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Abstract
The crucial roles played by arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) in 
enhancing plant nutrient uptake and soil quality are widely recognized across various plant species. This study explored 
the effects and potential of Bacillus velezensis S141 as a plant growth-promoting rhizobacterium on promoting a symbiotic 
relationship of AMF, Rhizophagus irregularis with Lotus japonicus. B. velezensis S141 inoculation positively influenced 
fungal growth and development. B. velezensis S141 promoted fungal abundance, such as AM root colonization and spore 
number. It also boosted plant nutrient uptake, enhancing the nitrogen and phosphorus concentration by 1.65 and 1.51 times, 
respectively, under tripartite interaction conditions. However, the indole-3-acetic acid (IAA) producing capability of B. 
velezensis S141, based on the inoculation experiment test of S141 mutants defective in IAA synthesis, was not the key 
mechanism for promoting this symbiotic interaction. Interestingly, the S141 strain, originating from rhizospheric soil fields 
of soybeans, was found to penetrate plant root cells and establish itself as an endophyte. The presence of B. velezensis S141 
not only triggered the expression of marker genes associated with early stages of AMF colonization and nutrient uptake in 
the host plant, but it also led to an upregulation of AMF genes responsible for cell cycle regulation. These results suggest 
that B. velezensis S141 holds promise as a helper bacterium in promoting plant-AMF symbiosis.
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1  Introduction

Plant growth promoting rhizobacteria (PGPR) are a group of 
beneficial bacteria that enhance plant growth and develop-
ment (Oleńska et al. 2020; Vocciante et al. 2022; Bhat et al. 
2023). These beneficial bacteria, including various species 
of Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, 
Pseudomonas, Klebsiella, Enterobacter, Burkholderia, and 

Bacillus, are found in association with plant roots (Figue-
iredo et al. 2010; Bashan et al. 2014; Singh et al. 2019), and 
some of them have been identified for their potential appli-
cations as biofertilizers (Sun et al. 2020; Barin et al. 2022). 
The growth-promoting effects contributed by these bacte-
ria are mediated through diverse mechanisms, for example, 
nitrogen (N) fixation (Liu et al. 2019; Matse et al. 2019), 
phosphate solubilization (Prabhu et al. 2019; Amy et al. 
2022), production of plant growth hormones, and biocontrol 
of plant pathogens (Odoh et al. 2019; Chauhan et al. 2021).

Arbuscular mycorrhizal fungi (AMF) significantly benefit 
plant growth through their symbiotic relationships with plant 
roots (Genre et al. 2018). They enhance plant resistance to 
environmental stress. They do so by helping in osmolyte 
accumulation and ion absorption and fostering soil fertil-
ity through the enhancement of water and mineral nutrition 
via their mycelial hyphae (Kempel et al. 2010; Mitra et al. 
2021). The symbiotic relationship is established by a com-
plex and sophisticated mechanism between AMF and the 
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host plants. The interaction begins with the release of signal-
ing molecules, such as chitooligosaccharides and lipochitoo-
ligosaccharides from the AMF, which are then recognized 
by plant receptors on the root surface (Feng et al. 2019; 
Allen Rush et al. 2020). This recognition event activates 
symbiotic signaling pathways in the plant that result in the 
development of specialized fungal structures, called arbus-
cules, within the cortical cells of the plant root. Arbuscules 
contribute to the supply of nutrients, such as phosphorus (P) 
and N, to the plant (Smith 1988; George et al. 1995; Smith 
et al. 2011).

In the rhizosphere, synergistic interactions between PGPR 
and AMF have been observed to enhance plant growth and 
performance through an increase in AMF colonization, 
regulation of plant hormones, such as auxin and cytokinin, 
and inhibition of plant pathogens (Tsukanova et al. 2017; 
Emmanuel & Babalola 2020). For example, co-inoculation 
of soybean with B. amyloliquefaciens and AMF led to an 
increase in AMF colonization, which is postulated to have 
contributed to improvements in plant growth and field yield 
(Sheteiwy et al. 2021). Our previous research also confirms 
that the combined application of PGPR Brevibacillus sp. 
SUT47 with AMF (Acaulospora tuberculata) resulted in 
increased AMF colonization and spore production in maize. 
This was in comparison to single AMF inoculation in steri-
lized sand, which was conducted under laboratory conditions 
(Yuttavanichakul et al. 2018; Kiddee et al. 2020). Recently, 
Begum et al. (2022) showed that Bacillus methylotrophicus 
co-inoculated with AMF produced an increase in photosyn-
thetic activity and mineral, osmolyte, and phytohormone 
content in tobacco in the field. These increases positively 
affected secondary metabolite content and antioxidant sys-
tem under drought stress conditions and resulted in enhanced 
tobacco growth.

