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Abstract Groundwater and soil pollution are noted to be

the worst environmental problem related to the mining

industry because of the pyrite oxidation, and hence acid

mine drainage generation, release and transport of the toxic

metals. The aim of this paper is to predict the concentration

of Ni and Fe using a robust algorithm named support vector

machine (SVM). Comparison of the obtained results of

SVM with those of the back-propagation neural network

(BPNN) indicates that the SVM can be regarded as a

proper algorithm for the prediction of toxic metals con-

centration due to its relative high correlation coefficient

and the associated running time. As a matter of fact, the

SVM method has provided a better prediction of the toxic

metals Fe and Ni and resulted the running time faster

compared with that of the BPNN.

Keywords Prediction � Toxic metals � Support vector

machine � Sarcheshmeh cooper mine � Back-propagation

neural network

Introduction

Copper exploitation causes a major water quality problem due

to acid mine drainage (AMD) generation in Sarcheshmeh

mine, Kerman Province, southeast Iran. The oxidation of

sulphide minerals particularly pyrite exposed to atmospheric

oxygen during or after mining activities generates acidic

waters with high concentrations of dissolved iron (Fe), sul-

phate (SO4) and both of the heavy and toxic metals (Williams

1975; Moncur et al. 2005). The low pH of AMD may cause

further dissolution and the leaching of additional metals (Mn,

Zn, Cu, Cd, and Pb) into aqueous system (Zhao et al. 2007).

AMD containing heavy and toxic metals has detrimental

impact on aquatic life and the surrounding environment. Shur

River in the Sarcheshmeh copper mine area is polluted by

AMD with pH values ranging between 2 and 4.5 and high

concentrations of heavy and toxic metals. The prediction of

toxic metals in Shur River is useful in developing proper

remediation and monitoring methods. Environmental prob-

lems due to the oxidation of sulphide minerals and hence

AMD generation in the Sarcheshmeh copper mine and its

impact on the Shur River have been investigated in the past

(Marandi et al. 2007; Shahabpour and Doorandish 2008;

Doulati Ardejani et al. 2008; Bani Assadi et al. 2008;

Derakhshandeh and Alipour 2010). In addition, several

investigations have been carried out using artificial neural

networks (ANN) multiple linear regression (MLR) in different

fields of environmental engineering in the past few decades

(Karunanithi et al. 1994; Lek and Guegan 1999; Govindaraju

2000; Karul et al. 2000; Bowers and Shedrow 2000; Kemper

and Sommer 2002; Dedecker et al. 2004; Kuo et al. 2004,

2007; Khandelwal and Singh 2005 Almasri and Kaluarachchi

2005; Kurunc et al. 2005; Sengorur et al. 2006; Messikh et al.

2007; Palani et al. 2008; Hanbay et al. 2008; Chenard and

Caissie 2008; Dogan et al. 2009; Singh et al. 2009).
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Recently, a novel machine learning technique, called

support vector machine (SVM), has drawn much attention in

the fields of pattern classification and regression forecasting.

SVM was first introduced by Vapnik (1995). SVM is a kind

of classification methods on statistic study theory. This

algorithm derives from linear classifier, and can solve the

problem of two-kind classifier, later this algorithm applies in

non-linear fields, i.e. to say, we can find the optimal

hyperplane (large margin) to classify the samples set. It is an

approximate implementation to the structure risk minimi-

zation (SRM) principle in statistical learning theory (SLT),

rather than the empirical risk minimization (ERM) method

(Kwok 1999). Compared with traditional neural networks,

SVM can use the theory of minimizing the structure risk to

avoid the problems of excessive study, calamity data, local

minimal value and etc. For the small samples set, this

algorithm can be generalized well. SVM has been success-

fully used for machine learning with large and high-

dimensional datasets. These attractive properties make SVM

become a promising technique. This is due to the fact that the

generalization property of a SVM does not depend on the

complete training data but only a subset, the so-called sup-

port vectors. Now, SVM has been applied in many fields as

follows: handwriting recognition, three-dimension objects

recognition, faces recognition, text images recognition,

voice recognition, regression analysis, and so on (Carbonneau

et al. 2008; Chen and Hsieh 2006; Huang 2008; Seo 2007;

Trontl et al. 2007; Wohlberg et al. 2006). The aim of this

paper is to predict the concentration of two toxic metals

namely Fe and Ni using SVM. For making a good compari-

son, the obtained results will be compared with those given by

a back-propagation neural network (BPNN).

