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Abstract A unit hydrograph (UH) of a watershed may be

viewed as the unit pulse response function of a linear

system. In recent years, the use of probability distribution

functions (pdfs) for determining a UH has received much

attention. In this study, a nonlinear optimization model is

developed to transmute a UH into a pdf. The potential of

six popular pdfs, namely two-parameter gamma, two-pa-

rameter Gumbel, two-parameter log-normal, two-pa-

rameter normal, three-parameter Pearson distribution, and

two-parameter Weibull is tested on data from the Lighvan

catchment in Iran. The probability distribution parameters

are determined using the nonlinear least squares opti-

mization method in two ways: (1) optimization by pro-

gramming in Mathematica; and (2) optimization by

applying genetic algorithm. The results are compared with

those obtained by the traditional linear least squares

method. The results show comparable capability and per-

formance of two nonlinear methods. The gamma and

Pearson distributions are the most successful models in

preserving the rising and recession limbs of the unit

hydographs. The log-normal distribution has a high ability

in predicting both the peak flow and time to peak of the

unit hydrograph. The nonlinear optimization method does

not outperform the linear least squares method in deter-

mining the UH (especially for excess rainfall of one pulse),

but is comparable.

Keywords Genetic algorithm � Least squares method �
Mathematica � Nonlinear optimization � Probability
distribution function � Unit hydrograph

Introduction

Prediction of flow hydrographs is important for undertak-

ing water emergency measures and management strategies.

A large number of methods have been proposed for flow

prediction. The unit hydrograph (UH) is one of the most

popular and widely used methods, especially in developing

countries. A unit hydrograph (Sherman 1932) is defined as

the hydrograph of direct runoff resulting from a unit depth

of effective rainfall (ER) occurring uniformly over the

basin and at a uniform rate for a specified duration. When

the duration of ER becomes infinitesimally small, the UH

is known as the instantaneous unit hydrograph (IUH). The

hydrograph obtained with the use of UH is the direct runoff

hydrograph (DRH). Because UH represents a linear re-

sponse of the basin, the DRH is obtained by convoluting

UH with the effective rainfall hyetograph (ERH). The

discrete form of convolution can be written as follows(e.g.

Chow et al. 1988; Singh 1988):

Qn ¼
Xn�M

m¼1

PmUn�mþ1; ð1Þ
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where Qn is the DRH ordinate at a discrete time step n, Pm

is the effective rainfall pulse at a discrete time step m, and

Un�mþ1 is the ordinate of the UH at any discrete time step

n� mþ 1. If the number of effective rainfall pulses is M

and the number of DRH ordinates is N, then there will be

N �M þ 1 ordinates in the UH of the watershed. On the

other hand, when effective rainfall pulses (Pm’s) and DRH

ordinates (Qn’s) are known from observations, Eq. (1) can

be used to determine the ordinates of UH through a reverse

process. This reverse process of determining the UH or-

dinates is sometimes referred to as the ‘‘de-convolution’’

process.

There are many methods to solve Eq. (1) for determin-

ing the UH. These methods include successive substitution

method (Dooge and Bruen 1989), Collins method (Collins

1939), successive approximation method (Newton and

Vinyard 1976), Delaine method (Raghavendran and Reddy

1975), harmonic analysis (O’Donnell 1960), Fourier

method (Levi and Valdes 1964), Meixner method (Dooge

and Garvey 1978), least squares method (Bruen and Dooge

1984), linear programming method (Deininger 1969), and

nonlinear programming method (Unver and Mays 1984),

among others; see also Singh (1988) for further details.

Mays and Coles (1980) presented a linear programming

(LP) model for the determination of composite UH. This

model uses the f-index method for the estimation of infil-

tration losses. Prasad et al. (1999) applied an LP model to

estimate the optimal loss-rate parameters and UH by con-

sidering the inherent characteristics of infiltration and UH.

Mays and Taur (1982) developed a nonlinear programming

(NLP) model to determine the optimal UH. This method

does not require losses to be specified a priori. Unver and

Mays (1984) extended the method of Mays and Taur

(1982) by incorporating an infiltration equation to estimate

the optimal loss-rate parameters and UH.

