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Abstract At present, prediction of streamflow simulation

in data-sparse basins of the South East Asia is a challenging

task due to the absence of reliable ground-based rainfall

information, while satellite-based rainfall estimates are

immensely useful to improve our understanding of spatio-

temporal variation of rainfall, particularly for data-sparse

basins. In this study the TRMM 3B42 V7 and its bias-cor-

rected data were, respectively, used to drive a physically

based distributed hydrological model BTOPMC to perform

daily streamflow simulations in Nam Khan River and Nam

Like River basins during the years from 2000 to 2004 so as to

investigate the potential use of the TRMM in complement-

ing rain gauge data in hydrological modelling of data-sparse

basins. The results show that although larger difference

exists in the high streamflow process and the low streamflow

process, the daily simulations fed with TRMM precipitation

data could basically reflect the daily streamflow processes at

the four stations and determine the time to peak. Further-

more, the calibrated parameters in the Nam Khan River

basin are more suitable than that in the Nam Like River

basin. By comparing the two precipitation data, it indicates

that the integration of TRMM precipitation data and rain

gauge data have a promising prospect on the hydrological

process simulation in data-sparse basin.

Keywords TRMM satellite precipitation � Distributed
hydrological model � Laotian data-sparse basins �
Streamflow simulation

Introduction

Precipitation is one of the most important factors in the

process of hydrological cycle. As basic input data for

hydrological model simulations, the quality of Precipitation

data exerts a tremendous influence upon the reliability of

simulation results (Sorooshian et al. 2005; Meng et al.

2014). Moreover, with showing a non-normal distribution

feature (Liu et al. 2011), precipitation remains one of many

hydrographical factors which are difficult to be observed

and estimated precisely (Yong et al. 2010). Currently,

Precipitation estimates are mainly derived from two sour-

ces, i.e., rain gauge station observations and ground radar

measurements. Rain gauge, though as a direct precipitation

measuring instrument which is technologically mature and

widely used, cannot reflect the spatial variation of rainfall

effectively due to the distribution of rainfall stations and

the very limited effective radius of point measurements

(Collischonn et al. 2008; Jia et al. 2011). In comparison

with rain gauge, ground radar system can provide the

instantaneous spatial distribution of precipitation over the

basin indirectly and thus help to offset the bias of rain

gauge observations partly. But, because of its problem of

limited coverage area, high costs of establishing and

maintaining infrastructure, etc., there is no perfect radar

network of many regions (Gu et al. 2010). It still cannot

meet the requirements of study carried out on large-scale

basins. These drawbacks of conventionally obtained rain-

fall data impose a remarkable limitation on the application

of distributed hydrological model. Recently, satellite
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precipitation products such as TRMM (Huffman et al.

2007), CMORPH (Joyce et al. 2004), PERSIANN (Sor-

ooshian et al. 2000) have emerged as a preferable alter-

native or supplement to conventional precipitation

observations (Sawunyama and Hughes 2008; Yong et al.

2012) due to their high spatial–temporal resolution and

availability over vast ungauged regions and hence

improved the study and application of distributed hydro-

logical model in many fields immensely.

Hydrological study in data-sparse and ungauged basin

has been a hot and difficult issue. Restricted by disadvan-

tageous strategic status, climate and traffic problems in

regional economic development and water security system,

numerous data-sparse and ungauged basins are found in

many remote parts of the world and particularly in devel-

oping countries. For the purpose of achieving major

advances in the capacity to make reliable prediction in

ungauged basin, The International Association of Hydro-

logical Sciences (IAHS) recently launched an initiative,

called the Decade on Predictions in Ungauged Basins

(PUB). Sivapalan et al. (2003) presented three methods for

predictions of data-sparse basin responses: (1) interpolation

or extrapolation of response information from gauged to

ungauged basins, (2) measurements by remote sensing (e.g.

radar, satellites.), (3) application of process-based hydro-

logical models to reduce the dependency on specific pre-

cipitation inputs. Thus, using the distributed hydrological

model, which makes full use of satellite based hydro-me-

teorological data, becomes a feasible approach to solve PUB

problem. The block-wise use of the TOPMODEL (Beven

et al. 1995) with the Muskingum–Cunge routing method

(Cunge 1969) model (BTOPMC) is a physically based dis-

tributed hydrological model based on subdividing the entire

basin into sub-basins that consist of a number of grid cells

(Takeuchi et al. 1999; Ao 2001; Ao et al. 2006). It has

parsimonious model parameters, which can reduce param-

eter interaction and uncertainty and low requirement on

inputs. BTOPMC was also successfully used to model

Mekong River basins in Laos and Thailand of the South East

Asia in previous studies (Hapuarachchi et al. 2004, 2007).

