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Abstract A new scheme for the delineation of raining

and non-raining cloud areas applicable to mid-latitudes

from daytime and nighttime multispectral satellite data is

developed. The technique is based on optical and micro-

physical cloud properties using an artificial neural network.

The tests have been conducted during the rainy season of

2006/2007. The proposed algorithm uses the spectral

parameters of SEVIRI (Spinning Enhanced Visible and

Infrared): brightness temperature TIR10.8 and brightness

temperature differences DTIR10.8–IR12.1, DTIR8.7–IR10.8,

DTIR3.9–IR10.8 and DTIR3.9–WV7.3 during the nighttime and

reflectances RVIS0.6, RNIR1.6, brightness temperature TIR10.8,

brightness temperature difference DTIR8.7–IR10.8 and

DTIR10.8–IR12.0 during the daytime. The algorithm is cali-

brated by instantaneous meteorological radar using multi-

layer perceptron. Radar provided the ‘‘ground precipitation

truth’’ for training and validation. The application shows

interesting and encouraging results.

Keywords Meteorological satellite � Mediterranean

climate � Properties of clouds, convective and stratiform

clouds

Introduction

Remote sensing data are now widely used for different

purposes, and the use of satellite data for rainfall estimates

has increased recently. Meteorological satellites are the

only instruments capable to provide large amounts of

rainfall measurements in remote areas where data are dif-

ficult or impossible to collect from the ground. For this

purpose, rainfall estimates using meteorological satellite

data [e.g. Meteosat Second Generation (MSG), National

Oceanic and Atmospheric Administration (NOAA), Trop-

ical Rainfall Measuring Mission (TRMM), TERRA, etc.]

started since their commissioning. Several research works

have been published in the literature (e.g. Stephens and

Kummerow 2007; Levizzani et al. 2001; Levizzani 2003;

Nauss and Kokhanovsky 2006). Programs such as Global

Precipitation Climate Project (GPCP) (Ebert et al. 1996),

Climate Prediction Center using Goes Precipitation

Index (CPC) (Herman et al. 1997), Estimation of

Precipitation using Satellite (EPSAT) (Berges et al. 2010;
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Jobard et al. 2011), Tropical Applications in Meteorology

using Satellite data (TAMSAT) (e.g. Grimes et al. 1999),

Global Atmosphere Research Programme (GARP) (Arkin

1979) have also been developed and applied to rainfall esti-

mates. Techniques researching the relationship between ther-

mal infrared and intensity of precipitation have been widely

used (e.g. Mishra et al. 2011; Adler and Negri 1988; Tarruella

and Jorge 2003) or Cold Cloud Durations (CCD) (e.g. Huff-

man et al. 2001; Grimes et al. 1999; Arkin 1979).

According to the precipitation processes in connection

with extratropical cyclones, convectively dominated precipi-

tation areas are characterized by a large vertical extension and

a cloud top rising high into the atmosphere. As a result, the

established relationship between cloud-top temperature

(CTT) and rainfall probability and intensity can be applied for

the detection and classification of these precipitation areas.

However, it becomes also visible that the advective-stratiform

precipitation areas, that form a major part of the precipitating

cloud areas in connection with extra-tropical cyclones, are not

necessarily connected to cold CTT. As a consequence, a CTT

threshold does not seem to be effective for the detection and

classification of these areas.

For that reason, some authors have suggested to use

optical and microphysical cloud proprieties to identify the

raining clouds even in stratiform systems from TRMM

satellite (e.g. Lensky and Rosenfeld 2003a, b) or from

Terra-MODIS satellite (e.g. Nauss and Kokhanovsky 2006;

Platnick et al. 2003). These techniques are based on the use

of information about droplet diameter, optical thickness

and thermodynamical phase of clouds. A raining cloud

requires a high optical thickness, a large effective particle

radius and the presence of ice crystals in the top.

The arrival of MSG gave a breakthrough for the clas-

sification of clouds. The SEVIRI radiometer (Spinning

Enhanced Visible and Infrared) on board MSG provides

more condensed information and its frequency of obser-

vation changes from 30 to 15 min. Multispectral capacity

increases to 12 channels. The spatial resolution changes

from 2.5 to 1 km at nadir for broadband visible channel

and 5–3 km for all other channels.