Although these methods have been shown to perform

well for certain situations, their main disadvantage is that

the number of unknowns is equal to the number of unit

hydrograph ordinates. Therefore, for larger time bases,

these methods may involve difficulties in estimating the

unit hydrograph from the rainfall–runoff data, since the

number of unknowns is generally large (Bhattacharjya

2004).

Unit hydrographs have common characteristics with

probability distribution functions, such as positive ordi-

nates and unit area. As a result, probability distribution

functions have recently gained enormous interest in

deriving UH. In this approach, the number of unknowns is

less and equal to the number of probability distribution

parameters. Bardsley (2003) used the inverse Gaussian

distribution as an alternative to the gamma distribution as a

two-parameter descriptor of the IUH. The inverse Gaussian

distribution was capable of deriving some hydrographs

where the gamma would fail. Bhattacharjya (2004) used

gamma and log-normal probability distributions to repre-

sent the UH for developing two nonlinear optimization

models and solved them using binary-coded genetic algo-

rithms. The gamma and log-normal distribution estimated

the time to peak correctly. Log-normal distribution pre-

dicted peak discharge more or less properly; whereas

gamma distribution did not satisfactorily estimate the peak

discharge. Moreover, the results showed fairly similar

performance of the distributions and the linear optimization

model. Bhunya et al. (2007) explored the potential of four

popular probability distribution functions (Gamma, Chi

square, Weibull, and Beta) to derive synthetic unit hydro-

graph (SUH) using field data. The results showed that the

Beta and Weibull distributions are more flexible in hy-

drograph prediction. Nadarajah (2007) provided simple

Maple programs for determining SUH from eleven of the

most flexible probability distributions and derived expres-

sions for the unknown parameters in terms of the time to

peak, the peak discharge, and the time base. Rai et al.

(2010) derived the UH using the Nakagami-m distribution

and compared its results with those of seven other distri-

bution functions over 13 watersheds. The Nakagami-m

distribution yielded UHs and direct runoff hydrographs

successfully. Singh (2011) employed the entropy theory to

derive a general IUH equation on two small agricultural

experimental watersheds. This equation was specialized

into some distributions, such as the gamma distribution,

Lienhard distribution, and Nakagami-m distribution. The

results indicated that surface runoff hydrographs computed

using the derived IUH equation were in satisfactory

agreement with the observed hydrographs.

In the present study, a nonlinear unconstrained opti-

mization model is presented to transmute UHs into prob-

ability distribution functions. Six probability distribution

functions are considered: two-parameter gamma, two-pa-

rameter Gumbel, two-parameter log-normal, two-parameter

normal, three-parameter Pearson, and two-parameter Wei-

bull distribution. The nonlinear least squares optimization

formulation is solved by (1) programming in Mathematica

and (2) by applying genetic algorithm. The potential of these

six probability distribution functions is tested on data from

the Lighvan catchment in the northwest of Iran. The non-

linear optimization method is compared with the traditional

linear least squares method. One particular novelty of this

study is the use of Mathematica for solving the nonlinear

optimization formulation problem involved in deriving UH.

Since Mathematica has extensive symbolic and numerical

capabilities, it enables the calculations in a simpler, faster,

and more accurate manner. It also has several statistical

distributions already built-in.
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The rest of this paper is organized as follows the next

section presents a brief description of the six probability

distribution functions, nonlinear least squares optimization

method, and formulation to transmute UH into probability

distribution, genetic algorithm, and traditional least squares

methods. After describing the case study area, the results of

calibration and validation of the methods are discussed.

Finally, the conclusions are drawn.

Materials and methods

Probability distribution functions

In this study, six popular probability distribution functions

are considered: gamma, Gumbel, log-normal, normal,

Pearson, and Weibull. A brief description of these func-

tions can be found in Table 9.