Obviously, for data-sparse and ungauged basins, using

satellite rainfall products to drive distributed hydrological

model is an ideal choice to tackle PUB problem. In this

regard, the rainfall estimates from TRMM, particularly the

TRMM Multi-satellite Precipitation Analysis (TMPA) type,

have been used by a number of researchers (Su et al. 2008;

Habib et al. 2009; Scheel et al. 2011). Current resolution of

TRMM satellite rainfall product has reached 0.25 9 0.25,

which is obviously too coarse for small-scale catchment.

Hong et al. (2007) proposed a simple but practicable NRCS-

CN streamflow simulationmethod driven by TMPAproducts

to simulate the quasi-global runoff; their research results

indicate that simulation precision improves dramatically

when the basin area is larger than 10,000 km2. Although their

reports demonstrate the potential of TMPA products in run-

off forecasting at large and even global scale, evaluation of

satellite-based rainfall estimation error and its nonlinear

influence on rainfall-runoff modelling uncertainty remains a

major unaddressed hydrological concern. Mao (2008) stud-

ied the feasibility of using TRMM precipitation data to

predict streamflow at upper catchment of Han Jiang River

based on large-scale hydrological model LSHM; the research

showed that simulation accuracy is somewhat relevant to the

basin area, and furthermore, daily simulation still could be

applied to water resource planning and management despite

its relatively low simulation precision. Bitew and Ge-

bremichael (2011a, b) used four kinds of satellite rainfall

products including TMPA, as inputs to SWAT for daily

streamflow simulation in two meso-scale watersheds located

in Africa, and discussed the effects of watershed area and

different satellite rainfall products on streamflow simulation

accuracy. It is of significant importance to do a compara-

tive analysis job among TRMM rainfall products and other

rainfall data such as rain gauge data, satellite products (Jiang

et al. 2012; Kim et al. 2013) and reanalysis data (Artan et al.

2007; Li et al. 2013) to figure out their predictive capability in

distributed hydrological model. Arias-Hidalgo et al. (2013)

compared gauged precipitation with TRMM rainfall prod-

ucts at several time scales and came to the conclusion that

TRMMrainfall products atmonthly scale perform better than

that at daily scale. Xue et al. (2013) explored the improve-

ments of the latest 3B43V7 algorithm relative to 3B43V6

using the Coupled Routing and Excess Storage (CREST)

hydrologic model; the results apparently show that the new

algorithm 3B43V7 has much improved accuracy upon

3B43V6. There are two main different calibration approa-

ches for simulating streamflow from satellite rainfall inputs:

(1) calibrating the model with rain gauge measurements and

validating the model with satellite rainfall; (2) calibrating the

model with the satellite rainfall products (Artan et al. 2007;

Stisen and Sandholt 2010). The studies of Jiang et al. (2012)

and Kim et al. (2013) reveal that the second approach can

better calibrate the parameters than the first approach. But,

compared to calibrating hydrologic model with rain gauge

data, calibrating the model with corresponding satellite

rainfall data increases the performance of satellite stream-

flow simulationwhile decreasing the performance of satellite

evapotranspiration simulation (Bitew and Gebremichael

2011a, b). Though being capable of reflecting the spatial–

temporal heterogeneity of precipitation process over basin,

TRMM rainfall products have relatively low precipitation

accuracy. Since rain gauge measurements turn out to be fine

on the contrary, it is supposed that complementing the

TRMM satellite data with rain gauge measurements as an

input to drive distributed hydrological model could enhance

the runoff simulation precision.
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In this paper, Nam Khan River and Nam Like River

basins, two data-sparse basins located in Laos which are in

tropic zone, were chosen as the study area. The purpose of

this study is to assess the hydrological potential of TRMM

rainfall data and its derivatives driven as input into a

hydrological model for streamflow simulation in Laotian

data sparse basins. The raw and bias-corrected TRMM

3B42 V7 rainfall products were adopted to simulate rain-

fall-runoff process based on physical-based distributed

hydrological model BTOPMC. The paper is organized as

follows: Section 2 describes the study area, data and

methodology. The results and discussions are presented in

Sect. 3 and the conclusions are given in Sect. 4.