Study area

Sarcheshmeh copper mine is located 160 km to southwest

of Kerman and 50 km to southwest of Rafsanjan in Kerman

province, Iran. The main access road to the study area is

Kerman-Rafsanjan-Shahr Babak road. This mine belongs

to Band Mamazar-Pariz Mountains. The average elevation

of the mine is 1,600 m. The mean annual precipitation of

the mine area varies from 300 to 550 mm. The temperature

varies from ?35�C in summer to -20�C in winter. The

area is covered with snow about 3–4 months per year. The

wind speed sometimes exceeds to 100 km/h. A rough

topography is predominant at the mining area. Figure 1

shows the geographical position of the Sarcheshmeh cop-

per mine.

The orebody in Sarcheshmeh is oval shaped with a long

dimension of about 2,300 m and a width of about 1,200 m.

This deposit is associated with the late Tertiary Sar-

cheshmeh granodiorite porphyry stock (Waterman and

Hamilton 1975). The porphyry is a member of a complex

series of magmatically related intrusives emplaced in the

Tertiary volcanics at a short distance from the edge of an

older near-batholith-sized granodiorite mass. Open pit

mining method is used to extract copper ore in the Sar-

cheshmeh mine. A total of 40,000 tons of ore (average

grades 0.9% Cu and 0.03% molybdenum) are approxi-

mately extracted per day from the Sarcheshmeh mine

(Banisi and Finch 2001).

Sampling and field methods

Sampling of water in the Shur River downstream from the

Sarcheshmeh mine was carried out in February 2006. Water

samples consist of water from the Shur River (Fig. 1) orig-

inating from the Sarcheshmeh mine, acidic leachates of heap

structure, run-off of leaching solution into the River and

tailings along the Shur River. The water samples were

immediately acidified by adding HNO3 (10 cc acid to

1,000 cc sample) and stored under cool conditions. The

equipments used in this study consisted of sample container,

GPS, oven, autoclave, pH meter, atomic adsorption and ICP

analysers. The pH of the water samples was measured using a

portable pH meter in the field. Other field measured quanti-

ties were total dissolved solids (TDS), electric conductivity

(EC) and temperature. Analyses for dissolved metals were

performed using atomic adsorption spectrometer (AA220) in

the Water Laboratory of the National Iranian Copper

Industries Company (NICIC). The ICP (model 6000) anal-

ysis method was also used to analyze the concentrations of

those metals, usually detected in the range of ppb. Table 1

gives the minimum, maximum and the mean values of the

some physical and chemical measured quantities.

Support vector machine

In pattern recognition, the SVM algorithm constructs

nonlinear decision functions by training a classifier to

perform a linear separation in some high dimensional space

which is nonlinearly related to input space. To generalize

the SVM algorithm for regression analysis, an analog of the

margin is constructed in the space of the target values

(y) using Vapnik’s e-insensitive loss function (Fig. 2)

(Quang-Anh et al. 2005; Stefano and Giuseppe 2006).

y � f ðxÞj je:¼ max 0; y � f ðxÞ � ej jf g ð1Þ

To estimate a linear regression

f ðxÞ ¼ w � xð Þ þ b ð2Þ

where w is the weighted matrix, x is the input vector and b

is the bias term. With precision, one minimizes
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1

2
wk k2þC

Xm

i¼1

y � f ðxÞj je ð3Þ

Where C is a trade-off parameter to ensure the margin e
is maximized and error of the classification n is minimized.

Considering a set of constraints, one may write the

following relations as a constrained optimization problem:

Lðw; n; n0Þ ¼ 1

2
wk k2þC

XN

i¼1

ðni þ n0iÞ ð4Þ

That according to relations (5) and (6), any error smaller

than e does not require a nonzero ni or n0i, and does not

enter the objective function (4) (Lia et al. 2007; Hwei-Jen

and Jih Pin 2009; Eryarsoy et al. 2009).

