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Abstract The aim of this paper is to estimate soil mois-

ture at spatial level by applying geostatistical techniques on

the point observations of soil moisture in parts of Solani

River catchment in Haridwar district of India. Undisturbed

soil samples were collected at 69 locations with soil core

sampler at a depth of 0–10 cm from the soil surface. Out of

these, discrete soil moisture observations at 49 locations

were used to generate a spatial soil moisture distribution

map of the region. Two geostatistical techniques, namely,

moving average and kriging, were adopted. Root mean

square error (RMSE) between observed and estimated soil

moisture at remaining 20 locations was determined to

assess the accuracy of the estimated soil moisture. Both

techniques resulted in low RMSE at small limiting dis-

tance, which increased with the increase in the limiting

distance. The root mean square error varied from 7.42 to

9.77 in moving average method, while in case of kriging it

varied from 7.33 to 9.99 indicating similar performance of

the two techniques.

Keywords Soil moisture �Geostatistics �Moving average �
Limiting distance �Lag distance �Kriging �Root mean square

error

Introduction

Soil moisture plays a key role in various hydrological,

environmental and agricultural applications. It governs

infiltration and surface runoff, since the hydraulic con-

ductivity of soil depends upon the available water content

in the soil. It also influences the plant evapotranspiration

thereby making it an important component of water bal-

ance equation. Knowledge of spatial distribution of soil

moisture is essential for predicting runoff at the catchment

scale (Fitzjohn et al. 1998; Western et al. 1999, 2001) and

in the design of irrigation scheduling (Blonquist et al.

2006; Vellidis et al. 2008). For optimum irrigation prac-

tices, it becomes essential to accurately estimate the soil

moisture. Moreover, to model overland flow from a pre-

cipitation event over a catchment, the estimation of ante-

cedent soil moisture is a prerequisite.

Various studies (Oevelen 1998; Feng et al. 2004; De

Lannoy et al. 2006) have shown that hydrometeorological

conditions, soil properties and land cover govern the pre-

sence of moisture in the unsaturated zone of soil. These

studies (Anderson and Burt 1977, 1978; Beven and Kirkby

1979; Chorley 1980; Moore et al. 1988; Wood et al. 1990;

1993; Bárdossy and Lehmann 1998) have shown that soil

moisture is highly variable both in space and time. The

characteristics of spatial variability of soil moisture depend

on the scale of observation (Lakhankar et al. 2010).

For estimation of soil moisture at catchment level using

observed point observations of soil moisture data, various

interpolation methods such as weighted average, inverse

distance interpolation, spline interpolation and kriging can

be employed (Bárdossy and Lehmann 1998; Thattai and

Islam 2000). For the estimation of soil moisture at spatial

scale using observed point observations of soil moisture

data, various interpolation techniques such as weighted
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average, inverse distance interpolation, spline interpolation

and kriging can be employed. Dynamic multiple linear

regression technique was adopted by Wilson et al. (2005)

to compute soil moisture using topographic attributes.

Downer and Ogden (2003) estimated soil moisture using

gridded surface subsurface hydrologic analysis (GSSHA)

hydrologic model with a root mean square error of 0.1.

Pandey and Pandey (2010) mapped soil moisture in U-

daipur, India, applying ordinary kriging. The study con-

cluded that the krigged values were consistent and true

representative of soil moisture values. Said et al. (2008)

have experimented with ANN method to estimate soil

moisture in the Solani River catchment. However, appli-

cation of geostatistical interpolation technique is new in the

study area.

The aim of this paper is to evaluate the efficacy of

geostatistical interpolation techniques and to estimate soil

moisture at spatial level from the in situ observed soil

moisture data at point locations. The selection of an esti-

mation technique may be site specific. Therefore, an

evaluation of the techniques may be necessary to identify

the appropriate one to be adopted in the prediction model.

In the present study, two interpolation techniques, namely,

moving average and ordinary kriging, have been evaluated

to estimate the soil moisture at spatial scale.