B. velezensis is a recently characterized PGPR species 
that has shown potential as a biocontrol agent (Adeniji et al. 
2019; Rabbee et al. 2019). For example, B. velezensis FZB42 
has been reported to produce secondary metabolites with 
antimicrobial properties (Fan et al. 2018). Yet another strain, 
B. velezensis S141, efficiently mitigated cercospora leaf 
spots in mung beans when isolated from soybean-adjoining 
rhizospheric soil in Thailand and sprayed on leaf surfaces 
(Prakamhang et al. 2015; Songwattana et al. 2023). In soy-
bean-Bradyrhizobium symbiosis, B. velezensis S141 colo-
nized the nodule and root surface and induced the production 
of larger nodules and enhanced nitrogen-fixing efficiency by 
B. diazoefficiens USDA110 (Sibponkrung et al. 2020). B. 
velezensis S141 has a set of genes for auxin biosynthesis in 
its genome (Sibponkrung et al. 2017). After inoculating the 
disrupted strains of those genes into soybean-Bradyrhizo-
bium, the disrupted of auxin biosynthesis attenuated the 
effects of B. velezensis S141 on increasing nodule size and 
promotion of N-fixing activity. These findings suggest that 

this specific PGPR strain may play an important role in 
enhancing the symbiotic functionality between rhizobia and 
legumes through its phytohormone producing properties.

In contrast, it remains to be elucidated whether B. 
velezensis S141 exerts an influence on plant–AMF sym-
biosis. Phytohormones, including auxins, have been shown 
to modulate the development of the mycorrhizal symbiosis 
(Gutjahr 2014; Pozo et al. 2015; Liao et al. 2018). Etemadi 
et al. (2014) demonstrated that overexpression of miR393, an 
miRNA that specifically targets a plant auxin receptor gene, 
resulted in suppression of arbuscule formation, suggesting 
a necessary role for auxin perception in arbuscule develop-
ment. In this situation, we hypothesized that B. velezensis 
S141 could affect the symbiotic relationship between plants 
and AMF through its potential to produce auxins. To test 
this hypothesis, we investigated the effects of B. velezensis 
S141 and its mutant strains containing disrupted auxin bio-
synthesis genes on AMF development both intra- and extra-
radically. Since the interactions between L. japonicus and 
R. irregularis has been intensively studied in the molecular 
level due to the available of genome information, L. japoni-
cus and R. irregularis were selected as a model to investigate 
the effect of B. velezensis S141 on promoting plant-AMF 
symbiosis. In addition, we analyzed the gene expression of 
symbiosis-related genes in both AMF and host plant.

2 � Materials and methods

2.1 � Biological materials and growth conditions

L. japonicus B-129 seeds were surface-sterilized with a 3% 
(w/v) sodium hypochlorite solution for 10 min and then 
thoroughly rinsed with sterile distilled water. The sterilized 
seeds were germinated on moist paper in a Petri dish and 
incubated at 26 °C in the dark for 2 days followed by 3 more 
days under light. Seedlings were transplanted into 50-mL 
centrifuge tubes (one plant per tube), each with a drainage 
cavity at the bottom, which contained filter paper with a pore 
size of 2 μm and filled with autoclaved river sand (particle 
size, 0.5–2.0 mm) as planting material. This filter allows 
the bacteria to remain in the system while allowing water to 
flow out. The sand was washed several times until the water 
ran clear and sterilized at 121 °C for 45 min by autoclav-
ing and repeating the sterilization twice within 24 h. The 
concentration of commercial AMF inoculum R. irregularis 
DAOM197198 (Mycorise, Premier Tech, Rivière-du-Loup, 
Canada) at 4,000 spores/mL was diluted using sterilized 
water to achieve a final spore concentration of 250 spores/
mL. Subsequently, a hole was carefully made at the center of 
the pot containing planting material with sufficient depth to 
cover the roots of L. japonicus. The AMF spores were then 
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evenly distributed around the hole, followed by transplanting 
the plant and covering it with river sand.

The plant growth-promoting rhizobacterium Bacillus 
velezensis S141 (Sibponkrung et al. 2017) was cultured 
in Luria–Bertani (LB) broth at 28 °C for 20 h and used as 
inoculum. Derivative mutant strains of B. velezensis S141 
(∆IPyAD, ∆yhcX and ∆dhaS), which have a reduced produc-
tion of indole-3-acetic acid (IAA), were cultured under the 
same conditions but in the presence of antibiotics [1 µg/
mL mg erythromycin, 10 µg/mL kanamycin, and 100 µg/
mL spectinomycin] to ensure that only the desired bacteria 
were grown, while the B. velezensis S141 GFP-tagged strain 
was cultured in LB medium supplemented with 8 µg/mL 
phleomycin (Sibponkrung et al. 2020). Bacterial cells were 
separated by centrifugation and washed twice with 0.85% 
(w/v) NaCl. The cell density was then adjusted to OD600 = 1 
(approximately 108 CFU/mL). The bacterial cells at differ-
ent cell concentrations (105, 106, and 107 CFU in 50 mL) 
were then inoculated or co-inoculated with R. irregularis 
in sand. Non-inoculated control plants were also included 
in the experiment by adding them with 50 mL of 0.85% 
(w/v) NaCl.