By introducing Lagrange multipliers (a and a0) and

allowing for C [ 0, e [ 0 chosen a priori, the equation of

an optimum hyper plane is achieved by maximizing of the

following relations:

Lða; a0Þ ¼ 1

2

XN

i¼1

XN

i¼1

ðai � a0iÞx0ixiðai � a0iÞ

þ
XN

i¼1

ððai � a0iÞyi � ðai þ a0iÞeÞ ð8Þ

Subject to 0�ðai � a0iÞ�C ð9Þ

Fig. 1 Location of the Sarcheshmeh cooper mine and Shur River

Table 1 Maximum, minimum and mean physical and chemical constituents including toxic metals of the Shur River (concentrations of elements

are given in ppm)

pH SO4
-2 HCO3

- Ca2? Mg2? Ni Fe TDS EC (lS/cm)

Min 3.3 27 0 92 13 0.02 0.01 446 870

Max 7.20 1,526 628 460 123 25 23 2,080.68 2,260

Mean 5.27 778.45 34.01 182.78 56.70 4.5 4.60 1,009.90 1,306.52
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Where, xi only appears inside an inner product. To get a

potentially better representation of the data in non-

linearized case, the data points can be mapped into an

alternative space, generally called feature space (a pre-

Hilbert or inner product space) through a replacement:

xi � xj ! /ðxiÞ � /ðxjÞ ð10Þ

The functional form of the mapping u(xi) does not need to

be known since it is implicitly defined by the choice of kernel:

k(xi, xj) = u(xi).u(xj) or inner product in Hilbert space. With a

suitable choice of kernel, the data can become separable in

feature space while the original input space is still non-linear.

Thus, whereas data for n-parity or the two spirals problem are

non-separable by a hyper plane in input space, it can be

separated in the feature space by the proper kernels (Scholkopf

et al. 1998; Walczack and Massart 1996; Rosipal and Trejo

2004; Mika et al. 1999; Scholkopf and Smola 2002; Gunn

1997). Table 2 gives some of the common kernels.

Then, the nonlinear regression estimate takes the fol-

lowing form:

yi ¼
XN

i¼1

XN

j¼1

ðai � a0iÞ/ðxiÞT/ðxjÞ

þb ¼
XN

i¼1

XN

j¼1

ðai � a0iÞKðxi; xjÞ þ b ð11Þ

Where b is computed using the fact that equation (5)

becomes an equality with ni = 0 if 0 \ ai \ C, and

relation (6) becomes an equality with n0i = 0 if

0 \ a0i \ C (Chih-Hung et al. 2009; Sanchez 2003).

Network training: the over-fitting problem

One of the most common problems in the training process

is the over fitting phenomenon. This happens when the

error on the training set is driven to a very small value, but

when new data are presented to the network the error is

large. This problem occurs mostly in case of large networks

with only few available data. Demuth and Beale (2002)

have shown that there are a number of ways to avoid over-

fitting problem. Early stopping and automated Bayesian

regularization methods are the most common. However,

with immediate fixing the error and the number of epochs

to an adequate level (not too low/not too high) and dividing

the data into two sets: training and testing, one can avoid

such problem by making several realizations and selecting

the best of them. In this paper, the necessary coding was

added through MATLAB multi-purpose commercial soft-

ware to implement the automated Bayesian regularization

for training both the SVM and BPNN. In this technique, the

available data are divided into two subsets. The first subset

is the training set, which is used for computing the gradient

and updating the network weights and biases. The second

subset is the test set. This method works by modifying the

performance function, which is normally chosen to be the

sum of squares of the network errors on the training set.