Study region, data and methodology

Study region

Nam Khan River basin (Fig. 1) is an important tributary of

Mekong River. It flows through northern mountainous part

of Laos with both sloping banks covered by forests and

crops and feeds into Mekong River in Luang Prabang. The

basin is located within 101�560E–103�420E and 19�220N–
21�10N, with an area of about 7620 km2. There are two

gauging stations, namely Ban Pak Bak station and Ban

Mout station, with a drainage area of 5800 and 6100 km2,

respectively.

Nam Like River (Fig. 1), as a branch of Nam Ngum

River which is one of tributaries on the left bank of

Mekong River, originates from Phou Khoun mountain

located in Luang Prabang Province, flows through Vien-

tiane Province, and finally joins the Nam Ngum River

downstream the reservoir Nam Ngum. Nam Like River

basin is located within 101�540E–102�310E and 18�290N–
19�270N; two gauging stations are available in this basin

with a drainage area of 374 km2 (Kasi station) and

5115 km2 (Hin Heup station), respectively. Annual mean

rainfall of Nam Like River basin is around 1745 mm, about

90 % of which falls in rainy season (between May and

October), with the rest 10 % falling during the dry period

(the rest of the year).

Fig. 1 Location of study area, river network and the distribution of stations
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TRMM satellite products

The Tropical Rainfall Measuring Mission, a joint US–Ja-

pan satellite mission, was launched in 1997 to monitor

tropical and subtropical precipitation and to estimate its

associated latent heating covering the latitude band 50�N–
50�S. The TRMM satellite carries five rain-measuring

instruments: Microwave Imager (TMI), the Visible Infra-

red Scanner (VIRS), The Lightning Imaging Sensor (LIS),

the Clouds and Earth’s Radiant Energy System (CERES)

and the Precipitation Radar (PR) which is the first space-

borne precipitation radar. Among them, the CERES was

out of service due to mechanical failure at present. So far,

the TRMM rainfall products have updated to version 7.

Merged with other data from multiple satellites, products

version 7 presents many new features such as larger cov-

erage, higher spatial–temporal resolution, longer time ser-

ies and being able to update real timely, which leads to a

new wave of research about the application of TRMM

rainfall products version 7 in meteorology, climatology,

hydrology and other fields. TRMM rainfall products

include several types, i.e., 3B40, 3B41, 3B42, etc., among

which type 3B42 data have the highest resolution in space

(0.25 9 0.25) and time (3 h). In this regard, we used

TRMM 3B42 V7 in this study for streamflow stimulation

of the two study basins.

Bias correction method for TRMM 3B42 products

Although many TRMM rainfall products have been

released since 1998, the year after TRMM satellite was

launched, and researches about these products were carried

out world-wide, the accuracy of satellite rainfall estimates

has been questioned constantly due to a variety of error

sources it is subject to, i.e., gaps in revisit times, poor direct

relationship between remotely sensed signals and rainfall

rate, and atmospheric effects that modify the radiation

field. Bitew and Gebremichael (2011a, b) But TRMM

rainfall products can reflect the spatial–temporal hetero-

geneity pattern of precipitation process and fill in the gap of

data-sparse region, but with low precipitation accuracy.

Since rain gauge measurements have relatively high pre-

cipitation accuracy at the gauge station point, comple-

menting the TRMM satellite data with rain gauge

measurements through a bias correction method and using

it as an input to drive distributed hydrological model could

enhance the runoff simulation precision. The two study

areas are data-sparse basins; the available monthly pre-

cipitation data throughout a time span of 58 years

(1951–2009) for Nam Khan River basin are provided by

Luang Prabang meteorological station, and for Nam Like

River basin the rain gauge data for the period 1995–2009

come from VangViang raingauge station only. Since high

correlations exist between the TRMM 3B42 data and the

rain gauge data for monthly resolution (Yang et al. 2009;