Plants were grown in a growth chamber at 28 °C under 
a 16/8-h light and dark cycle and a light intensity of 
150 µmol m−2 s−1. The plants were supplied with a half-
strength Hoagland’s solution containing a low concentration 
of KH2PO4 (100 µM) every 2 days since high P concentra-
tion could inhibit AMF infection (Sugimura and Saito 2017). 
Plants were harvested at either 45 or 60 days after inocula-
tion (DAI), depending on the specific data collection goals, 
such as assessing plant growth, nutrient uptake, coloniza-
tion efficiency, spore count, or the localization of arbuscular 
mycorrhizal fungi (AMF) or bacteria. Each experiment was 
conducted with triplicate samples. For plant growth data col-
lection, the plants were harvested and separated into shoot 
and root components. Subsequently, these plant parts were 
dried at 70 °C for 48 h and weighed following the method 
outlined by Shipley and Vu (2002). Plant height above 
ground level was measured at 45 or 60 DAI, as specified 
in each experiment. Chlorophyll content in fully expanded 
leaves from the top was estimated in SPAD units using the 
SPAD-502 Plus instrument (Konica Minolta Optics, Japan). 
Each treatment was replicated four times in the experiment.

2.2 � Analysis of plant P and N contents

Plant shoots were dried at 70 °C for 48 h, finely ground, and 
weighed. Subsequent analysis of phosphorus (P) involved 
acid digestion in a solution of nitric and perchloric acids 
(HNO3 + HClO4). P concentration was then established 
using the vanadomolybdate blue method (Watanabe and 
Olsen 1965). Pursuing the nitrogen (N) analysis, plant 
samples were heated in a Kjeldahl digestion apparatus, 

gradually increasing the temperature to 200 °C, then fur-
ther to 350–375 °C for 1 h until transparent. N concentra-
tions were ascertained using the Kjeldahl method (Yash and 
Kalra 1998).

2.3 � Localization of bacteria in roots

L. japonicus were inoculated with B. velezensis S141 at a 
concentration of 105 CFU/plant or co-inoculated with both 
B. velezensis S141 and 250 spores/plant of R. irregularis. 
These plants were grown under the conditions described 
above. At 7, 15, 30 and 45 DAI, roots were harvested and 
thoroughly washed with sterilized water to remove sand 
particles. These roots were then cut into fine segments, 
each 1–2 cm in length. The segments were embedded in 5% 
agarose gel and sectioned into 40 μm thick slices using a 
Leica vibratome (VT1000S, Leica Microsystems, Germany). 
The sections were stained for 10 min with 5 μM SYTO 9 
(Thermo Fisher Scientific, USA) to visualize bacterial cells 
and 0.01% (w/v) Calcofluor (Bonaldi et al. 2011) to empha-
size plant roots and AMF cell walls. We did not use the GFP-
tagged strain in this study due to low fluorescence expres-
sion. However, the experiment was conducted under sterile 
conditions, enabling comparisons with the non-inoculated 
control. No bacterial cells or fungus were detected under the 
microscope in the control group, eliminating the possibility 
of seed endophyte contamination. The stained sections were 
washed with phosphate-buffered saline (PBS), mounted on 
a glass slide with 10% PBS-glycerol solution, and covered 
with a coverslip. The Calcofluor was excited at 405 nm, and 
its emission signal was detected using a 460–500 nm filter 
for image acquisition. SYTO 9 fluorescence was detected by 
exciting the samples with a 488 nm laser line and collecting 
the emission signal at 490 to 522 nm. Bacterial localization 
was observed using a Nikon inverted Eclipse Ti-E Confocal 
Laser Scanning Microscope (Nikon, Japan).

2.4 � Enumeration of endophytic bacteria

The roots of L. japonicus, inoculated with and without the 
S141 GFP-tagged strain (Sibponkrung et al. 2020), were sur-
face-sterilized 30 days after infection. This process involved 
immersing the roots in a 3% NaClO solution for 5 min and 
then soaking them in 70% ethanol for another 5 min. Once 
sterilized, the roots were thoroughly rinsed at least five times 
with sterile distilled water (Pongdet et al. 2015). The steri-
lized plant roots were then ground with 2 mL of 0.85% NaCl. 
Serial dilutions were prepared from this mixture, ranging 
from 100 to 104. From each dilution, 100 µL was plated onto 
LB agar, which was augmented with 8 µg/mL of phleomy-
cin. The plates were then incubated at a temperature of 28 °C 
for a period of 20 h to allow for the enumeration of the target 
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strain. The number of endophytic bacteria present was cal-
culated as CFU/plant.

