphology is shown to increase again and

asymptote reached beneath 0.6.

Vulnerability map comparison

Comparing the maximum entropy (Fig. 10) to the PI-

derived vulnerability maps has been done on an interpre-

tative level as the former is expressed through a continuous

probability estimation, whilst the second depicts the vul-

nerability through ordinal classes. In addition, maximum

entropy has been performed only taking into account the

topographic effects whilst the PI comprises shallow and

deep parameters, being the most comprehensive method.

This choice is due to the fact that spatial predictive models

need for each of the considered predictors to cover the

whole geographic space. To obtain this areal coverage even

for deeper portions of the catchment, the only solution

relies in interpolating from well data. However, as the well

data itself is used as the dependent variable in the model,

this will produce strong autocorrelation issues compro-

mising the reliability of the output. As a consequence,

differences arose between the two vulnerabilities. The most

evident is expressed in terms of spatial variability. The

latter is much greater for the statistically derived models

with respect to the one showed for the PI. In light of these

differences, the authors decided to evaluate and interpret

the clear trends arising from the two maps.

The main vulnerable features have been captured by

both methods. However, the main dissimilarity resides on

the spatial extent of these features. In particular, the two

models seem to agree within the areas of the District A and

Kastro while over the sectors of Akfenio and Melas River

the two maps substantially differ. The PI method in fact,

highlights susceptible areas on a broader scale while the

maximum entropy method emphasizes smaller features.

Thus, the last two mentioned cases appear to be underes-

timated in terms of vulnerability through the statistic

approach. This can be interpreted as an inherited weakness

due to the difficulty of introducing predisposing factors

linked to deep hydrogeological features.
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Fig. 7 ROC curves calculated

for each of the ten replicates, the

training results are shown in red

whilst the test results are shown

in blue

Fig. 8 Predictor importance

plot showing the percentage of

the contribution to the final

probability for the selected

covariates
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Discussion and conclusions

The intrinsic aquifer vulnerability was assessed with the

use of geological data obtained from 71 borehole stations.

The assessment was based upon PI method which is

intended to estimate susceptibility of karstic aquifers. The

approach was based on two main factors that describe the

impact of the protective cover (P-factor) and the infiltration

conditions (I-factor). The final assessment embraced all the

critical parameters that influence aquifer vulnerability in

the study area, like thickness and nature of geological

formations, occurrence of karstification phenomena and

topsoil. As a result, a map of intrinsic aquifer vulnerability

was finally produced with the aid of spatial interpolation

through a GIS system. Results revealed that higher vul-

nerability values were concentrated mainly as hot spots

around surface karstified forms; additionally there were

strongly linked with high piezometric level, reduced pro-

tection of the uppermost layers (topsoil, subsoil, bedrock)

and high degree of karstification/fissuring of the vadose

zone formations. Validation was performed with the use of

groundtruth values of nitrates obtained from 41 ground-

water samples located within the study area. Results

revealed a good correlation between the real (measured)

nitrate values and the vulnerability classes estimated by PI

method. Complementarily, a presence dataset coinciding

with the available nitrate values above a threshold of 33

(mg/L) has been built. An area of influence has been

considered spanning 73 m from each of the aforemen-

tioned locations with high nitrates. The application of

maximum entropy method allowed for predicting these

vulnerable conditions through a set of topographic attri-

butes integrated with geology and land use maps. Ten

replicates have been produced, each time with a calibration

proportion of 75 % of the initial presence dataset and the

remaining 25 % used for validation. The results produced

high-performance metrics indicating the models as reliable,

despite the predictor set not including causative factors

describing the deep hydrogeological settings. As a conse-

quence the authors compared the two vulnerability maps

anchoring the interpretation to the PI method and using the

second method to infer topographic influences that could

be imported to the reference PI model. The two maps

agreed only at a broad scale while difference arose when

looking at the details. In fact, the vulnerability depicted

through the PI method is smoother and spatially homoge-

neous around the vulnerable features. Conversely, the sta-

tistically derived vulnerability rapidly varied across the

area of interest from a pixel to another. This can be

explained by taking into account how each model reflected

the initial data used within the respective procedure. The

map obtained by applying the PI methods reproduced

geographic features influenced by the borehole distribution

and as such affected by the borehole density across a given

Fig. 9 Response curves plot shows the average relation between probability and the domain of each covariate

2226 Appl Water Sci (2017) 7:2215–2229

123



area. The vulnerability from statistical model mirrored the

primary topographic properties of the Eastern Kopaida

plain. This can be an important consideration for future

studies as the borehole and analytical data density will be

always limited to economic budgets while even high-res-

olution DEM are nowadays available at limited prices at a

global scale.

The novelty of this contribution resided in the combi-

nation of two methods which historically have been kept

apart between different scientific branches. The validation

results generated from such different approaches proved

once again that equally robust solutions of any complex

physical process can be reached from numerous models. As

such, bringing together the performances of PI and statis-

tical methods may further improve the vulnerability

assessment and better support future strategic schemes of

groundwater resources management. A natural advance-

ment could take place in future researches by keeping the

well-established PI method as the reference model but

increasing or decreasing the weighting factors following a

spatial criterion derived by interpretation of statistical

models.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Akpan AE, Ebong ED, Emeka CN (2015) Exploratory assessment of

groundwater vulnerability to pollution in Abi, southeastern

Nigeria, using geophysical and geological techniques. Env Mon

Assess 187:156

Allen HD (1986) Late Quaternary of the Kopais Basin, Greece:

sedimentary and environmental history. PhD Thesis, University

of Cambridge, p 282

Almasri MN (2008) Assessment of intrinsic vulnerability to contam-

ination for Gaza coastal aquifer, Palestine. J Environ Manag

88(4):577–593

Andreo B, Ravbar N, Vias JM (2009) Source vulnerability mapping in

carbonate (karst) aquifers by extension of the COP method:

application to pilot sites. Hydrogeol J 17:749–758
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