Yuan et al. 2013; Meng et al. 2014), a monthly bias cor-

rection method, which is simple but effective, could be

adopted to correct the TRMM 3B42 data (Arias-Hidalgo

et al. 2013). Usually, the TRMM grid cell centres and the

rain gauge location do not coincide. So the average

monthly TRMM 3B42 data at the grid cells had to be

interpolated to the rain gauge locations by using the inverse

distance weighting method (IDW), a mostly used rainfall

interpolating method developed by National Weather Ser-

vice (Burrough et al. 1998). Thus, the average monthly

precipitation values for the study period measured at each

rain gauge location were compared against their TRMM

interpolated counterparts to get the bias adjustment coef-

ficients, respectively, which were later used to correct the

TRMM monthly values.

A simple IDW function can be expressed as follows:

Z ¼
Xn

i¼1

1

ðDiÞ
P
Zi

 !,
Xn

i¼1

1

ðDiÞ
P

 !
; ð1Þ

where Z is the value of interpolated point, Zi (i = 1, 2, …,

n) is the value of sample point i, Di is the distance from the

interpolated point to sample point i (if Di = 0, Z = Zi) and

P is a positive real number, called the power parameter.

Here weight decreases as distance increases from the

interpolated point to the sample point, and greater values of

P assign greater influence to values closest to the interpo-

lated point, with the result of turning into a mosaic of tiles

with nearly constant interpolated value for large values of

P. In this article, P was set to 2.

BTOPMC model description

The physically based distributed hydrological model

BTOPMC, developed from semi-distributed hydrological

model TOPMODEL, has the characteristics of parsimo-

nious calibrated parameters, relatively low requirement on

inputs, being simple to operate and able to take advantage

of satellite remote-sensing data, etc. The SCE-UA algo-

rithm of Duan et al. (1994) was adopted to calibrate five

essential parameters of BTOPMC; they are saturated soil

transmissivity T0, decay factor m, maximum storage

capacity of the root zone Srmax, saturated local saturation

deficit Sbar0(k) of sub-basin k and Manning roughness

coefficient n, the former four of which are for runoff

generation and the other for flow routing. All these

parameters have explicit physical meanings. BTOPMC

divides the entire basin into sub-basins (lumped) that

consist of a number of grid cells (distributed). Then,

Runoff calculation is carried out for each grid cell by

applying the assumptions and concepts of TOPMODEL to
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each sub-basin, and the Muskingum–Cunge (M–C) method

(Fread 1993) was finally adopted to calculate flow routing.

Model performance is mainly evaluated by the volume

ratio (Vr) and the Nash–Sutcliffe coefficient (NSCE; Nash

and Sutcliffe (1970)). Volume ratio Vr is calculated as

Vr ¼ TVsim=TVobs; ð2Þ

where TVsim is the total volume of simulated runoffs, and

TVobs is the volume of observed runoffs. NSCE can be

expressed as follows:

NSCE¼ 1�
Xt¼N

t¼1

½QsimðtÞ�QobsðtÞ�2
,
Xt¼N

t¼1

½QobsðtÞ�Qav�2
" #

�100%;

ð3Þ

where N is the total number of time steps, Qsim(t)v is the

simulated runoff at time step t, Qobs(t) is the observed

runoff at time t, Qavis the mean of observed runoffs over t

time steps. NSCE is widely used to assessing the goodness

of fit of hydrologic models, and the closer the model

coefficient is to 1, the more accurate the model is.

Data preparation

The data available for this study include the following: (1)

a digital elevation model (DEM) provided by the Computer

Network Information Center, Chinese Academy of Sci-

ences (http://www.gscloud.cn/), at the spatial resolution of

30 m; (2) land use/vegetation coverage data at a resolution

of 1 km that were constructed from digitalizing and inter-

preting remote sensing images provided by International

Geosphere Biosphere Programme, and soil data at a reso-

lution of 1 km provided by Food and Agriculture Organi-

zation of the United Nations (FAO); (3) the monthly rain

data from 2000 to 2004 of Luang Prabang meteorological

station and VangViang rain gauge station, and the daily

runoff data from 2000 to 2004 of Ban Pak Bak hydrolog-

ical station, Ban Mout hydrological station, Kasi hydro-

logical station and Hin Heup hydrological station (Fig. 1)

were obtained from Laos Meteorological Administration.