The simultaneous use of its spectral parameters provides

information about microphysical and optical cloud prop-

erties. Several techniques have been therefore developed to

identify the raining clouds from multispectral parameters

of SEVIRI radiometer (e.g. Kobayashi 2007; Roebeling

and Holleman 2009; Wolters et al. 2011; Nauss and

Kokhanovsky 2006; Thies et al. 2008a, b). These approa-

ches are not only applicable to the detection of mainly

convective precipitation by means of the commonly used

relation between infrared cloud-top temperature and rain-

fall probability but enables also the detection of stratiform

precipitation (e.g. in connection with mid-latitude frontal

systems).

Therefore, the objective of the present paper is to pro-

pose a new operational technique for rain area delineation

in the mid-latitudes on a 15-min basis for MSG/SEVIRI

daytime and nighttime data. It is applied to the complex

situation of the Mediterranean climate of this region and

takes into account the variation of the diurnal cycle of

clouds. The technique is based on information about optical

and microphysical cloud properties from MSG/SEVIRI. It

is calibrated by instantaneous meteorological radar data

using multilayers perceptron. Artificial neural networks

(NNs), widely used in precipitation remote sensing

(Bellerby et al. 2000; Grimes et al. 2003; Tapiador et al.

2004), are the statistical tool chosen to define the correla-

tions between satellite measurements and classes of ground

precipitation as estimated by weather radars.

Presentation of study region and datasets

Algeria is located on the South shore of the Mediterranean

region; it is bordered on the East by Tunisia and Libya, on

the South by Niger and Mali, South-West by Mauritania

and Western Sahara and West by Morocco. This region has

a particular orographic structure and special characteristics

of the sea-land coast. Due to these geographical properties,

its climate has a very complex spatio-temporelle feature

(Lionello et al. 2006). Indeed, it is influenced by both the

subtropical climate and the climate of mid-latitude systems

(Trigo et al. 2006; Alpert et al. 2006). The spatial distri-

bution of precipitation is characterized by a very marked

North–South gradient and a very low East–West gradient.

The rainy season extends from October to March, with

maximum rainfall occurring during November–December.

In the north, the climate is Mediterranean transit, marked

by seasonal oscillations. The average annual rainfall is

estimated at about 600 mm. The minimum rainfall is

recorded in the southern regions. It is about 50 mm while

the maximum is observed in the Djurdjura massif located

in Kabylia and the massif of Edough located a little farther

east, where it exceeds 1,500 mm. The study area in this

work is located in the north of Algeria, on domain with a

radius of 250 km (Fig. 1). In Fig. 1, the red circle shows

the domain of radar which coincides with the study area.

For this study, MSG/SEVIRI data together with corre-

sponding ground-based radar data are required.

MSG/SEVIRI data

The dataset used in this work provided by the SEVIRI

radiometer of Meteosat-8 in different frequency bands is

collected from November 2006 to March 2007 and

November 2009 to March 2010. The MSG is a spinning

stabilized satellite that is positioned at an altitude of about
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36,000 km above the equator at 3.4�W. The SEVIRI

radiometer gives every 15 min 12 images in the 12 avail-

able channels. We selected the channels sensitive to optical

and microphysical properties of clouds (optical thickness,

droplet size, cloud phase) as well as to the temperature of

cloud tops, and those located in the spectral absorption

bands mainly affected by the water vapor. These channels

correspond to bands: visible (VIS0.6), near infrared

(NIR1.6), water vapor (WV6.2, WV7.3) and infrared

(IR3.9, IR8.7, IR10.8 and IR12.0). The raw image (level

1.5) has a size of 3,712 9 3,712 pixels in each channel

(Eumetsat 2004). This corresponds to a spatial resolution at

the image center of about 3 km. Each pixel is coded on 10

bits. All pixels are geolocalized on a common grid in

geostationary projection. The sub-satellite point corre-

sponds to the pixel position (1,856, 1,856) on the image.

We stored the raw data (level 1.5), i.e. the values of

3,712 9 3,712 pixels of the image, and the calibration

coefficients to deduce the radiance for each pixel. For our

case, we have predefined an area in the image of the

Earth’s surface; it corresponds to our study region (Fig. 1).

Meteorological radar data

The radar data are provided by the ground-based C band

radar network of The National Office of Meteorology

(ONM). The radar of Setif is installed near to the town of

Setif, at 36�110N, 5�250E and 1,700 m of altitude, is one of

seven Algerian meteorological radars. This is a Radar

AWSR 81C in Cband, its operational frequency is

5.6 GHz. The displacement in azimuth is between 0� and

360� in continuous and the movement in inclination is of

-1� to 90�. Its polarization is linear and horizontal. The

effective domain of radar is a radius of 250 km.