2.5 � Assessment of AMF colonization

The root system of L. japonicus was collected and carefully 
cleaned by removing all soil particles. The cleaned roots 
were cut into 1–2 cm segments and washed with tap water. 
To remove the cytoplasmic content of the plant root cells, 
these root segments were treated with 10% (w/v) potassium 
hydroxide (KOH) at 90 °C for 10 min followed by acidifica-
tion with 2% (v/v) hydrochloride acid (HCl) for 5 min. The 
segments were subsequently stained with 0.05% trypan blue 
in lactic acid at 90 °C for 10 min. The degree of AMF colo-
nization was assessed using the method described by Trou-
velot et al. (1986) with some modifications. Briefly, approxi-
mately 10 root fragments from each plant were mounted on 
glass slides and observed under a light microscope with a 
10 × objective. Each slide was observed over a total of 100 
microscopic fields. The intensity of AMF colonization and 
the abundance of arbuscules in a field of view were cat-
egorized into six and three classes, respectively. Based on 
the scores obtained from 100 fields of view, five parameters 
of AMF colonization (F%, M%, m%, A%, and a%) were 
calculated according to Trouvelot et al. (1986). F% repre-
sents the frequency of mycorrhiza in the root system, M% 
represents the intensity of the mycorrhizal colonization in 
the root system, m% represents the intensity of the mycor-
rhizal colonization in the root fragments, A% represents the 
arbuscule abundance in the root system, and a% represents 
the arbuscule abundance in the mycorrhizal parts of the root 
fragments.

2.6 � Quantification of AMF in roots by quantitative 
PCR

Inoculated root samples of L. japonicus were collected, 
and total DNA was extracted using the Dneasy® Plant 
Mini Kit (Qiagen, USA) according to the manufactur-
er’s instructions. The abundance of fungi was estimated 
through quantitative real-time polymerase chain reactions 
(qPCR), using approximately 50 ng of each DNA sam-
ple on a StepOne Real-Time PCR System (Thermo Fisher 
Scientific). Four biological replicates were performed in 
this experiment. A primer set specific for R. irregularis 
was used for qPCR. The set consisted of a forward primer 
(CCC​ACC​AGG​GCA​GAT​TAA​TC), a reverse primer (TGG​
CTT​TGT​ACA​GGC​AAC​AG), and a TaqMan-MGB probe 
(197198P: FAM-CCC​TGG​AGT​ATC​TG-MGBEQ syn-
thesized by Eurofins Genomics, Japan). This primer set 
was designed based on the single-copy cox3-rnl intergenic 
region in mitochondrial DNA (Badri et al. 2016). As an 
internal control, a primer set designed for genomic DNA 

of the L. japonicus ubiquitin-conjugating enzyme E2 gene 
(LotjaGi1g1v0401300.1) was used. The primer set for this 
gene consisted of a forward primer (AAA​TGG​ACG​GCT​
CTT​ATC​AAGGT), a reverse primer (GAC​CGG​TCG​AAC​
ATC​TTA​CACA), and a TaqMan-MGB probe (FAM-TGC​
TGG​CTA​ATA​TGC-MGBEQ). Data were normalized rela-
tive to this internal control and analyzed according to the 
2−ΔΔCt method with four replications (Livak and Schmitt-
gen 2001).

2.7 � Enumeration of R. irregularis spores in soil

AMF spores were extracted by wet sieving and decant-
ing (Gerdemann and Nicolson 1963; Daniels and Skipper 
1982). All soil contained in a 50 mL tube was collected 
and mixed with 100 mL of tap water in a 500 mL beaker. 
The soil sample was agitated vigorously to disperse the 
AMF spores and left to stand for 5 min to allow the heav-
ier soil particles to settle to the bottom. The supernatant 
was decanted through standard sieves with pore sizes of 
250, 106, 75, and 38 µm. The AMF spores and soil par-
ticles retained on the 106, 75, and 38 µm sieves were 
collected in 15 mL centrifuge tubes and centrifuged at 
4,000 rpm for 5 min. After removing the supernatant, 
40% (w/v) sucrose solution was added and centrifuged 
at 5,000 rpm for 5 min. The supernatant was carefully 
removed and poured into sieves to retain the AMF spores. 
The spores on the sieves were rinsed with tap water and 
collected in Petri dishes. AMF spores were counted under 
a stereomicroscope.