Moreover, the monthly evaporation data from 1980 to 2009

of Luang Prabang meteorological station and Muang

Phonhong evaporation station (Fig. 1) for calculating mean

monthly evaporation data and evapotranspiration were also

derived from Laos Meteorological Administration. (4)

TRMM 3B42 V7 rainfall data with high resolution in space

(0.25 9 0.25) and time (3 h) downloaded freely from

http://trmm.gsfc.nasa.gov/. The DEM data, land use/vege-

tation coverage data and soil data are re-sampled at the

resolution of 300 m to match model calculation. The

3-hourly TRMM 3B42 V7 data were aggregated to daily

resolution to drive BTOPMC.

Results and discussions

The TRMM 3B42 V7 daily precipitation and its bias-cor-

rected data were, respectively, used to drive the distributed

hydrological model to perform daily streamflow simula-

tions at the Ban Pak Bak station, Ban Mout station located

in Nam Khan River basin and Kasi station and Hin Heup

station located in Nam Like River basin during the 5-year

period from 2000 to 2004 so as to assess the feasibility of

the TRMM precipitation on streamflow process simulation

in Laos data-sparse basins. Nam Khan River basin and

Nam Like River basin were both calibrated for the years

from 2000 to 2002, but validated for the period from Jan-

uary, 2003 to August, 2004 (Nam Khan River basin) and

from January, 2003 to November, 2004 (Nam Like River

basin). The volume ratio (Vr) and NSCE served as the

objective functions for parameter calibration, which was

conducted using an effective and efficient SCE-UA global

optimization algorithm. Besides, runoff depth and peak

time were also adopted as statistic indicators to validate the

effectiveness of streamflow simulation based on BTOPMC.

Performance of non-corrected TRMM products

for BTOPMC

Figure 2 shows simulated streamflows forced by TRMM

rainfall products at Ban Pak Bak, Ban Mout, Kasi and Hin

Heup stations. The results indicate that daily streamflow

process can be represented at large and good agreement

exists between simulated daily streamflow process and

TRMM daily areal mean precipitation series, except sig-

nificant biases for both high-flow simulation (especially for

peaks) and low-flow simulation.

The volume ratio (Vr) values vary from 0.54 to 1.80. Vr

values at Kasi for calibration and validation period are 0.54

and 0.57, respectively, which suggests a negative bias of

stimulation. Vr values at Ban Pak Bak and Ban Mout for

calibration period are 1.64, 1.80, respectively, which sug-

gests a positive bias of stimulation (Table 1). On the one

hand, TRMM rainfall products are derived from near-

ground precipitation information, which contain evapora-

tion loss during precipitation process, and thus might be the

reason for the overestimation of total simulated streamflow

volume. On the other hand, since the study basins are

located in mountainous region of north Laos characterized

by convective rainfall and orographic rainfall, where

satellite rainfall amout is usually underestimated, and it

might be the cause of underestimation of simulated

streamflow peaks. Beyond these, while the spatial resolu-

tion of TRMM rainfall products is 0.25 9 0.25, the drai-

nage area of Kasi station is only 374 km2, which leads to

few TRMM grids over the controlled catchment area of
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Kasi. The objective function in parameter optimization of

BTOPMC is designed as follows:

F ¼ 1�
XN

i¼1

wiNSCEi; ð4Þ

where N denotes the total number of calibration sites in

study basin, w is the weighting factor and the sum of wi

equals 1.0; NSCE denotes the Nash–Sutcliffe coefficient.

Due to optimized parameter values in Nam Like River

basin calculated by daily hydro-climatic data from two

stations, namely w1 and w2 set to 0.5, respectively, the

simulated streamflow peaks at Hin Heup influenced by

Kasi were also underestimated.

Whether for calibration period or for validation period,

NSCE values vary between 25.65 and 83.07 % (Table 1),

which is not very satisfactory. Owing to lack of observed

daily rainfall data which are used to drive BTOPMC, it is

difficult to determine the predominant influence of the

unwanted simulation results. A more possible explanation

for the results may be the uncertainty of TRMM rainfall.