Meteorological radar data are collected at a temporal

resolution of 15 min and a spatial resolution of 1 km in a

format of 512 9 512 pixels. Each pixel is coded on four

bits. Thus, it consist of 15 classes representing different

reflectivity intensities which are all together considered as

raining in the comparison with collocated satellite pixels

and one class representing no raining. The physical

parameter of the radar is the reflectivity factor, referred to

as Z and expressed in (mm6/m3). The conversion of

reflectivity factor Z into rainfall intensity R (mm/h) is

obtained using the Eq. (1) adapted to our Radar and can

also be converted into dBZ:

Z ¼ 300 R1:5 ð1Þ

The scan interval for both data sets is 15 min. For the

spatial comparison the radar data with an original spatial

resolution of 1 9 1 km were projected to the viewing

geometry of SEVIRI with a spatial resolution of 4 9 5 km

in the study area.

Because of discrepancies between the SEVIRI data and

radar data, due to differences in observation time, parallax

errors and collocation errors (Vicente et al. 2002), the

comparison of these types of data may be hampered. To

reduce the imbalances mentioned above and find a better

correlation, we performed a repositioning to SEVIRI data

to coincide spatially with radar data. We also applied a

resampling to radar data to have the same resolution as

resolution of satellite data. The resolution is 4 9 5 km in

the study region and is assumed constant due to low

overlapped area observed by both sensors. Therefore, each

SEVIRI pixel is collocated with 4 9 5 radar pixels. The

time lag between the radar and the satellite is about 3 min.

This small time difference does not require synchronization

between the two data types.

Methodology

Both datasets (SEVIRI and Radar) are divided into a

training and validation data set. The training data set used

for the development of the technique is collected from

November 2006 to March 2007. The validation data set

considered for the appraisal of the proposed technique is

recorded between November 2009 and March 2010.

Because of the differing information about optical

and microphysical cloud properties between day-time and

night-time scenes, both data sets are divided into day- and

night-time scenes.

We have hence created two identical neural networks for

identifying of rainfall. The first one is used during the

daytime and the second one is applied during nighttime

(see Fig. 5). Each neural network used in this scheme is a

multilayer perceptron (Rosenblatt 1962). The target outputs

Fig. 1 The study area and the position of the weather radar of Setif.

The red circle shows the radar domain with a radius of 250 km
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of the neural network correspond to radar data. A neural

network learns the input–output relationship through the

training process. The learning process in a neural network

is an interactive procedure in which its connection weights

are adapted through the presentation of a set of input–

output training example pairs.

The neural network algorithm

The kind of neural network used for this study is a feed-

forward multiple-layer perceptron (MLP). The MLP has a

relatively simple architecture in which each node receives

output only from nodes in the preceding layer and provides

input only to nodes in the subsequent layer. Thus, for the

node j in the kth layer the net input lkj is a weighted average

of the outputs of the (k-1)th layer :

lkj ¼
XNk�1

i¼1

w k�1ð Þij O k�1ð Þi ð2Þ

where w(k-1)ij is the weight connecting the output of the

node i in the (k-1)th layer to node j in the kth layer and

Nk-1 is the number of nodes in the (k-1)th layer. The

output of node j is a specified function of lkj:

Okj ¼ f ðlkjÞ ð3Þ

The eventual output is then a function of the weighted

combination of the final hidden-layer output values.

The list of inputs is information extracted from SEVIRI.

The full list is shown in Fig. 5a during daytime and in

Fig. 5b during nighttime. Each architecture is consisted of

four layers: input, output, and two hidden layers. The

transfer function relating input to output was a sigmoid

function:

Okj ¼ 1 þ expð�2lkjÞ
� ��1 ð4Þ

To ensure that the model has similar sensitivity to

changes in the various inputs, all of the inputs were

normalized to values between 0 and 1. For an input

variable x with maximum xmax and minimum xmin we

calculate the normalized value xA as:

xA ¼ x � xmin

xmax � xmin

ð5Þ

The optimum weights were determined by training

against the target values. The Fig. 2 shows the structure of

a neuron with the transfer function relating input to output.