2.8 � Gene expression analysis

Total RNA was extracted using RNA Prep Pure Plant Plus 
Kit (TIANGEN Biotech, China). To remove DNA con-
tamination, the RNA samples were treated with Dnase I 
(Thermo Fisher Scientific). cDNA was synthesized from 
the RNA using the High-Capacity cDNA Reverse Tran-
scription Kit (Thermo Fisher Scientific) following the 
manufacturer’s instructions. Quantitative RT-PCR was 
conducted using Luna Universal qPCR Master Mix (New 
England Biolabs, USA) and the CFX Opus 96 Real-Time 
PCR System (Bio-Rad, USA). The primers for this sys-
tem are listed in Supplementary Tables S1 and S2. As an 
internal control for gene expression, we used elongation 
factor 2 (EF2) in L. japonicus and EF1β in R. irregularis 
(Kobae et al. 2015). We evaluated three biological sam-
ples of the plant at 45 DAI due to resource limitations and 
experimental practicality, each using approximately 5 ng 
of cDNA template. We calculated relative gene expression 
using the 2-ΔΔCT method (Livak and Schmittgen 2001).
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2.9 � Statistical analyses

We conducted statistical analyses using R software (ver-
sion 4.2.2). To identify specific differences among samples 
belonging to three or more groups, we used Tukey’s honestly 
significant difference (HSD) test whenever ANOVA pointed 
to a significant discrepancy in group means. We also applied 
the Levene test to verify normal distribution and demon-
strate equal variances across the groups. To compare the 
effects of single inoculation with R. irregularis against co-
inoculation with R. irregularis and B. velezensis S141, we 
used Student’s t-test. We visualized all data using GraphPad 
Prism (v.9.1.1).

3 � Results

3.1 � B. velezensis S141 enhances AMF abundance 
in the interior and exterior of L. japonicus roots

To investigate whether B. velezensis S141 could enhance 
the development of R. irregularis during its symbiosis 
with L. japonicus, we assessed AMF abundance in roots 
and quantified spore production in soil. We co-inoculated 
AMF with B. velezensis S141 using different cell densities 
on L. japonicus and measured the extent of AMF coloniza-
tion at 60 DAI. The presence of B. velezensis S141 caused 
a slight but significant increase in the intensity of AMF 
colonization (M% and m%) compared to the absence of 
B. velezensis S141 (Fig. 1A). This enhancement was con-
sistently observed across all B. velezensis S141 inoculum 

cell densities. In contrast, the frequency of AMF coloniza-
tion (F%) and arbuscular abundances (A% and a%) were 
not affected by inoculation with B. velezensis S141. AMF 
abundance in roots was further quantified using a hydrolysis 
probe-based qPCR assay specifically targeting R. irregularis 
DAOM197198 mitochondrial DNA as described by Badri 
et al. (2016). The relative copy number of the cox3-rnl 
intergenic region consistently increased more than twofold 
in the co-inoculation treatments compared to AMF single 
inoculation (Fig. 1B). Notably, B. velezensis S141 also pro-
moted AMF spore production in soil (Fig. 1C). Regarding 
the inoculum cell density of B. velezensis S141 at 105, 106, 
and 107 CFU/plant, the co-inoculation produced an increase 
in the number of spores produced in soil by 39%, 19%, and 
27%, respectively when compared to single inoculation with 
R. irregularis. These results show that B. velezensis S141 
significantly promoted AMF development both inside and 
outside the roots.

3.2 � B. velezensis S141 affects mycorrhizal plant 
growth

To determine the direct effect of B. velezensis S141 on L. 
japonicus growth, the plant was inoculated with different 
densities of the bacteria in the absence of AMF. At 60 DAI, 
B. velezensis S141 did not affect the plant growth of L. 
japonicus. However, the bacterial cells at a density of 107 
CFU/plant produce a significant increase in the shoots’ dry 
weights by 2.1-fold compared to the non-inoculated plants 
(Table S3). Although inoculation only AMF did not notably 
enhance plant growth at day 60 compared to non-inoculated 

A B C

Fig. 1   The abundance of R. irregularis at 60 days after inoculation 
(DAI). L. japonicus was either inoculated with R. irregularis alone 
(AMF) or co-inoculated with both R. irregularis and B. velezen-
sis S141 at different cell densities: 105 (AMF + S141(105)), 106 
(AMF + S141(106)), 107 (AMF + S141(107)) CFU/plant. (A) AMF 
colonization in L. japonicus roots. F(%), the frequency of mycorrhiza 
in the root system; M(%), the intensity of the mycorrhizal coloniza-
tion in the root system; m(%), the intensity of the mycorrhizal colo-
nization in the root fragments; a(%), the arbuscule abundance in the 
mycorrhizal parts of the root fragments; and A(%), the arbuscule 
abundance in the root system. (B) The relative abundance of R. irreg-

ularis in L. japonicus roots estimated by quantitative PCR (qPCR) 
using a hydrolysis probe designed from the cox3-rnl intergenic region 
in R. irregularis mitochondrial DNA. The abundance of R. irregula-
ris in roots is normalized based on the copy number of the genomic 
region of the L. japonicus ubiquitin-conjugating enzyme E2 gene and 
expressed relative to that in plants singly inoculated with R. irregula-
ris (AMF). (C) The number of R. irregularis spores produced in the 
soil. Values are means ± s.e.m. (n = 4). Bars marked with the same 
letter are not significantly different at p < 0.05 on Tukey's HSD test. 
None of AMF were detected in the non-inoculated control plant
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plants, when B. velezensis S141 was paired with AMF at a 
density of 105 CFU/plant, there was a significant rise in plant 
height compared to just AMF inoculation.