Study area

The study area is a part of the Solani River catchment in

the vicinity of Haridwar district in Uttarakhand State of

Fig. 1 Location map of study area
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India. The area lies between 77.48�E, 29.45�N and

78.03�E, 29.55�N at an average elevation of 268 m above

mean sea level. Location map of the study area is shown in

Fig. 1. Average annual rainfall of the region is 1,170 mm

and the temperature varies approximately from 1 �C in

winter to 45 �C in the summer. Texture of soil influences

the infiltration, surface runoff, evapotranspiration, inter-

flow, and aquifer recharge. Study by Kumar et al. (2012)

indicates that the type of soil in the catchment area is loam

(US Bureau of Soil and PRA Classification) with an

average proportion of 50–55 % of sand, 35–42 % silt and

8–15 % clay. Solani River is a seasonal tributary of the

Ganges River. Besides Solani River, a few seasonal

streams, Ratmau, and Pathri Rao, originating from Shivalik

hills (lower Himalayan mountain range) play a significant

role in enriching the land fertility in the study area. The

study area constitutes three major land cover classes: built-

up land, bare soil and vegetated land. A significant portion

of the vegetated land is agricultural with perennial and

seasonal crops. Sugarcane is the perennial crop in the area.

The summer (period from June to September) crops are

paddy, maize and cherry whereas the winter (period from

October to March) crops are wheat, mustard and fodder

crop berseem.

Field observations were collected during 10–12 Dec

2009 at 69 sample locations in the study area covering

about 154 km2. The geographical coordinates of the sam-

ple points were recorded with the help of hand held global

positioning system (GPS). Of the measured 69 locations,

52 samples were collected from the vegetated land covered

with wheat, sugar cane, mustard and berseem crop. The

wheat was in early growing stage, whereas the rest of the

crops were at matured level. The remaining 17 locations

correspond to bare soil fields. Out of 69 locations, 49

locations were considered for the model development

whereas remaining 20 locations were kept for model

validation. A due representation for vegetated and bare soil

samples has been given in model development and its

validation. Figure 2 depicts the geographical representation

of the soil sampled locations.

The undisturbed soil samples were collected with the

help of piston sampler from both bare soil and vegetated

surfaces from the upper 0–10 cm thick soil layer. The

samples were weighed and then oven-dried at 105 �C for

24 h to compute the volumetric soil moisture content. The

observed volumetric soil moisture in the area varied from a

minimum 3 % to a maximum of 43 %.

Methodology

A number of interpolation techniques have been used for

the analysis of distribution of the soil moisture at spatial

scale (Feng et al. 2004; Wilson et al. 2005; Lakhankar et al.

2010). The most common interpolation techniques are

moving average, trend surface and kriging (Kratze et al.

2006). The applicability of these techniques depends upon

various factors such as distribution of sampled data in the

space, the type of surfaces to be generated and tolerance of

estimation errors. Hence, an evaluation of these geostatis-

tical techniques may help in arriving at the most appro-

priate technique for estimation of soil moisture estimation

at spatial level in Indian conditions. In the present study,

the performance of moving average and kriging geostatis-

tical techniques has been evaluated in estimating soil

moisture distribution in a part of Solani River catchment.

Moving average technique

In the present context, moving average operates upon

computing weight factor for each observed soil moisture at

Fig. 2 Geographical

representation of soil sampled

locations
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a sample location considered within a limiting distance,

also called as the search radius to estimate soil moisture.

The locations lying beyond the specified search radius are

not taken into account for the estimation. For each location

within the search radius, the distances of all observed soil

moisture locations are calculated to determine weight

factors. The sampled locations are weighted during inter-

polation such that the influence of one location relative to

the other declines with distance from the location at which

the moisture is to be estimated. Hence, the locations closer

to it will have larger weight than those obtained at loca-

tions farther from it. The soil moisture at a location may

thus, be estimated as,

Mvc ¼
Pn

i¼1 WiMvoiP
Wi

ð1Þ

where n is the number of observed soil moisture locations

within the search radius, Wi and Mvoi are the weights

assigned and the volumetric moisture content in

percentage, respectively, at the ith location. The weight

Wi for each observed soil moisture location may be

computed as,

Wi ¼
1

hmri
� 1 ð2Þ

where m is the weight exponent, and hri is the relative

distance of ith observed soil moisture location from the

estimated soil moisture location. The hri is computed as,

hri ¼
hi

hl
ð3Þ

where hi is the distance of ith observed soil moisture

location from the estimated soil moisture location, and hl is

the search radius. The accuracy of estimation depends upon

the search radius and the weight exponent. Therefore,

several trials are conducted before arriving at the accept-

able values for the search radius and weight exponents.

The RMSE between the observed and estimated soil

moisture at validation locations is computed as,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

k¼1

ðMvok �MvckÞ2

s

ð4Þ

where p is the number of locations considered for model

validation and Mvo, Mvc are the observed and estimated

moisture contents at those locations respectively.