Three-layer perceptron network for function

approximation

The rainfall estimation problem can be viewed as a complex

function approximation problem. The universal approxima-

tion theorem for neural network states that a two-layer feed

forward perceptron network with nonconstant, bounded, and

monotone-increasing continuous activation function can

perform arbitrary nonlinear input–output relationship map-

ping (Haykin 1994). Therefore, a two-layer perceptron net-

work can be used for the rainfall estimation problem. The

above universal approximation theorem gives the theoretical

justification for the approximation of an arbitrary continuous

function by a two-layer (one hidden-layer) perceptron net-

work. In practice, however, a three-layer (two hidden-layer)

perceptron network works better than a two layer perceptron

for the function approximation problem. This is because the

interaction between neurons in a single hidden layer network

makes it difficult to obtain a globally good approximation,

while a two-hidden layer network isolates and thus reduces

the interaction effects by solving the problem in two steps,

i.e. the first hidden-layer extracts the local features of the

input data whereas the second hidden-layer extracts the

global feature, to make the approximations in different

regions of the input space individually adjusted (Haykin

1994). Due to above reasons, multilayer perceptron net-

works have been chosen in this paper for the rainfall iden-

tification problem. The structure of this multilayer

perceptron with two hidden layers is shown in Fig. 5.

Training and testing data generation

A representative training data set consisting of the SEVIRI

data and corresponding Radar data are needed to develop a

multilayer perceptron for the rainfall identification prob-

lem. SEVIRI data are applied to the network as the input

and the corresponding Radar data are used as the target or

desired output (Fig. 5). The training procedure for a mul-

tilayer perceptron includes two steps, namely forward

propagation and backward propagation.

The connectional weights are updated during the back-

ward error propagation according to the learning algorithm.

This process is repeated until the error between the network

output and desired output (radar measurements) meets the

prescribed requirement. When the training process is

Fig. 2 Structure of a neuron of MLP
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complete, the network is ready for application. Rainfall

identification can be obtained if SEVIRI data are applied to

the network at this stage.

Application

The neural network MLP was created using five spectral

parameters that were calculated from SEVIRI radiometer

to discriminate raining cloud from no raining cloud. It was

created with four layers (input, two hidden, and output) that

consist of five input neurons, six neurons in the first hidden

layer, five neurons in the second hidden layer and two

output neurons in the output layer that represent the two

classes (raining and no raining) corresponding to radar data

(Fig. 5). The information about optical and microphysical

cloud properties derived from SEVIRI used as input data to

Artificial neural networks MLP are given as follows:

Information about ‘‘Cloud Water Path (CWP)’’ The

effective droplet radius re and the optical thickness s of

clouds both represented by a single parameter referred to as

CWP are directly related to rainfall probability of a cloud.

The effective particle radius (re) defined by the ratio

between the third and the second power of the droplet

spectrum is taken in place of the actual droplet spectrum.

The cloud optical thickness (s) defined by the integration of

the extinction coefficient integrated over the cloud geo-

metrical thickness is considered representatively for the

cloud geometrical thickness. The CWP represents the

amount of water vertically integrated in the cloud and

depends on the diameter of raindrops and the thickness of

the cloud formed by these drops. The relationship is given

by the following equation (Thies et al. 2008a, b; Nauss and

Kokhanovsky 2006):

CWP ¼ 2

3
q s re ð6Þ

where q (g/m3) is the density of water in the clouds.

The CWP is related to the rainfall probability of a cloud

and can therefore be used as a delimiter between the non-

raining and raining cloud (e.g. Thies et al. 2008a, b; Nauss

and Kokhanovsky 2006).

Information about ‘‘thermodynamic phase of cloud’’ To

strengthen the above probability, some authors hypothesize

that a cloud is more likely to produce rainfall for frontal

processes if the water droplets and ice crystals coexist

(phase of the cloud) (Thies et al. 2008a, b; Roebeling et al.

2007; Feidas and Giannakos 2010, 2011; Levizzani et al.

2001; Levizzani 2003). Indeed, the frontal systems are

mainly associated with particles of ice in the upper clouds

according to the Bergeron–Findeisen process (Houze

1993). Therefore, the intensity of precipitation in clouds is

related to thermodynamic phase of cloud and CWP. This

means that precipitating clouds are characterized by a large

enough CWP and the existence of ice particles in the upper

part of the cloud.