The 60-day growth period was probably too long to 
evaluate L. japonicus growth in a 50-mL pot. Therefore, 
we assessed plant growth at 45 DAI. A density of 105 CFU/
plant was selected for inoculation with B. velezensis S141, 
a density that was shown to be effective in enhancing plant 
height at 60 DAI (Table S3), and it is the lowest density 
that significantly promote AMF spore production (Fig. 1C). 
Even at 45 DAI, a modest increase in AMF colonization, 
M% and m%, due to co-inoculation (Fig. 2A) was found. No 
direct effect of S141 on L. japonicus growth was observed 
at 45 DAI (Fig. 2B, C). Conversely, the effect of AMF 
inoculation was pronounced, namely plant heights and 
dry weights of AMF-inoculated plants were significantly 
greater than those of non-inoculated plants. In particular, 
the co-inoculation of B. velezensis S141 and R. irregularis 
led to a maximal shoot dry weight approximately 1.2-fold 

higher than that of the single AMF inoculation (Fig. 2C). In 
addition, shoot nitrogen (N) and phosphorus (P) concentra-
tions significantly increased with co-inoculation yielding 
1.7- and 1.5-fold increases in N and P, respectively, rela-
tive to the single AMF inoculation (Fig. 2D). These results 
indicate that B. velezensis S141 promotes plant growth and 
nutrient acquisition when AMF is present.

3.3 � B. velezensis S141 stimulates root elongation 
at early growth stage

To explore the possibility of a direct growth-promoting 
effect from B. velezensis S141 on L. japonicus during the 
early growth stages, we assessed shoot and root elongation 
at 7 and 15 DAI. B. velezensis S141 produced no influence 
on shoot elongation (Fig. 3). However, the length of tap 
roots inoculated with the bacteria was approximately dou-
ble than that of non-inoculated plants at 15 DAI.

A

C

B

D

Fig. 2   R. irregularis abundance and L. japonicus growth at 45 days 
after inoculation (DAI) under four inoculation conditions: non-inoc-
ulation (NI), inoculation with B. velezensis S141 (S141), inoculation 
with R. irregularis (AMF), and co-inoculation with both R. irregula-
ris and B. velezensis S141 (AMF + S141). Cell density of B. velezen-
sis S141 was 105 CFU/plant. (A) AMF colonization in L. japonicus 
roots. F(%), the frequency of mycorrhiza in the root system; M(%), 
the intensity of the mycorrhizal colonization in the root system; 
m(%), the intensity of the mycorrhizal colonization in the root frag-

ments; a(%), the arbuscule abundance in the mycorrhizal parts of the 
root fragments; and A(%), the arbuscule abundance in the root sys-
tem. Plant height (B) and dry weight (C) of L. japonicus. (D) The 
concentration of nitrogen (N) and phosphorus (P) in L. japonicus 
shoot. The values presented are means ± s.e.m. (n = 3). Student's t-test 
(n.s., not significant; *, p < 0.05) was conducted in (A) and (D). Bars 
marked with the same letter are not significantly different at p < 0.05 
on Tukey's HSD test in (B) and (C)
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3.4 � IAA production‑related genes in B. velezensis 
S141 are not involved in promoting tap root 
elongation and AMF colonization

Given that B. velezensis S141 produces IAA (Sibponkrung 
et al. 2020), and this IAA could stimulate root elonga-
tion in L. japonicus and consequently, AMF colonization. 

Therefore, we investigated whether the IAA produced 
by B. velezensis S141 supported root elongation using 
derivative mutants of B. velezensis S141 (ΔdhaS, ΔyhcX, 
and ΔIPyAD) that yielded lower amounts of IAA than the 
wild type (Sibponkrung et al. 2020). The lengths of shoot 
and tap root of the plants that were inoculated with these 
mutant strains were comparable to those of plants inocu-
lated with the wild type at both 7 and 15 DAI, indicating 
that the B. velezensis S141 dhaS, yhcX, and IPyAD genes 
do not significantly affect root elongation (Fig. 4A, B). 
In addition, we evaluated the abundance of AMF when 
co-inoculated with these mutant strains. We observed 
no significant differences in AMF colonization between 
inoculations of the wild type and mutant strains at 60 
DAI (Fig. 4C). Overall, IAA produced by dhaS, yhcX, 
and IPyAD of B. velezensis S141 does not appear to be a 
major factor in promoting tap root elongation and AMF 
colonization in L. japonicus.