Although the NSCE value for Hin Heup station reaches the

highest 83.07 % for the calibration period, it decreases to

44.47 % for the validation period (Table 1). From

Sect. 2.1, we can see that the terrain of Nam Like River

basin is more complicated than Nam Khan River basin,

which will likely reduce hydrological model reliability. But

based on the presented results at Hin Heup station, it is

more likely that the model can provide a sound basis for

applicability of TRMM rainfall in Nam Like River basin.

An intercomparison of NSCE values obtained both from

calibrating and validating period indicate that the cali-

brated parameters perform better in Nam Khan River basin

than that in Nam Like River basin.

For peak representation simulation, we employed ratio

value R to evaluate its performance. Ratio value R can be

expressed as follows:

R ¼ N=M; ð5Þ

where R is the ratio value, N is the number of correctly

simulated peaks above a given peak flow Q (m3/s) and M is

the total number of observed peak flows above a given

peak flow Q (m3/s).

For NamKhanRiver basin, whenQ is 200 m3/s,R for Ban

Pak Bak and Ban Mout are 87.94 and 86.21 %, respectively;

when Q is 400 m3/s, R for Ban Pak Bak and Ban Mout are

84.44 and 87.18 %, respectively. For Nam Like River basin,

whenQ is 20 or 40 m3/s, R for Kasi is 40.33 or 4.44 %; when

Q is 500 or 700 m3/s, R for Hin Heup is 86.78 or 59.00 %.

These statistical summaries suggest that peak representation

simulation performs well, except at Kasi.

Performance of bias-corrected TRMM products

for BTOPMC

Figure 3 shows simulated and observed streamflow forced

by bias-corrected TRMM rainfall products at Ban Pak Bak,

Fig. 2 Hydrographs of daily stream flow with TRMM precipitation for model calibration and validation (2000–2004) at a Ban Pak Bak station,

b Ban Mout station, c Kasi station, d Hin Heup station

1492 Appl Water Sci (2017) 7:1487–1496

123



Ban Mout, Kasi and Hin Heup stations. The results also

indicate that daily streamflow process can be represented at

large and that good agreement exists between simulated

daily streamflow process and daily TRMM precipitation

series. The volume ratio (Vr) values vary from 0.53 to 1.30.

Vr values at Kasi and Hin Heup for calibration and validation

period remain almost the same, while Vr values at Ban Pak

Bak and Ban Mout for calibration period are 1.30 and 1.24,

which suggests an apparent improvement (Table 1).

NSCE values vary from 28.92 to 78.35 % (Table 1).

While NSCE values for Nam Khan River basin increased

by employing bias-corrected TRMM to drive BTOPMC for

streamflow stimulation, NSCE values for Nam Like River

basin did not improve. In virtue of the great distances

between anchor point (VangViang station) and Kasi, Hin

Heup stations, the simple bias-correction method cannot be

adequately accurate and thus undermines the correction

effects. Judged from NSCE values, the calibrated param-

eters perform better at Nam Khan River basin than at Nam

Like River basin.

As to peak representation simulation, for Nam Khan

River basin, when Q is 200 m3/s, R values for Ban Pak Bak

and Ban Mout are 81.56, 78.16 %, respectively; when Q is

400 m3/s, R values for Ban Pak Bak and Ban Mout are

48.89, 57.69 %, respectively. Compared to simulation

results derived from non-corrected TRMM rainfall prod-

ucts at Nam Khan River basin, while NSCE values

increased a little bit, R values decreased here, which cor-

responds to the conclusion of Harris et al. (2007) in

satellite-based flood modelling: The bias adjustment of

satellite rainfall data can improve application in flood

prediction to some extent with the trade-off of more false

alarms in peak flow stimulation. For Nam Like River basin,

when Q is 20 or 40 m3/s, R for Kasi is 32.64 or 5.18 %;

when Q is 500 or 700 m3/s, R for Hin Heup is 83.47 or

44.60 %. These statistical summaries also suggest that

peak representation simulation performs well except at

Kasi. Although BTOPMC model was driven by bias-cor-

rected rainfall products, the simulation results for both

high-flow (especially for peaks) and low-flow are still poor

(Fig. 3). Figure 4 illustrates graphical comparisons of

observed and simulated daily hydrographs with the

uncorrected and corrected TRMM data. After all, the per-

formance of streamflow stimulation has been improved for

Table 1 The statistical indicators of daily streamflow simulations at the four stations