Nonlinear least squares optimization method

In this method, a formula is presented to transmute UH into

probability distributions. The objective function is to

minimize the sum of the squares of deviation between the

actual and the estimated direct runoff hydrographs. This

can be written as

XN

n¼1

e2n; ð2Þ

where en is the deviation between the nth ordinates of the

estimated and actual direct runoff hydrographs, given by

en ¼
Xn�M

m¼1

PmUn�mþ1 � Q0
n; ð3Þ

where Q0
n is the nth ordinate of the actual direct runoff

hydrograph, Un�mþ1 ¼ f xð Þ, where f xð Þ is a probability

distribution function and x ¼ n� mþ 1ð Þ � Dt.
Two constraints must be considered for this objective

function: (1) the area under the UH must be unity; and (2)

the UH ordinates must be positive. These are given by

1� Dt
PN�Mþ1

r¼1

Ur ¼ 0

Ur � 0

r ¼ 1; 2; 3; . . .;N �M þ 1: ð4Þ

In this method, the number of unknowns is equal to the

parameters of the probability distribution. In this study, this

method is performed by programming in Mathematica and

by applying genetic algorithm which is briefly described in

next sub-section 2.3.

Genetic algorithm

The genetic algorithm (GA) is a search technique based on

the concept of natural selection inherent in the natural

genetics, and combines an artificial survival of the fittest

with genetic operators abstracted from nature (Holland

1975). The major difference between GA and the classical

optimization search techniques is that the GA works with a

population of possible solutions, whereas the classical op-

timization techniques work with a single solution. An in-

dividual solution in a population of solutions is equivalent

to a natural chromosome. Like a natural chromosome

completely specifies the genetic characteristics of a human

being, an artificial chromosome in GA completely specifies

the values of various decision variables representing a

decision or a solution. For most GAs, the candidate solu-

tions are represented by chromosomes coded with either a

binary number system or a real decimal number system.

These chromosomes are evaluated based on their perfor-

mance with respect to the objective function. The GA that

employs binary strings as its chromosomes is called the

binary-coded GA; whereas the GA that employs real-val-

ued strings as its chromosomes is called the real-coded GA.

The real-coded GAs offer certain advantages over the bi-

nary-coded GAs as they overcome some of the limitations

of the binary-coded GAs (Deb and Agarwal 1995; Deb

2000). Regardless of the coding method used, the GA

consists of three basic operations: reproduction, crossover

or mating, and mutation. Reproduction is a process in

which individual strings are copied according to their fit-

ness (Goldberg 1989). Crossover is considered as the par-

tial exchange of corresponding segments between two

parent strings to produce two offspring strings. The genetic

algorithm picks up two strings from the population to

perform crossover with probability pc at a randomly se-

lected point along the string. Mutation is the occasional

introduction of new features into the population pool to

maintain diversity in the population (Bhattacharjya 2004).

Genetic algorithms start with randomly generating an ini-

tial population (p) of possible solutions. The population is

then operated by the three basic operators in order to

produce better offspring for the next generation. This

process would repeat till the individual is better enough to

suit the objective function.

Linear least squares method

The least squares method minimizes the objective function

which is the sum of squares of deviations of the actual and

predicted direct runoff hydrographs. According to Eq. (1),

thematrix form of the convolution equation can bewritten as
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½Q� ¼ ½P�½U�: ð5Þ

Then, the unit hydrograph is derived using Eq. (6):

½U� ¼ ½P�T½P�
h i�1

½P�T ½Q�; ð6Þ

where T and -1 indicate the transpose and inverse of the

matrices, respectively. Further details about this method

can be found in Singh Singh (1988). In this study, all the

calculations of this method are performed in Mathematica.

Study area and data

In this study, the potential of the six probability distribution

functions for UH is investigated using data from the

Lighvan River in northwest Iran. The Lighvan River wa-

tershed is located in East Azarbaijan in the northwest part

of Iran (see Fig. 1), between 46�2003000 and 46�2703000 east
latitude and 37�4505500 to 37�4903000 north longitude. This

watershed is an important part of the catchment of Talkheh

River watershed and has a drainage area of 76.19 km2. The

maximum and minimum elevations of the watershed are

about 3500 and 2000 m, respectively. The length of longest

stream is 17 km. The average stream slope is 11 %. The

Lighvan River drains into Talkheh River and Urmia Lake.

For this watershed, data availability is generally scarce. For

the present analysis, data of rainfall and runoff corre-

sponding to four different storms (Storm A, Storm B,

Storm C, and Storm D) are considered for calibration of the

models. Data corresponding to two other storms (Storm E

and Storm F) are used for validation of the models. Details

of these datasets are presented in Table 1.