Kriging

Kriging is a geostatistical data interpolation technique

based on the assumption that the data are spatially

correlated. Ordinary kriging works on selected theoretical

semi-variogram model used for computing semi-variance

values at the points where soil moisture is to be estimated.

A plot of the calculated semi-variance values against the

distance (lags) is known as a semi-variogram. Increasing

the lag distance of the semi-variance values consider

average over more points, thus decreasing the fluctuations

of the experimental semi-variogram. Several theoretical

semi-variogram models are possible that include linear,

spherical, circular, exponential and Gaussian (Teegavarapu

and Chandramouli 2005) to fit over the experimentally

constructed semi-variogram. The most suitable semi-vari-

ogram model may be found based on the RMS error

between the semi-variance values obtained from experi-

mentally observed data and the theoretical model predicted

semi-variance values. Often the experimental semi-vario-

gram values do not approach to zero at the origin and

intersect the positive y-axis. This is due to the residual or

spatially uncorrelated noise, which is also known as the

nugget (Kitanidis 1997). The stabilized semi-variogram

value is known as the sill, and the distance at which the

semi-variogram values approach the sill is called the range.

The general expression to estimate the semi-variance is

given as,

cðhÞ ¼
1

2nðhÞ
X

hij¼h

ðMvoi �MvojÞ2 ð5Þ

where cðhÞ is the semi-variance defined over the observed

data, Mvoi and Mvoj is the measured moisture at two loca-

tions lagged successively by the distance h.

Spatial interpolation using kriging significantly depends

on the semi-variogram model used. The appropriate semi-

variogram model is usually obtained through experiments.

In this study, three semi-variogram models, namely,

spherical, Gaussian and exponential, stated in Eqs. (6) to

(8), respectively, have been considered.

cðhÞ ¼ Co þ C1

3 hj j
2a

� 1

2

hj j
a

� �3
 !

ð6Þ

cðhÞ ¼ Co þ C1 1 � Expð�Þ h

a

� �2
 !

ð7Þ

cðhÞ ¼ Co þ C1 1 � Exp � h

a

� �� �

ð8Þ

The parameters, C0 and a denote nugget and range. The

summation of C0 and C1 is referred to as sill and the sill

value at range, a, is the desired semi-variance.

In ordinary kriging, having obtained the most appro-

priate semi-variogram model, the soil moisture values Mvc,

at any location can be obtained as a weighted sum of the

observed soil moisture values,
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Mvc ¼ W1Mvo1 þW2Mvo2 þW3Mvo3 þ . . .. . .. . .WnMvon

ð9Þ

Mvc ¼
Xn

i¼1

WiMvoi ð10Þ

where Wi and Mvoi are the weight and observed soil

moisture at the ith location, and n is the number of loca-

tions within the limiting distance. The Wi are computed by

solving the following equations,

Where hpi is the distance between the location p where soil

moisture is to be estimated, and the location i where soil

moisture is observed. cðhikÞ is semi-variance value for the

distance between the locations i and k and Wi is the weight

for point i. k is a Lagrange multiplier that is used to

minimize the possible estimation error in kriging

interpolation.

The limiting distance governs the selection of

observed locations around a location considered to esti-

mate the soil moisture. The limiting distance is usually

taken as smaller than the range of the selected semi-

variogram. Observed locations that lie beyond specified

limiting distance are not considered in the interpolation

of soil moisture.

Results and discussion

In this paper, an evaluation of soil moisture predicted by

two geostatistical techniques, moving average and kriging,

was carried out. The success of moving average method

depends primarily upon two factors: (1) limiting distance

and (2) weight of the exponent. A decrease in limiting

distance improves the interpolation accuracy, whereas with

the decrease in limiting distance the moving average

method may fail to predict soil moisture in regions of

scarce observed soil moisture locations. Figure 3a–d shows

the estimated distribution of soil moisture using moving

average method for limiting distance 1,000, 2,000, 3,000

and 4,000 m, respectively.