The typical performance function that is used for training

neural networks is the mean sum of squares of the network

errors according to the following equation:

mse ¼ 1

N

XN

i¼1

ðeiÞ2 ¼ 1

N

XN

i¼1

ðti � aiÞ2 ð12Þ

Fig. 2 Concept of e-
insensitivity. Only the samples

out of the ±e margin will have a

non-zero slack variable, so they

will be the only ones that will be

part of the solution

Table 2 Polynomial, normalized polynomial and radial basis func-

tion (Gaussian) kernels (Wang 2005)

Kernel function Type of classifier

Kðxi; xjÞ ¼ ðxT
i xj þ 1Þq Complete polynomial of degree q

Kðxi; xjÞ ¼ ðxT
i xjþ1Þqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxT
i xjÞ�ðyT

i yjÞ
p Normalized polynomial kernel of

degree q

Kðxi; xjÞ ¼ exp xi � xj

�� ��2
=2r2

h i
Gaussian (RBF) kernel with

parameter r which controls the

half-width of the curve fitting

peak
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where N represents the number of samples, a is the pre-

dicted value, t denotes the measured value and e is the

error.

It is possible to improve generalization if we modify the

performance function by adding a term that consists of the

mean of the sum of squares of the network weights and

biases which is given by:

msereg ¼ cmse þ ð1 � cÞ msw ð13Þ

Where, msereg is the modified error, c is the

performance ratio, and msw can be written as:

msw ¼ 1

N

XN

i¼1

wi ð14Þ

Performance function will cause the network to have

smaller weights and biases, and this will force the network

response to be smoother and less likely to over fit (Demuth

and Beale 2002).

Data set

One of the main objectives of this study is to predict the

concentrations of Ni and Fe in the samples collected from

the Shur River nearby the Sarcheshmeh cooper mine using

SVM and BPNN methods. In this regard, physical and

chemical constitutions (given in Table 1) are considered as

the inputs, whereas Ni and Fe concentrations are taken as

the output of the network in the both methods. In view of

the requirements of the SVM and back-propagation neural

computation algorithms, the data of both the input and

output variables were normalized to an interval by a

transformation process. In this study, normalization of data

(inputs and outputs) was carried out that the normalized

results were transformed to the range of (-1, 1) using

equation (15) and the number of train data (40) and test

data (16) were then selected randomly.

pn ¼ 2
p � pmin

pmax � pmin

� 1 ð15Þ

where, pn is the normalized parameter, p denotes the actual

parameter, pmin represents the minimum of the actual

parameters and pmax stands for the maximum of the actual

parameters. In addition, the leave-one-out (LOO) cross-

validation of the whole training set was used for adjusting

the associated parameters of the networks (Liu et al. 2006).

Prediction of toxic metals concentration by SVM

Similar to other multivariate statistical models, the per-

formance of SVM for regression depend on the

combination of several parameters. They are capacity

parameter C, e of e-insensitive loss function, the kernel

type K and its corresponding parameters. C is a regulari-

zation parameter that controls the trade-off between max-

imizing the margin and minimizing the training error. If C

is too small then insufficient stress will be placed on fitting

the training data. If C is too large then the algorithm will

overfit the training data. However, Wang et al. (2003)

indicated that prediction error was scarcely influenced by

C. To make the learning process stable, a large value

should be set up for C (e.g., C = 100).

The optimal value for e depends on the type of noise

present in the data, which is usually unknown. Even if

enough knowledge of the noise is available to select an

optimal value for e, there is the practical consideration of

the number of resulting support vectors.e-insensitivity

prevents the entire training set meeting boundary condi-

tions, and so allows for the possibility of sparsity in the

dual formulations solution. So, choosing the appropriate

value of e is critical from theory.

Since in this study the nonlinear SVM is applied, it

would be necessary to select a suitable kernel function. The

obtained results of previous published researches (e.g.

Dibike et al. 2001; Han and Cluckie 2004) indicate the

Gaussian radial basis function has superior efficiency than

other kernel functions. As seen in the Table 1, the form of

the Gaussian kernel is as follow:

Kðxi; xjÞ ¼ e� xi�xjj j2=2r2 ð16Þ

In addition, where r is a constant parameter of the

kernel and can either control the amplitude of the Gaussian

function and the generalization ability of SVM. We have to

optimize r and find the optimal one.