The technique we present for the identification of pre-

cipitating clouds is based on these assumptions. It is a

technique based on optical and microphysical cloud prop-

erties that was originally developed and applied to SSM/I

data (Special Sensor Microwave/Imager) (Wentz and

Spencer 1998). We will apply it to the radiances measured

in different bands of SEVIRI. Reflectances and brightness

temperatures are used during the daytime (in the presence

of solar radiation) and only brightness temperatures are

used during the nighttime.

Identification of the precipitating cloud during daytime

The CWP (i.e. values of re and s) considered for a rainfall

intensity differentiation can be retrieved on a pixel basis

during daytime using a combination of two solar channels

(i.e. a VIS and a NIR channel). Radiances obtained in the

band (0.4 and 0.8 lm) are usually used to estimate the

optical thickness of clouds (Arking and Childs 1985).

While the band between (1.6 and 3.9 lm) is a function that

depends on effective droplet radius of cloud (Baum et al.

2000; Arking and Childs 1985). The combination of these

two bands can provide useful information about optical

thickness and effective droplet radius of cloud. Indeed, the

information about the CWP can be derived implicitly using

both reflectance RVIS0.6 of visible channel (VIS0.6) and

reflectance RNIR1.6 of near-infrared channel (NIR1.6) from

SEVIRI (e.g. Thies et al. 2008a; Roebeling et al. 2007;

Roebeling and Holleman 2009). High values of RVIS0.6

correspond to high optical depth of cloud and low values of

RNIR1.6 indicate large particles in the cloud. This means

that a large CWP is obtained when high values of VIS0.6

coincide with low values of NIR1.6. However, because no

operational retrieval technique is currently available for

MSG SEVIRI, that is applicable to water and ice clouds,

and that is fast enough concerning the 15-min scan cycle,

the authors decided to use the original reflectance of cannel

(VIS0.6) and cannel (NIR1.6) SEVIRI channels, instead of

computed values of effective droplet radius and optical

thickness of clouds. The Fig. 3 shows CWP as a function of

RVIS0.6 versus RNIR1.63.

To determine the cloud phase (CP), which is also an

important parameter for the identification of precipitating

clouds; some authors have used information obtained from

the difference of brightness temperature DTIR8.7–IR10.8 (e.g.

Strabala et al. 1994; Thies et al. 2008b). Others have defined

a threshold of brightness temperature in the band IR10.8 to

discriminate between cloud ice and cloud water (Rossow

and Schiffer 1999). While Wolters et al. (2008) showed that

the simultaneous use of TIR10.8 and DTIR8.7–IR10.8 gives more

accurate identification of the thermodynamic phases of

Appl Water Sci (2013) 3:1–11 5
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clouds. They found that the formation of ice crystals begin

when TIR10.8 \238 K and DTIR8.7–IR10.8 [ 0.25 K. It should

be noted that a cloud is likely to produce precipitation when

ice crystals are present at the top of cloud.

Besides, the brightness temperature difference

DTIR10.8–IR12.1, which is a good indicator of the cloud

optical thickness, is very useful to discriminate optically

thick cumuliform clouds from optically thin cirrus clouds

(Feidas 2011; Inoue 1985, 1987a). Optically thick cumu-

lus-type cloud shows the smaller DTIR10.8–IR12.1 due to their

black-body characteristics, while optically thin cirrus cloud

shows the larger DTIR10.8–IR12.1 due to the differential

absorption characteristics of ice crystals between the two

channels (Inoue et al. 2001). It is expected that optically

thick and deep convective clouds are associated with rain

(Inoue 1987b). Even though the split window technique is

very effective in detecting and removing optically thin

cirrus clouds with no precipitation, it sometimes incorrectly

assigns optically thick clouds like cumulonimbus in place

of optically thin clouds (Inoue 1997).

Five parameters were therefore chosen to identify rain-

ing clouds during the daytime (Fig. 5a): RVIS0.6, RNIR1.6,

TIR10.8, DTIR10.8–IR12.1 and DTIR8.7–IR10.8. This is carried out

during solar illumination over the study area. To avoid

errors due to low solar radiation, we used the radiances

only when the zenith angle of the sun is between 0� and 70�
relative to the study area.

Identification of precipitating clouds during nighttime

The night-time technique is based on the same conceptual

model as the presented daytime scheme. However, since no

operational retrieval exists for MSG to compute the CWP

during nighttime, suitable combinations of brightness

temperature TIR10.8 and brightness temperature differ-

ences DTIR10.8–IR12.1, DTIR8.7–IR10.8, DTIR3.9–IR10.8 and

DTIR3.9–WV7.3 are used to infer implicit information about

microphysical and optical cloud properties.