It is relevant to note that the effective rainfall rates are

computed using the U-index for each rainfall hyetograph,

and the direct runoff hydrographs are obtained by

separating base flow from flow hydrographs using the

constant-discharge method.

Results and discussion

We use six probability distribution functions for deriving

unit hydrographs for the above datasets: two-parameter

gamma, two-parameter Gumbel, two-parameter log-nor-

mal, two-parameter normal, three-parameter Pearson dis-

tribution, and two-parameter Weibull. The probability

distribution parameters are determined using the nonlinear

least squares optimization method by programming in

Mathematica and by applying the genetic algorithm. The

results are also compared with those obtained using the

traditional linear least squares method.

Nonlinear optimization by programming

in Mathematica

In the present analysis, the storm data are used to derive a

1-hour unit hydrograph. All the models used involve an

inverse problem that optimizes the probability distribution

function parameters by minimizing the difference between

the actual and predicted direct runoff hydrographs. The

Fig. 1 Geographical location of

Lighvan watershed, Iran
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probability distribution parameters are obtained using least

squares optimization method.

Calibration of the models

The parameters of probability distributions obtained for the

storms (A–D) are shown in Table 2. The 1-hour unit hy-

drographs for the four datasets are presented in Fig. 2a–d,

and the resulting direct runoff hydrographs are indicated in

Fig. 3a–d, respectively. Figure 2a–d indicate that none of

the models have tail oscillations. The oscillations of the

UH determined by the least squares method for B, C and D

storms may be caused by errors in data measurements, the

rainfall abstractions, base flow separation, and non-uniform

temporal and spatial distribution of rainfall. All the distri-

bution functions predict the peak discharge, the time to

peak, and the shape of the UH successfully for storm A.

For storm B, all the distributions estimate the time to peak

correctly. The peak discharge estimated by the Weibul and

log-normal functions is closer to the actual value. The

performance of all the models except the normal and

Gumbel is satisfactory in predicting the peak discharge,

Table 1 Storm data for Lighvan watershed, Iran

Time

(hr)

Storm A

May 23, 2003

Storm B

June 15, 2003

Storm C

May 15, 2005

Storm D

May 16, 2005

Storm E (test)

May 24, 2003

Storm F (test)

March 6, 2004

P (mm) Q (mm/hr) P (mm) Q (mm/hr) P (mm) Q (mm/hr) P (mm) Q (mm/hr) P (mm) Q (mm/hr) P (mm) Q (mm/hr)

1 0.04 0.003828 0.44 0.04742 0.17 0.029789 0.4 0.015604 0.43 0.004512 0.43 0.011756

2 0.008759 0.061746 0.02629 0.054092 0.063483 0.92 0.024154

3 0.011794 0.039133 0.019434 0.050357 0.038323 0.0879

4 0.011794 0.041869 0.016745 0.022845 0.03496 0.089464

5 0.005781 0.033 736 0.016077 0.024186 0.026276 0.155487

6 0.000947 0.016908 0.010153 0.024186 0.020032 0.120408

7 0.013179 0.008213 0.024186 0.020032 0.089464

8 0.013179 0.008213 0.021511 0.018002 0.080174

9 0.015659 0.006289 0.018867 0.018002 0.068148

10 0.019426 0.005016 0.018211 0.019014 0.057962

11 0.020695 0.005016 0.018211 0.020032 0.052283

12 0.020695 0.004382 0.018211 0.020032 0.049482

13 0.016908 0.003121 0.018211 0.019014 0.049482

14 0.014415 0.001867 0.018211 0.019014 0.041233

15 0.011949 0.001243 0.015604 0.015998 0.038535

16 0.010725 0.003121 0.012389 0.015998 0.037195

17 0.010725 0.009221 0.014019 0.037195

18 0.009508 0.007967 0.01304 0.037195

19 0.008297 0.007343 0.010139 0.034536

20 0.007092 0.0061 0.005434 0.030595

21 0.002338 0.004512 0.02543

22 0.004512 0.024154

23 0.004512 0.020367

24 0.004512 0.015408

25 0.014184

26 0.012967

27 0.011756

28 0.009353

29 0.006976

30 0.005798

31 0.003459

32 0.0023

33 0.001147
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time to peak, and the UH shape for storm C. The normal

and Gumbel distributions are also not successful in pre-

dicting the time to peak and the rising limb of the UH for

storm D. The peak discharge is estimated with less error by

the log-normal model. Similar results can be obtained from

Fig. 3a–d. Table 3 shows the objective function values for

different models. As can be seen from this table, the

Gumbel and normal distribution functions have high ob-

jective function values for all the storms except storm A.