3.5 � B. velezensis S141 affects gene expression 
in both L. japonicus and R. irregularis 
during symbiosis

We investigated the changes in gene expression associated 
with the symbiotic response of L. japonicus and R. irregu-
laris after inoculation with B. velezensis S141. L. japonicus 
marker genes involved in the regulation of AMF accommo-
dation within roots and nutrient exchange were assessed at 
45 DAI. The expression of the subtilisin-like serine protease 
gene, SbtM1, which participates in the early phases of AMF 
colonization (Takeda et al. 2009), was enhanced sixfold after 
co-inoculation with B. velezensis S141 compared to the sin-
gle AMF inoculation (Fig. S2A). The expression of the tran-
scription factor gene RAM1, which is mainly responsible for 
arbuscule formation, was doubled. The mycorrhiza-specific 
H+-ATPase HA1, the phosphate transporter (PT4) and the 
ammonium transporter (AMT2;2), all of which are involved 
in P and N uptake in arbuscule-containing cortical cells 
(Javot et al. 2007; Guether et al. 2009; Krajinski et al. 2014; 
Wang et al. 2014), showed elevated expression levels in the 
presence of B. velezensis S141. For genes implicated in fatty 
acid biosynthesis and lipid transport in arbuscular mycorrhi-
zal symbiosis, B. velezensis S141 produced enhancement of 
expression of the glycerol-3-phosphate acyltransferase gene 
RAM2 (Wang et al. 2012) while the acyl-ACP thioesterase 
FatM (Bravo et al. 2017; Brands et al. 2018) and the ABC 
transporter gene STR (Zhang et al. 2010) did not undergo 
enhancement.

We also analyzed transcript levels of cell cycle-
related genes and phophorus (P) and carbon (C) 
nutrition-related genes in R. irregularis colonizing L. 
japonicus roots. Five out of the seven cell cycle-related 
genes tested showed significantly higher expression 

A

B

7 DAI 15 DAI

NI          S141NI         S141

C

Fig. 3   Growth of L. japonicus inoculated with 105 CFU/plant of B. 
velezensis S141 (S141) or not inoculated (NI) at 7 and 15 days after 
inoculation (DAI). Graphs show shoot length (A) and tap root length 
(B). Values are means ± s.e.m. (n = 4). The statistical analysis was 
performed using Student's t-test (n.s., not significant; ***, p < 0.001). 
(C) Appearance of L. japonicus roots. Scale bars: 1 cm
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in roots with B. velezensis S141 than in those without 
the bacteria (Fig. S2B). For genes involved in P nutri-
tion in R. irregularis, we focused on those related to 

polyphosphate synthesis and degradation (Ezawa and 
Saito 2018). The expression levels of genes encoding 
the polyphosphate-synthesizing enzymes, VTC1, VTC2, 

7 DAI 15 DAI

A

B

7 DAI 15 DAI

C

Fig. 4   The growth promotion of L. japonicus at 7 (A) and 15 (B) days 
after inoculation (DAI) when inoculation with B. velezensis S141 
wide type (S141) and its derivative mutants (ΔdhaS, ΔyhcX, and 
ΔIPyAD) decreases in the indole-3-acetic acid (IAA) production. (C) 
The measurement of AMF colonization at 60 DAI (AMF root coloni-
zation was defined as F(%), the frequency of mycorrhiza in the root 

system, M(%), the intensity of the mycorrhizal colonization in the 
root system, and m(%), the intensity of the mycorrhizal colonization 
in the root fragments). Values are means ± s.e.m. (n = 4). Bars marked 
with the same letter are not significantly different at p < 0.05 on Tuk-
ey's HSD test
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and VTC4 (Nguyen et  al. 2022), were found to have 
decreased upon co-inoculation with B. velezensis S141. 
On the other hand, the transcript levels of the endopol-
yphosphatase genes PPN1–4 (Nguyen & Saito 2021) 
showed no significant differences. The expression of the 
monosaccharide transporter gene MST2, which plays a 
crucial role in sugar uptake in AMF, was reduced in the 
presence of B. velezensis S141.

3.6 � B. velezensis S141 is an endophytic bacterium

The localization of B. velezensis S141 was examined 
using confocal microscopy to confirm the presence of 
the bacteria in L. japonicus roots during the symbiotic 
association with AMF. No bacterial cells were observed 
in the longitudinal root sections of non-inoculated plants 
at 7 and 45 DAI (Fig.  5A, C). Intriguingly, bacterial 
cells were observed within root cells at 7 DAI (Fig. 5B) 
although they did not colonize within intraradical hyphae 
and arbuscules of AMF (Fig. 5D). The amount of living 
endophytic bacteria was detected at 30 DAI at a density of 
approximately in log10 value as 2.15 ± 0.7 and 1.9 ± 0.6 
CFU/plant in mycorrhizal and non-mycorrhizal plant 
roots, respectively, using a plate count technique.