The combination of the channel IR3.7 with the channel

IR11 was already used to extract information about

microphysical and optical cloud properties (e.g. Hutchison

et al. 2006; Lensky and Rosenfeld 2003a).

Lensky and Rosenfeld (2003a, b) attempted to relate the

brightness temperature difference DTIR3.7–IR11 of satellite

TRMM to effective particle radius and to cloud optical

thickness. They showed that for a cloud-top temperature

higher than 260 K, precipitation is obtained when the

DTIR3.7–IR11 is in the interval ]1 K, 4 K[. Values lower than

the interval are obtained when the cloud is optically thick

with small effective particle radius. Values higher than the

interval correspond to a semi-transparent cloud. These two

situations correspond to a non-raining cloud. Thies et al.

(2008b) used the channel IR3.9 and the channel IR10.8 of

SEVIRI radiometer on ice clouds and water clouds. They

get the same conclusions as Lensky and Rosenfeld (2003a,

b). Indeed, a precipitating cloud indicates mean values for

DTIR3.9–IR10.8.

In general, DTIR3.9–WV7.3 should show similar charac-

teristics as DTIR3.9–IR10.8. Because of the diminishing effect

of the water vapor absorption and emission in mid- to low-

tropospheric levels on the brightness temperature (BT) in

the channel (WV7.3) (Schmetz et al. 2002), DTIR3.9–WV7.3

should be generally higher than DTIR3.9–IR10.8. Therefore,

DTIR3.9–WV7.3 is expected to provide additional information

about the CWP. For thin clouds with small or large parti-

cles, respectively (small or medium CWP), TIR3.9 is larger

than TWV7.3 and DTIR3.9–WV7.3 reaches the highest values.

Large particles together with a high optical thickness (high

CWP) result in medium to high difference values, which

are lower than for optically thin clouds. Thick clouds with

small particles (medium CWP) lead to small DTIR3.9–WV7.3.

Therefore, we use suitable combinations of brightness

temperature differences (DT) between the thermal bands of

MSG SEVIRI to infer qualitative information on CWP

(DTIR3.9–WV7.3 and DTIR3.9–IR10.8) (Thies et al. 2008b;

Feidas and Giannakos 2011). The CWP as a function of

DTIR3.9–IR10.8 versus DTIR3.9–WV7.3 is given in the Fig. 4.

In addition, DTIR8.7–IR10.8 and DTIR10.8–IR12.0 are par-

ticularly considered to supply information about the cloud

phase. Similar to the daytime approach, rain area delinea-

tion is realized by means of the pixel-based rainfall

Fig. 3 Cloud water path as a function of RVIS0.6 versus RNIR1.63

6 Appl Water Sci (2013) 3:1–11
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confidence as a function of the respective value combination

of the brightness temperature differences. To these param-

eters, we add TIR10.8, DTIR10.8–IR12.0 and DTIR8.7–IR10.8 to

identify precipitating clouds as mentioned previously for

daytime.

In summary, we have decided to use parameters

DTIR3.9–IR10.8 and DTIR10.8–IR12.0 that provide information

about the CWP, and we incorporate the DTIR8.7–IR10.8,

DTIR10.8–IR12.0 and TIR10.8, which give information about

the thermodynamic phase and thickness of cloud.

The parameters presented previously will be used as

input data, and information about rain from meteorological

radar as output data (Fig. 5). The MPL rain delineation

algorithms during daytime were trained using five spectral

parameters (Fig. 5a) and the MPL during nighttime were

trained using five spectral parameters (Fig. 5b). These

parameters were computed from SEVIRI dataset during the

period November 2006 to March 2007.

Rainfall identification results and performance

evaluation

Models are validated against independent rainy days during

November 2009 to March 2010, not used for training the

rain area delineation algorithms. The evaluation was per-

formed by comparison with instantaneous ground-based

radar data collocated with SEVIRI data. The aim is to

evaluate the potential of MLP algorithm in the identifica-

tion of precipitation. The observation scenes made by the

radar and satellite at a rhythm of 15 min are 15,880, most

of which are non-raining situations.