The objective function values of gamma and Pearson

models are almost the same for all the storm data. For

storm A, the Weibull and normal distributions outperform

the other distribution, because these distributions showed a

high ability in predicting the rising and recession limbs as

seen from Fig. 2a. For storms B and D, the lowest objective

function values are for the log-normal distribution, whereas

for storm C the gamma and Pearson show the lowest value

of the objective function. If average value of the objective

functions is considered for all four storms, then the log-

normal distribution gives the lowest objective function

value (0.000473). The objective function value of the linear

least squares method is very low which indicates the high

ability of this method than the nonlinear optimization

method for deriving the UH.

Generally, based on the visual comparison at the

calibration stage using the nonlinear optimization method,

it was observed that the log-normal distribution estimates

the time to peak and peak flow properly for all storms. This

distribution along with the gamma, Pearson, and Weibull

predicts the rising and recession limbs of the unit

Table 2 Parameters of probability distribution functions calibrated by the nonlinear mathematical optimization method for Lighvan watershed

Storm Gamma Gumbel Log-normal Normal Pearson Weibull

a b a b a b a b a b a b c

A 0.6774 5.2076 3.6075 1.2123 1.2293 0.3992 3.2550 1.3035 6.9597 0.5211 3.7207 2.9095 -0.1073

B 7.0135 1.0402 2.4152 3.3580 1.7216 1.1307 2.1155 4.0066 1.0400 7.0156 7.3400 1.0124 0

C 3.9788 1.1616 2.7072 2.8155 1.3491 1.0494 2.1211 2.9119 1.1617 3.9788 4.6761 1.0884 0

D 5.6905 1.4903 6.9192 6.0451 1.8902 0.9611 5.0665 5.8073 1.4902 5.6911 8.9275 1.2677 0

(a) (b)

(c) (d)
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Fig. 2 Comparison of UHs

derived using the linear least

squares method and distribution

functions calibrated by the

nonlinear mathematical

optimization method for

Lighvan watershed: a Storm A;

b Storm B; c Storm C; and

d Storm D
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hydrographs more or less perfectly. Moreover, the log-

normal distribution was recognized as the most successful

model based on the average value of the objective function.

Validation of the models

In order to validate the models, average values of the pa-

rameters of distribution functions obtained for the four

storms were calculated and 1-hour unit hydrographs were

derived using the distribution functions with the known

parameters. The direct runoff hydrographs were obtained

from these unit hydrographs by convoluting them with

effective rainfall rates for storms E and F. Figure 4a, b

illustrate the derived unit hydrographs for storms E and F,

and the resulting direct runoff hydrographs are shown in

Fig. 5a, b, respectively. As can be seen from Figs. 4, 5, the

log-normal distribution predicts the peak flow for both

storms and the time-to-peak for storm E with less error.

The Weibull and Pearson distributions perform well in

estimating the peak discharge and the time-to-peak for

storm F, respectively. Furthermore, none of the distribu-

tions predict the rising and recession limbs properly.

However, the Gamma and Pearson models estimate the

limbs fairly well. Note that the tail end of the hydrographs

for storm E is also properly predicted by the Gamma and

Pearson distributions. Since storm F is the only one which

occurred in winter season when the watershed is covered

by snow, one can expect to not see good performance of

the models for this storm.

Besides the visual comparison, the model performance

is also evaluated using following three statistical measures:

1. Root mean squared error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Qei � Qoið Þ2

n

vuuut
ð7Þ

2. Mean absolute error (MAE):

Fig. 3 Comparison of observed

and estimated DRHs related to

the linear least squares method

and distribution functions

calibrated by the nonlinear

mathematical optimization

method for Lighvan watershed:

a Storm A; b Storm B; c Storm

C; and d Storm D

Table 3 Objective function values for six distribution functions

calibrated by the linear and nonlinear mathematical optimization

method for Lighvan watershed

Model Storm A Storm B Storm C Storm D

Gamma

distribution

0.000016 0.000911 0.000026 0.001224

Gumbel

distribution

0.000008 0.002922 0.000382 0.002687

Log-normal

distribution

0.000022 0.000788 0.000030 0.001051

Normal

distribution

0.000005 0.002399 0.000234 0.002055

Pearson

distribution

0.000014 0.000911 0.000026 0.001224

Weibull

distribution

0.000005 0.000914 0.000027 0.001270

Least

squares

2.416E-19 1.9184E-18 1.1971E-18 2.0000E-18
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MAE ¼ 1

n

Xn

i¼1

Qei � Qoij j ð8Þ

3. Correlation coefficient (CC):

CC ¼
Pn

i¼1 Qoi � �Qoð Þ Qei � �Qeð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Qoi � �Qoð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Qei � �Qeð Þ2

q ; ð9Þ

where Qoi and Qei are the ith observed and estimated DRH

ordinates, respectively; �Qo and �Qe represents the average

discharge of the observed and estimated DRH, respec-

tively, and n is the number of ordinates.

Table 4 presents the values of performance criteria.

According to this table, the performance criteria values of

the gamma and Pearson distributions were close to each

other. The gamma distribution with the lowest value of

RMSE (0.010) and MAE (0.006 mm/h),the Pearson dis-

tribution with the lowest value of RMSE (0.025), MAE

(0.021 mm/h), and the highest value of CC (0.929) show

successful performances for storms E and F, respectively.

The performance of the log-normal model with the highest

value of CC (0.776) and the low value of RMSE and MAE

(0.012 and 0.009 mm/h, respectively) is successful for

storm E. The Gumbel distribution may not be a suitable

model for estimating the UH because of its high RMSE and

MAE values for both storm data. Generally, the perfor-

mance of almost all the models is more accurate for storm

E than for F. The least squares method shows satisfactory

results, considering its statistical measure values for both

events. For storm F, this method indicates more error than

storm E, because it generated a negative value for the first

ordinate of the UH which is the main disadvantage of this

method. According to the results of the study done by

Singh (1976), the derived unit hydrographs using the least

squares method may not have a unit volume and some unit

hydrographs ordinates may be negative.

In general, the results of the validation stage showed that

the lognormal distribution performance is satisfactory in

predicting peak flow and time to peak. The gamma and

Pearson models showed acceptable performances in

simulating both limbs of the unit hydrographs. Hence, ac-

cording to the values of statistical measures, these distri-

butions outperformed the others.

Nonlinear optimization by applying genetic

algorithm

In this study, the real-coded genetic algorithm in MATLAB

software was applied to determine optimal probability

distribution parameters. The genetic algorithm parameters,

such as crossover and mutation probability applied in this

study are given in Table 5.

Calibration of the models

The optimal probability distribution parameters are shown

in Table 6. Figure 6a–d illustrate the UHs obtained for

storms A, B, C, and D, respectively, and Fig. 7a–d present
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Fig. 4 Comparison of UHs

derived using the linear least

squares method and distribution

functions calibrated by the

nonlinear mathematical

optimization method for

Lighvan watershed: a Storm E;

and b Storm F

Fig. 5 Comparison of observed

and estimated DRHs related to

the linear least squares method

and distribution functions

calibrated by the nonlinear

mathematical optimization

method for Lighvan watershed:

a Storm E; and b Storm F
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the corresponding DRHs. From Figs. 6, 7, it can be seen

that for storm A, all the models estimate the time to peak

properly, but the peak discharge is estimated more cor-

rectly by the Pearson and Weibull distributions. The per-

formance of the normal model in estimating the rising limb

of the unit hydrograph is noticeable. Figure 6b shows all

the models estimate the time-to-peak properly. However,

the accuracy of the Pearson and log-normal distributions is

high in predicting the peak flow. Almost all the models

predict the rising limb of the unit hydrograph well. For

storm C, all the models estimate the time to peak perfectly.

The gamma, lognormal, Pearson, and Weibull distributions

predict the peak flow and the rising and recession limbs of

the UH with less error. For storm D, the gamma, Pearson

and log-normal distribution models estimate the time-to-

peak and the UH limbs satisfactorily. The peak discharge is

estimated properly also by the log-normal model. Table 7

illustrates the objective function values of the distributions.