Indicator Types of precipitation station

Raw TRMM Bias-corrected TRMM Raw TRMM Bias-corrected TRMM

Ban Pak Bak Ban Mout Ban Pak Bak Ban Mout Kasi Hin Heup Kasi Hin Heup

NSCE (%)

Calibration 39.77 25.65 53.89 40.29 39.75 83.07 32.71 78.35

Validation 32.7 51.2 39.14 55.43 26.92 44.47 28.92 44.43

Depth of total runoff (m)

Simulated

Calibration 3.57 3.58 2.83 2.84 6.04 5.95 5.89 5.81

Validation 0.86 0.86 0.8 0.8 2.94 3.02 2.99 3.08

Observed

Calibration 2.19 1.99 2.19 1.99 11.1 5.54 11.1 5.54

Validation 0.71 0.68 0.71 0.68 5.17 2.48 5.17 2.48

Vr

Calibration 1.64 1.8 1.3 1.24 0.54 1.08 0.53 1.05

Validation 1.22 1.26 1.13 1.11 0.57 1.22 0.58 1.24

Mean precipitation (m)

Calibration 5.34 5.28 4.63 4.62 7.17 6.73 6.91 6.4

Validation 2.67 2.67 2.49 2.47 3.86 4.03 3.66 3.83

Peak time (date)

Simulated

Calibration 2001/9/3 2001/9/3 2001/9/3 2001/9/3 2000/8/17 2001/8/10 2000/9/6 2000/9/6

Validation 2004/8/2 2004/8/2 2004/8/1 2004/8/2 2004/9/11 2004/9/12 2003/8/2 2004/9/11

Observed

Calibration 2002/8/17 2002/8/18 2002/8/17 2002/8/18 2000/9/1 2001/8/17 2000/9/1 2001/8/17

Validation 2003/8/26 2004/8/31 2003/8/26 2004/8/31 2004/9/11 2004/9/11 2004/9/11 2004/9/11
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Fig. 3 Hydrographs of daily stream flow with bias corrected TRMM precipitation for model calibration and validation (2000–2004) at a Ban

Pak Bak station, b Ban Mout station, c Kasi station, d Hin Heup station

Fig. 4 Comparison of the observed and simulated daily hydrographs with different types of precipitation at a Ban Pak Bak station, b Ban Mout

station, c Kasi station, d Hin Heup station
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Nam Khan River basin by taking advantage of bias-cor-

rected TRMM rainfall data, especially during non-flood

season, while for Nam Like River basin the results did not

improve.

Conclusions

Whether driven by original or bias-corrected TRMM

rainfall data, the simulated streamflow can represent daily

flow at large at Ban Pak Bak, Ban Mout, Kasi and Hin

Heup stations, except for the underestimation of high-flow

and low-flow. Compared to raw TRMM rainfall data, the

bias adjustment of TRMM rainfall data can improve

application in flood prediction to some extent, but with the

trade-off of more false alarms in peak flow. The NSCE and

Vr values indicate that the calibrated parameters perform

better at Nam Khan River basin than at Nam Like River

basin. Overall, this study demonstrates the feasibility of

TRMM rainfall data (whether original or bias-corrected)

which can reflect the spatial distribution of rainfall in

streamflow stimulation at data-sparse area of Laos,

although the daily flow simulation results are not that sat-

isfactory. Also the TRMM data provide a potential alter-

native source of forcing data for hydrological models in

sparse regions where conventional in situ precipitation

measurements are not readily available.

Since the Global Precipitation Climatology Center

1 9 1 monthly monitoring product has already been used

to adjust TMPA products (Huffman et al. 2007) and the

rain gauge stations are sparsely located in the study area,

the simple bias-correction method presented in the article is

not that effective for improving streamflow simulation

accuracy. It is necessary to develop further correction

algorithms, data integration and downscaling for satellite

precipitation in terms of both the accuracy and spatio-

temporal resolutions of rainfall estimates (Tobin and

Bennett 2010; Meng et al. 2014). But, the results demon-

strate the potential of combining TRMM rainfall data with

rain gauge data to drive distributed hydrological model for

rainfall-runoff stimulation in data-sparse area. What is

more, the uncertainty contained in each input would con-

tribute to undermine the simulation results and hence how

to weaken the uncertainty of distributed hydrological

model remains a thorny issue to be resolved.
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