It can be seen from Fig. 3a that the method has failed to

predict soil moisture at few places in case of small limiting

distance. This is due to non-availability of observed suffi-

cient soil moisture locations within the selected limiting

distance. However, by increasing the limiting distance to

2,000 m and beyond, the moving average method is able to

estimate the soil moisture over the entire study area. It can

thus be concluded that for the effective application of

moving average method, several experimental trials on

limiting distance and weight exponent may therefore be

W1cðh11Þ þW2cðh12Þ þW3cðh13Þ þ . . .. . .. . .. . .. . .Wncðh1nÞ ¼ cðhp1Þ1
W1cðh21Þ þW2cðh22Þ þW3cðh23Þ þ . . .. . .. . .. . .. . .Wncðh2nÞ ¼ cðhp2Þ

W1cðh31Þ þW2cðh32Þ þW3cðh33Þ þ . . .. . .. . .. . .. . .Wncðh3nÞ ¼ cðhp3Þ

. . .. . .. . .. . .þ . . .. . .. . .. . .þ . . .. . .. . .. . .þ . . .. . .. . .. . .. . .. . .. . .. . . ¼ . . .. . .

W1cðhn1Þ þW2cðhn2Þ þW3cðhn3Þ þ . . .. . .. . .. . .. . .WncðhnnÞ ¼ cðhpnÞ

ð11Þ

and
X

i

Wi ¼ 1 ð12Þ

The matrix form of Eqs. (11) and (12) is given as,

0 cðh12Þ cðh13Þ . . .. . .. . . cðh1nÞ
cðh21Þ 0 cðh23Þ . . .. . .. . . cðh2nÞ
cðh31Þ cðh32Þ 0 . . .. . .. . . cðh3nÞ

. . .. . .. . . . . .. . .. . . . . .. . .. . . . . .. . .. . . . . .. . .. . .
cðhn1Þ

1

cðhn2Þ

1

cðhn3Þ

1

. . .. . .. . .

1

0

1

1

1

1

. . .. . .. . .
1

0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

W1

W2

W3

. . .
Wn

k

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

cðhp1Þ
cðhp2Þ
cðhp3Þ
. . .
cðhpnÞ

1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð13Þ
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necessary to obtain the optimal limiting distance and the

weight exponent, which may also be case dependent.

Table 1 shows the RMSE between the observed soil

moisture and the estimated soil moisture at 20 points

locations considered to evaluate the interpolation. It can be

seen from the table that the RMSE increases with the

increase in the limiting distance 1,000–2,000 m. However,

a further increase in limiting distance (i.e., 3,000 and

4,000 m) results in decrease in the RMSE. Nevertheless,

for a given limiting distance, the impact of weight expo-

nent on estimation of soil moisture appears insignificant,

since the RMSE remains unchanged with the variation in

weight exponent.

In summary, it can be reiterated that the moving average

method has limitation in selecting appropriate limiting

distance as the user may have to determine it experimen-

tally. To overcome this limitation, Kitanidis (1997) has

proposed the use of ordinary kriging under the domain of

semi-variogram model wherein the limiting distance may

be taken as less than or equal to the range.

The ordinary kriging method uses semi-variogram

model for interpolating point data. In this study, the

observed volumetric soil moisture at 49 locations has

been used to construct an experimental semi-variogram.

Table 2 shows the semi-variance values of these locations

at lag distances of selected 1,000 m chosen. It is evident

from the table that as the distance between the points

pairs increases to 3,000 m, the semi-variance increases.

Beyond 3,000 m, these values fluctuate. Hence, pairs of

locations beyond this distance are considered to be

uncorrelated.

The accuracy of ordinary kriging depends primarily

upon the theoretical semi-variogram model employed to fit

the experimental semi-variogram. Therefore, three theo-

retical semi-variogram models, namely, spherical, Gauss-

ian and exponential models have been used in this study.

Different semi-variogram models have been tried over

the experimentally constructed semi-variogram to deter-

mine the RMSE between the actual and model computed

semi-variance values. Initial trials were made by fitting

spherical, gaussian and exponential models over the

experimentally constructed semi-variogram. Table 3 indi-

cates that spherical model results in the least RMSE at

distance 2,000 m.

Fig. 3 Spatial distribution of soil moisture estimated from moving average at limiting distance. a 1,000 m, b 2,000 m, c 3,000 m, d 4,000 m
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It can also be seen that as the lag distance increases, the

RMSE between the semi-variance values increases. The

optimum lag distance has been found to be 2,000 m in case

of spherical model.

Figure 4 shows the fit of the three semi-variogram

models over the semi-variance values obtained from the

experimental semi-variogram. From this figure, it can be

seen that the spherical model adequately explains the

variation of experimental semi-variance as compared to the

other models for the dataset considered. Figure 4 also

shows that at a range value of 2,800 m, this semi-vario-

gram model stabilizes. Thus, by taking limiting distance

equal or more than 2,800 m will result in a constant semi-

variance value for all the points separated by a distance

greater than 2,800 m.