To find the optimum values of two parameters (r and e)
and prohibit the overfitting of the model, the dataset was

separated into a training set of 40 compounds and a test set

of 16 compounds randomly and the LOO cross-validation

of the whole training set was performed. The LOO pro-

cedure consists of removing one example from the training

set, constructing the decision function on the basis only of

the remaining training data and then testing on the removed

example (Liu et al. 2006). In this fashion one tests all

examples of the training data and measures the fraction of

errors over the total number of training examples. The root

mean square (RMS) error was used as an error function to

evaluate the quality of model.

Detailed process of selecting the parameters and the

effects of every parameter on generalization performance

of the corresponding model are shown in Fig. 3. To obtain

the optimal value of r, the SVM with different r were

trained, the r varying from 0.01 to 0.3, every 0.01. We

calculated the RMS errors for different r, according to the

Appl Water Sci (2011) 1:125–134 129
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generalization ability of the model based on the LOO

cross-validation for the training set to determine the opti-

mal one. The curve of RMS error versus the sigma was

shown in Fig. 3. The optimal r was found as 0.13. To find

an optimal e, the RMS errors for different es, were calcu-

lated. The curve of the RMS error versus e was shown in

Fig. 3. From Fig. 3, the optimal e was found as 0.08.

From the above discussion, the r, e and C were fixed to

0.13, 0.08 and 100, respectively, when the support vector

number of the SVM model was 48. Figure 4 is a schematic

diagram showing the construction of the SVM.

Afterward, the most relevant input variables for pre-

dicting the concentration of Ni and Fe among many com-

binations of attributes (different physical and chemical

parameters provided in the Table 1), the best input vari-

ables were selected by the trial and error method (Table 3).

Two criteria were used to evaluate the effectiveness of each

network and its ability to make accurate predictions. The

RMS error can be calculated as follows:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyi � ŷiÞ2

n

s

ð17Þ

where, yi is the measured value, ŷi denotes the predicted

value, and n stands for the number of samples. RMS error

indicates the discrepancy between the measured and

predicted values. The lowest the RMS, the more accurate

the prediction is. Furthermore, the efficiency criterion, R, is

given by:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Pn

i¼1 ðyi � ŷiÞ2

Pn
i¼1 y2

i �
Pn

i¼1
ŷ2

i

n

vuut ð18Þ

Where, R efficiency criterion represents the percentage of

the initial uncertainty explained by the model. The best

fitting between measured and predicted values, which is

unlikely to occur, would have RMS = 0 and R = 1. It was

found that combination of seven parameters (pH, SO4,

HCO3, TDS, EC, Mg, and Ca) is the most suitable input

0.10 0.15 0.20
SIGMA

0.30

0.35

0.40

0.45
RMSE

0.02 0.04 0.06 0.08 0.10 0.12 0.14
EPSILON

0.35

0.40

RMSE

Fig. 3 RMS error versus r (left) and RMS error versus e (right) in

LOO cross-validation stage

Fig. 4 Schematic diagram of

optimum SVM for prediction of

Ni and Fe concentration
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variable. Table 3 gives the correlation coefficient (R) and

RMS of the prediction based on the different input variables.

In the next stage, the performance of SVM was evaluated

using the measured and predicted concentrations. Figure 5

can provide a good insight into the process of prediction.

As it is quite observed in Fig. 5, there is an acceptable

agreement (correlation coefficient of 0.92 for the Fe and

correlation coefficient of 0.95 for Ni) between the predicted

and measured dataset. Based on the Fig. 5, the SVM is a

proper method for the prediction of toxic metal concen-

tration. Nonetheless, the performance of this method

should be compared with another suitable method for

highlighting the highly performance of the SVM.

Back-propagation neural network

Back-propagation neural networks are usually recognized

for their prediction capabilities and ability to generalize

well on a wide variety of problems. These models are a

supervised type of networks, in other words, trained with

both inputs and target outputs. During training, the network

tries to match the outputs with the desired target values.

Learning starts with the assignment of random weights.

The output is then calculated and the error is estimated.

This error is used to update the weights until the stopping

criterion is reached. It should be noted that the stopping

criteria are usually the average error of epoch.