According to this table, the Weibull distribution for storms

A and D, and the log-normal and gamma functions for

storms B and C give minimum values of the objective

function, respectively. Based on the average value of the

objective function, the Weibull distribution outperforms

the other models for all storms. According to Tables 3 and

7, using the genetic algorithm caused an increase in the

objective function values of the models rather than apply-

ing the nonlinear mathematical optimization. In other

words, the nonlinear mathematical optimization method

outperforms the genetic algorithm at the calibration stage.

Generally, at the calibration stage using the genetic al-

gorithm method, the lognormal, Pearson, and gamma

models predicted the time to peak more or less properly for

all storms. These models along with the Weibull distribu-

tion were also successful in simulating the rising and

falling limbs of the UHs for all storms except A. The log-

normal distribution showed high ability in estimating the

peak value for storms B, C, and D. However, the Pearson

model can compute well the peak discharge for storms A,

B, and C. The Weibull distribution was distinguished as the

most successful model based on the average value of the

objective functions because of the excellent ability in

preserving the UH shape of storm A.

Validation of the models

Figure 8a, b show the estimated one-hour unit hydrographs

using the average values of the obtained distributions pa-

rameters and effective rainfall data for storms E and F, and

Fig. 9a, b indicate the corresponding direct runoff hydro-

graphs, respectively. According to Figs. 8, 9, for storm E,

the Gumbel, log-normal, and normal models estimate the

time to peak perfectly. The log-normal distribution shows

high potential in predicting the peak flow. The models did

not have a high ability in estimating the recession limbs.

For storm F, only the gamma and Weibull distributions

estimate the time to peak and peak discharge precisely,

respectively. All the models except gamma and Pearson

show poor performance in predicting the rising and re-

cession limbs of the UH. Table 8 gives the values of the

three statistical measures. The Table illustrates that the

gamma distribution with the lowest value of RMSE

(0.010), MAE (0.007) and fairly high value of CC (0.697)

may be the best model for storm E. This distribution also

shows the lowest value of RMSE (0.016), MAE (0.012),

and the highest value of CC (0.922) for storm F as the most

suitable model. The Pearson model shows almost similar

results with the gamma distribution for both storms. The

log-normal model gives the highest CC value (0.738) and

low RMSE (0.013) and MAE (0.009) values for storm E.

Table 4 Performance criteria values for six distribution functions calibrated by the linear and nonlinear mathematical optimization method for

Lighvan watershed

Model RMSE (mm/hr) MAE (mm/hr) CC

Storm E Storm F Storm E Storm F Storm E Storm F

Gamma distribution 0.010 0.027 0.006 0.023 0.619 0.863

Gumbel distribution 0.015 0.048 0.013 0.038 0.642 0.397

Log-normal distribution 0.012 0.043 0.009 0.034 0.776 0.495

Normal distribution 0.014 0.047 0.012 0.038 0.670 0.428

Pearson distribution 0.012 0.025 0.006 0.021 0.402 0.929

Weibull distribution 0.013 0.042 0.012 0.035 0.710 0.571

Least squares 2.9E-10 0.002 2.45E-10 0.001 1.000 0.998

Table 5 Genetic algorithm parameters

Population size (p) 15* (number of variables)

Crossover probability (pc) 1.00

Mutation probability (pm) 0.01

Generation (g) 200* (number of variables)
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The Gumbel model performance according to the statistical

measures is poor for both storms. Similar to the previous

validation stage, the models performance for storm E is

better than for storm F. Using the genetic algorithm has

improved the models capability just for storm F compared

with the nonlinear mathematical optimization method.

Generally, at the validation stage, the log-normal

distribution showed good performance in predicting the

time to peak and peak flow of the UH for storm E. The

gamma and Pearson distributions were able to preserve

the UH shape. Hence, the gamma distribution with the

lowest value of RMSEand MAE, and the highest value

of CC is the best model for both storms. The Pearson

model indicated similar results with the gamma

distribution.