To evaluate the potential improvement by the new

scheme, the validation scenes were also classified by

the Enhanced Convective Stratiform Technique (ECST)

(Reudenbach et al. 2001) which is similar to the Convective

Stratiform Technique (CST) (Adler and Negri 1988). The

method CST originally developed by Adler and Negri

(1988) uses a temperature threshold to identify convective

cores. Adjacent pixels are identified as stratiform according

to their levels of temperature and the area occupied by these

pixels. This technique was applied successfully in tropical

convective systems (Bendix 1997). However, it shows limits

in the extratropical region (Negri and Adler 1993). Reu-

denbach et al. (2001) adjusted the technique CST to be

applied to convective systems in the mid-latitude. The ECST

additionally includes the water vapor channel temperature

for a more reliable deep convective/cirrus clouds discrimi-

nation (Tjemkes et al. 1997). It is applied also in extra-

tropical regions and is used for the identification of rain

areas since these regions approximately represent the per-

formance of many present optical rainfall retrievals.

The results were calculated at scale of pixel of SEVIRI

images, in collocation with radar data. Each observation

gives about 6,500 pair of pixels in co-coincidences.

The evaluation parameters are determined from Table 1, in

which a, b, c and d were values from a contingency table

(Table 1). These parameters are calculated by using

equations (7), (8), (9), (10), (11) and (12).

• The probability of detection (POD) measures the fraction

of observed events that were correctly identified:

POD ¼ a

a þ c
ð7Þ

The optimal value of the POD is 1.

• The probability of false detection (POFD) indicates the

fraction of pixels incorrectly identified by the satellite

method.

POFD ¼ b

b þ d
ð8Þ

The optimal value of POFD is 0.

• The false alarm ratio (FAR) measures the fraction of

estimated events that were actually not events:

FAR ¼ b

a þ b
ð9Þ

Fig. 4 Cloud water path as a function of DTIR3.9–IR10.8 versus

DTIR3.9–WV7.3
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Its optimal value is 0.

• The frequency BIAS index (Bias):

Bias ¼ a þ b

a þ c
ð10Þ

The optimal value of the Bias is 1. It measures the over-

estimation or underestimation of the method. A Bias

greater than 1 indicates an overestimation, while a Bias

lower than 1 indicates an underestimation.

• The Critical Success Index (CSI) measures the fraction

of observed and/or estimated events that were correctly

diagnosed:

CSI ¼ a

a þ b þ c
ð11Þ

The optimal value of CSI is 1.

• The percentage of corrects (PC) is the percentage of

correct estimations:

PC ¼ a þ d

n
ð12Þ

The optimal value of PC is 1.

The statistical results of the verification for MLP and

ECST are given in the following table:

The area percentage of raining cloud classified by the

proposed algorithm is almost consistent with those detected

by the ground-based radar during daytime (Table 2). The

good POD value is accompanied by a very low POFD

value and the relatively low FAR. The values are 0.78, 0.03

and 0.21, respectively. The CSI indicates a good degree of

correctly classified pixels. Bias parameter shows that the

technique slightly underestimates the precipitation. It

indicates a value of 0.69. The accuracy score shows that

large fractions (PC 98 %) of the pixels are correctly

identified as rainy or non-rainy by MLP. However, it is

Fig. 5 Structure of multilayer

perceptron rain area delineation

algorithm (MLP) that combines

spectral parameters from

SEVIRI satellite images

a during daytime and b during

nighttime

Table 1 Overview of the combinations in a contingency table

Identified by satellite

method

Observed by radar

Raining No

raining

Total

Raining a b a ? b

No raining c d c ? d

Total a ? c b ? d a ? b ? c ? d = n

8 Appl Water Sci (2013) 3:1–11
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recognized that this result is heavily influenced by the high

occurrence of non-rainy pixels. All these results indicate

that the best values are obtained for MLP compared to

ECST (Table 2).

The results obtained during nighttime are almost similar

to those obtained during daytime. Indeed, the area fraction

of raining cloud classified by the satellite-based technique

is in good agreement with the corresponding area detected

by the radar. The POD indicates that on average about

73 % of the pixels classified as raining cloud by the radar

are consistently identified by the proposed scheme and it is

more important than ECST technique. Compared to ECST

technique, the FAR and the POFD are also lower and so

indicate good performance. The high CSI value further

supports the overall good performance of the technique

with a better value. The slight underestimation by the

ECST is a bit more pronounced than MLP.