The optimal network for this study is a multilayer per-

ceptron (Cybenko 1989, Hornik et al. 1989, Haykin 1994,

Noori et al. 2009, 2010), that has one input layer with

seven inputs (i.e. pH, SO4, HCO3, TDS, EC, Mg, and Ca),

one hidden layers with six neurons that each neuron has a

bias and is fully connected to all inputs and utilizes sigmoid

activation function. The output layer has two neurons (Fe

and Ni) with linear activation function (purelin) without

any bias. Figure 6 can properly show the performance of

BPNN in the prediction process.

As seen in Fig. 6, BPNN provides a good prediction for

the Ni and Fe concentrations, but it is not as good as the

SVM prediction. Nonetheless, there is good agreement

between the measured and predicted concentration pro-

vided by BPNN (correlation coefficient of 0.88 for the Fe

and correlation coefficient of 0.901 for Ni). Hence, BPNN

can be considered as an alternative approach after the SVM

for the prediction of the toxic metal concentration.

Discussion

In this research work, we have demonstrated one of the

applications of SVM in forecasting the concentration of

Table 3 Correlation coefficient (R) and RMS error of the prediction based on the different input variables

Input variables Fe Ni

R (train) R (test) RMSE (train) RMSE (test) R (train) R (test) RMSE (train) RMSE (test)

pH, SO4, HCO3 0.910 0.78 0.34 0.46 0.923 0.79 0.28 0.43

pH, SO4, HCO3, TDS, EC 0.935 0.81 0.27 0.36 0.944 0.83 0.25 0.33

pH, SO4, HCO3, TDS, EC, Mg 0.955 0.87 0.22 0.29 0.961 0.89 0.19 0.23

pH, SO4, HCO3, TDS, EC, Mg, Ca 0.98 0.92 0.12 0.21 0.98 0.95 0.13 0.2
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toxic metals. We interrogate the performance of this

method by comparing the results with the best performed

work of BPNN model. When compared SVM with this

model (Table 4), we can see overall better performance of

SVM over BPNN approach in terms of RMS error in both

training and testing steps.

According to this table, the RMS error of SVM model is

quite smaller than that of the BPNN. In terms of running

time, In addition, the SVM consumes a considerably less

time for prediction compared with that of the BPNN. For

determining the relative running time of each network,

Matlab multipurpose software has been used (i.e. relative

codes of both networks have written in the Matlab software

environment). As it is completely clear in the Table, the

associated running time of SVM in training set is even less

than that of the BPNN in the testing process. All of these

expressions can introduce the SVM as a robust algorithm

for the prediction process.

Conclusions

Support vector machine is a novel machine learning

methodology based on SLT, which has considerable fea-

tures including the fact that requirement on kernel and

nature of the optimization problem results in a uniquely

global optimum, high generalization performance, and

prevention from converging to a local optimal solution. In

this research work, we have shown the application of SVM

compared with BPNN model for prediction of the con-

centrations of two toxic metals, namely Fe and Ni, based

on those chemicals and physical parameters obtained by

conducting a sampling program nearby the Sarcheshmeh

cooper mine, Iran. Although both methods are data-driven

models, it has been found that SVM makes the running

time considerably faster with the higher accuracy. In terms

of accuracy, the SVM technique resulted in a less RMS

error compared with that of the BPNN model (Table 4).

Regarding the running time, SVM requires a small fraction

of the computational time used by BPNN, which is an

important factor to choose an appropriate and high-per-

formance data-driven model.
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Fig. 6 Relationship between

the measured and predicted

concentration by BPNN; Fe

(left) and Ni (right)

Table 4 Comparing the performance of SVM and BPNN methods in the training and testing steps

Type of

network

Fe Ni

R (train) R (test) RMSE

(train)

RMSE

(test)

Running

time (train)

Running

time (test)

R (train) R (test) RMSE

(train)

RMSE

(test)

Running

time (Train)

Running

time (Test)

SVM 0.98 0.92 0. 12 0.21 4 s 3 s 0.98 0.95 0.13 0.2 4 s 3 s

BPNN 0.98 0.88 0.12 0.3 7 s 5 s 0.98 0.901 0.13 0.4 7 s 5 s
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