Conclusions

In this study, a nonlinear model was developed to trans-

mute a unit hydrograph into a probability distribution

function. The gamma, Gumbel, log-normal, normal, Pear-

son, and Weibull probability distribution functions were

used to derive 1-hour unit hydrographs. The main advan-

tage of this model is that the number of parameters to be

determined is equal to the number of probability distribution

Table 6 Parameters of probability distribution functions calibrated by genetic algorithm for Lighvan watershed

Storm Gamma Gumbel Log-normal Normal Pearson Weibull

a b a b a b a b a b a b c

A 0.8700 4.4860 3.5430 1.4040 1.3580 0.6170 2.9960 1.4440 6.9700 0.5030 3.7380 2.7820 -0.0180

B 7.0100 1.0000 2.0085 3.3390 1.6695 1.1663 1.3436 3.9870 1.0848 5.9851 7.6640 1.0000 -0.5284

C 3.9986 1.1843 1.8231 2.9389 1.2484 1.0642 2.0452 2.6178 1.2912 3.0973 3.9400 0.9990 -0.6781

D 4.3955 1.5072 2.0252 6.7924 1.6042 0.8630 3.9806 5.9895 1.7393 4.0860 8.9220 1.3910 -0.3195
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derived using the linear least

squares method and distribution

functions calibrated by the

genetic algorithm for Lighvan

watershed: a Storm A; b Storm

B; c Storm C; and d Storm D
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Fig. 7 Comparison of observed

and estimated DRHs related to

the linear least squares method

and distribution functions

calibrated by the genetic

algorithm for Lighvan

watershed: a Storm A; b Storm

B; c Storm C; and d Storm D

Table 7 Objective function values for six distribution functions calibrated by the genetic algorithm for Lighvan watershed

Model Storm A Storm B Storm C Storm D

Gamma distribution 0.000028 0.000926 0.000027 0.001624

Gumbel distribution 0.000013 0.002987 0.000457 0.003910

Log-normal distribution 0.000055 0.000826 0.000047 0.001644

Normal distribution 0.000013 0.002531 0.000251 0.002149

Pearson distribution 0.000015 0.001150 0.000080 0.001492

Weibull distribution 0.000005 0.000923 0.000065 0.001342
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Fig. 8 Comparison of UHs

derived using the linear least

squares method and distribution

functions calibrated by the

genetic algorithm for Lighvan

watershed: a Storm E; and

b Storm F
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parameters. In this case, six different storm datasets from

the Lighvan catchment were provided. Four storm datasets

were used for models calibration and two for validation.

The calibration of models was performed using the non-

linear least squares optimization methods, by programming

in Mathematica and by applying the genetic Algorithm,

and using the traditional linear least squares method.

In general, the following conclusions may be drawn:

1. The log-normal distribution function has a high

potential in predicting the peak flow and the time to

peak of the UH.

2. The gamma and Pearson distributions are more able in

preserving the rising and recession limbs of the UH.

3. The log-normal, gamma, and Pearson distribution

functions can be applied for quick and approximate

estimation of unit hydrographs for the Lighvan

catchment.

4. The genetic algorithm did not improve the models

performance significantly compared with the nonlinear

mathematical optimization.

5. The nonlinear optimization methods are not superior to

the linear least squares method when there is only one

excess rainfall pulse, but are comparable. The main

disadvantage of the traditional least squares method is

that it may generate negative unit hydrograph ordinates

especially when the number of excess rainfall pulses is

bigger than one.
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Appendix 1

See Appendix Table 9.

Fig. 9 Comparison of observed

and estimated DRHs related to

the linear least squares method

and distribution functions

calibrated by the genetic

algorithm for Lighvan

watershed: a Storm E; and

b Storm F

Table 8 Performance criteria values for six distribution functions

calibrated by the genetic algorithm for Lighvan watershed

Model RMSE

(mm/hr)

MAE

(mm/hr)

CC

Storm

E

Storm

F

Storm

E

Storm

F

Storm

E

Storm

F

Gamma

distribution

0.010 0.016 0.007 0.012 0.697 0.922

Gumbel

distribution

0.015 0.038 0.012 0.032 0.655 0.654

Log-normal

distribution

0.013 0.039 0.009 0.024 0.738 0.702

Normal

distribution

0.014 0.036 0.012 0.028 0.669 0.736

Pearson

distribution

0.011 0.016 0.007 0.013 0.576 0.906

Weibull

distribution

0.013 0.032 0.012 0.023 0.711 0.839
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