For the total scenes, the identified fraction of raining

cloud reveals a positive performance of the new differen-

tiation scheme. The better performance of the daytime

scheme for identifying precipitation area is probably due to

the higher information content about the CWP inherent in

the VIS0.6 and NIR1.6 channel compared to the four

channel differences considered in the nighttime scheme.

The accuracy score shows that large fractions (97 %) of

the pixels are correctly identified as rainy or non-rainy by

MLP. The Bias score (0.95 for MLP and 0.85 for ECST)

indicates that both MLP and ECST have a general tendency

to underestimate rainy pixels. POD shows that 77 % of the

rainy area is correctly detected by MLP, while ECST

detects 64 % of the rainy area correctly. FAR reports that

24 and 29 % of the pixels detected as rainy by MLP and

ECST, respectively, are false alarms.

To gain a visual impression of the performance of the

introduced retrieval scheme, the classified rain area for a

scene from Mars 09, 2011 (12:30 UTC) is depicted in

Fig. 6. Figure 6a shows the brightness temperature in the

channel IR10.8. Figure 6b shows the rain area classified by

both the new developed scheme and the radar. Figure 6c

shows the rain area classified by both the ECST and radar.

The number of misclassified pixels is more important for

the ECST method than for the MLP method. This visual

results support the statistics results obtained previously. It

should be noted that for scenes classified by the ECST, the

results show that the identification of raining clouds still

unsatisfactory in the mid-latitudes.

To summarize the results of the comparison study, an

overall good performance of the proposed scheme can be

stated, especially concerning the high temporal resolution

of 15 min and the high spatial resolution of 3 9 3 km in

sub-satellite (4 9 5 km in study area). Thus, a process-

oriented separation of areas according to the conceptual

model introduced in this study is possible.

Conclusion

A new consistent day and night technique for precipitation

process separation and rainfall intensity differentiation

using MSG SEVIRI data is proposed. It relies on infor-

mation about the CWP, the CP in the upper regions, and the

cloud top height (CTH). This technique is based on the new

conceptual model that precipitation is favored by a large

CWP and the presence of ice particles in the upper part of

the cloud. The technique considers information about

both parameters inherent in the channel differences

DTIR3.9–IR10.8, DTIR3.9–IR7.3, DTIR8.7–IR10.8, DTIR10.8–IR12.1

Table 2 Results of evaluation parameters

POD POFD FAR Bias CSI PC

Day

ECST 0.65 0.06 0.29 0.85 0.57 0.94

MLP 0.78 0.03 0.21 0.95 0.69 0.98

Night

ECST 0.62 0.05 0.30 0.85 0.58 0.92

MLP 0.73 0.04 0.26 0.94 0.66 0.96

Total

ECST 0.64 0.06 0.29 0.85 0.58 0.93

MLP 0.77 0.04 0.24 0.94 0.68 0.97

Optimal values 1 0 0 1 1 1

Fig. 6 Delineated rain area for the scene from Mars 09, 2011 (12:30

UTC). a BT10.8 image, b rain area delineated by Radar and MLP

c rain area detected by Radar and ECST
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and brightness temperature TIR10.8, to detect potentially

precipitating cloud areas during nighttime and reflectances

RVIS0.6, RNIR1.6, brightness temperature TIR10.8, brightness

temperature difference DTIR8.7–IR10.8 and DTIR10.8–IR12.0

during the daytime. All parameters are used to gain implicit

knowledge about the CWP and the cloud phase.

Together nighttime and daytime, the new algorithm

offers the great potential for a 24-h technique for rain area

delineation with a high spatial and temporal resolution.

The present study has demonstrated the great potential

offered by the increased spectral resolution of MSG/

SEVIRI. The spectral parameters are adjusted to geoclimatic

conditions of the Mediterranean region. Indeed, the incor-

poration of multispectral information about optical and

microphysical cloud properties has improved the identifi-

cation of precipitating clouds. The results of identification

by the MLP method were compared with radar data. The

proposed technique is more efficient than existing tech-

niques based only on information about the cloud-top

temperature. The algorithm shows encouraging performance

for the delineation of raining area in middle latitudes.

A further improvement in the identification performance

of a neural network algorithm can be investigated if a wider

set of input/output patterns, which are representative of

different meteorological and geographical situations, is

provided to the network during the training phase. Another

possible way to optimize the estimate capability of a

NN-based system is to use multisensory information at a

higher sampling rate, using the MSG data from different

multispectral channels.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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