The parameters of spherical model (i.e., nugget and

sill) have been used to estimate the soil moisture at each

grid (i.e., pixel of size 30 m 9 30 m) location to reflect

the spatial distribution of soil moisture using ordinary

kriging. The kriging is performed for the observed soil

moisture values at 49 locations and the spherical semi-

variogram model to generate the spatial distribution of soil

moisture at limiting distances of 1,000, 2,000 and 2,700 m

(Fig. 5a–c).

It can be seen from Fig. 5a that kriging method also is

unable to estimate soil moisture in regions where observed

locations for interpolation are at a greater distance than the

limiting distance. However, with the increase in the lim-

iting distance to 2,000 m and beyond, the kriging method is

able to estimate the soil moisture distribution entire area.

The RMSE between the estimated soil moisture and the

observed soil moisture at the 20 independent locations

considered to evaluate the interpolation model are given in

Table 4. From Table 4, it can be seen that the RMSE

increases with the increase in the limiting distance. The

analysis shows that to select the appropriate semi-vario-

gram model for kriging, several trials are required. The

limiting distance chosen to krig soil moisture values

Table 1 Effect of limiting distance and weight exponent on esti-

mated soil moisture using moving average technique

Trial no. Limiting distance (m) Weight exponent RMSE (%)

1 1,000 0.5 7.42

1.0 7.43

1.5 7.44

2.0 7.45

2.5 7.46

2 2,000 0.5 10.27

1.0 10.31

1.5 10.39

2.0 10.43

2.5 10.47

3 3,000 0.5 9.70

1.0 9.71

1.5 9.80

2.0 9.91

2.5 9.99

4 4,000 0.5 9.44

1.0 9.40

1.5 9.51

2.0 9.65

2.5 9.77

Table 2 Experimental semi-variance values at different lag distances

Lag distance (m) Number of location pairs Semi-variance

1,000 10 50.75

2,000 55 121.69

3,000 101 122.96

4,000 116 93.05

5,000 139 103.13

6,000 146 91.3

7,000 138 97.48

8,000 101 124.18

9,000 79 88.06

10,000 87 110.39

11,000 68 101.49

12,000 51 122.31

13,000 34 122.49

14,000 19 121.44

15,000 10 130.17

16,000 10 151.67

17,000 9 209.82

18,000 3 99.66

Table 3 RMSE between actual and model computed semi-variance

values

Semi-variogram

model

Lag distance

(m)

Nugget Sill Range

(m)

RMSE

(%)

Spherical 1,000 48 101 2,000 10.32

2,000 50 105 2,800 9.12

3,000 102 114 3,000 11.19

4,000 98 114 4,000 12.54

Gaussian 1,000 48 101 2,000 10.43

2,000 50 105 2,800 10.24

3,000 102 114 3,000 11.19

4,000 98 114 4,000 12.51

Exponential 1,000 48 101 2,000 10.32

2,000 50 105 2,800 10.23

3,000 102 114 3,000 12.19

4,000 98 114 4,000 12.51
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Fig. 4 Fitting of different

theoretical semi-variogram

models

Fig. 5 Spatial distribution of soil moisture using ordinary kriging at limiting distance. a 1,000 m, b 2,000 m, c 2,700 m
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depends upon the range of the semi-variogram model

adopted, which is again a case specific.

Conclusions

Spatial and temporal knowledge of soil moisture is

important to effectively model the surface runoff from a

river catchment. The moving average and kriging methods

were employed to estimate soil moisture at spatial scale in

a part of Solani River catchment. Observed soil moisture

data at 49 sample locations points were used to estimate

soil moisture spatial scale, whereas the soil moisture data at

20 locations were used to validate the results by computing

RMSE between the observed and estimated soil moisture

using the two methods.

For the dataset used, for small limiting distances, due to

non-availability of sufficient observed soil moisture loca-

tions within the adopted limiting distance, the moving

average method was not able to estimate the soil moisture

in the region. The effect of variation in weight exponent

was also found insignificant in this method. The kriging

method was also unable to estimate soil moisture in regions

where observed locations for interpolation were at a dis-

tance greater than the limiting distance. However, with the

increase in the limiting distance to 2,000 m and beyond,

the kriging method was able to estimate the soil moisture

distribution entire area. Increase in the limiting distance

beyond 1,000 m resulted in increase RMSE in both the

cases. From the comparison of the two methods, the kri-

ging appears to be a more practical method due to its

dependency on data-constructed semi-variogram.
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