4 � Discussion

PGPRs and AMF can coexist in roots, and certain combi-
nations of these microorganisms produce enhancement of 
both AMF abundance and plant growth (Meyer & Linder-
man 1986; Yuttavanichakul et al. 2018; Kiddee et al. 2020; 
Sheteiwy et al. 2021). In this study, we demonstrated that the 
endophytic PGPR B. velezensis S141 produced an increase 
in AMF colonization in L. japonicus roots and promoted 
spore production (Fig. 1). Although B. velezensis S141 was 
originally isolated as a PGPR for soybean, cell concentra-
tions of 105 and 106 cells/plant showed no effect on the bio-
mass production of L. japonicus. However, in the presence 
of AMF, B. velezensis S141 augmented the plant biomass 
in addition to shoot N and P concentrations (Fig. 2). This 
finding suggests that B. velezensis S141 can exert its PGPR 
effect in L. japonicus when coexisting with AMF. At 15 days 
after inoculation with B. velezensis S141, the root length 
more than doubled compared to that without the bacterial 
strain (Fig. 3). Similar plant growth promotion at the seed-
ling stage has also been observed in peppers inoculated with 
B. velezensis BBC047 (Stoll et al. 2021). This accelerated 
initial root elongation may cause enlargement of the zone 
of AMF colonization in the early phase, leading to greater 
AMF abundance in roots. The increase in AMF colonization 

Fig. 5   Confocal laser scanning 
microscopy images illustrating 
the bacterial localization in L. 
japonicus roots at 7 (A, B) and 
45 (C, D) days after-inoculation 
(DAI). (A, C) Single inocula-
tion of R. irregularis. (B, D) 
Co-inoculation of R. irregu-
laris with B. velezensis S141. 
Longitudinal sections depict 
mycorrhizal roots stained with 
calcofluor (blue) to visual-
ize cell walls of plants and 
arbuscular mycorrhizal fungi, 
and with SYTO 9 (green) to 
detect live bacterial cells (white 
arrowheads). Arbuscules of R. 
irregularis are highlighted by 
the yellow arrowhead. Scale 
bars denote 10 μm

AMF AMF+S141

A B

C D
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due to the co-inoculation could lead to enhancement in bio-
mass and N and P concentrations of L. japonicus. Alterna-
tively, the synergistic effects of B. velezensis S141 and AMF 
in the roots might have altered the gene expression patterns 
in both the plant and AMF, resulting in activation of plant 
and AMF growth.

Auxin is involved in the initiation of arbuscular mycor-
rhizal symbiosis and the development of arbuscules (Ho-Plá-
garo & García-Garrido 2022). B. velezensis S141 produces 
auxins, and disruption of the IpyAD, yhcX, and dhaS genes 
reduces auxin production to 4% to 30% of the wild-type 
strain (Sibponkrung et al. 2020). Using these mutant strains, 
we tested the potential role of auxins from B. velezensis 
S141 with respect to producing an increase in AMF abun-
dance, but AMF colonization was similar to wild-type 
inoculation (Fig. 4). Such levels of auxin reduction might 
not affect AMF abundance, possibly due to compensatory 
effects from other auxin-producing genes. Another expla-
nation for this finding could be that the auxin-producing 
capability of B. velezensis S141 is not a primary mechanism 
for promoting plant growth or AMF colonization. Neverthe-
less, B. velezensis S141 might employ other mechanisms 
that facilitate AMF–plant symbiosis, and these mechanisms 
should be further investigated.

B. velezensis S141 enhanced mycorrhizal formation in 
L. japonicus, a finding that is consistent with the activation 
of plant marker genes (SbtM1 and RAM1) associated with 
mycorrhizal symbiosis (Fig. S2A). Similarly, the expres-
sion of the HA1, PT4, and AMT2:1 genes, all of which are 
essential for nutrient uptake during mycorrhizal symbiosis, 
was also upregulated by inoculation with B. velezensis S141. 
This finding mirrors the observed increase in shoot N and 
P concentrations. These results suggest that the presence 
of endophytic B. velezensis S141 amplifies the benefits of 
mycorrhizal symbiosis. In contrast, the expression of genes 
involved in lipid transfer from plants to AMF (except for 
RAM2) remained unchanged after B. velezensis S141 inocu-
lation. The different gene expression responses related to 
carbon supply and symbiotic nutrient uptake when exposed 
to B. velezensis S141 might influence the cost–benefit bal-
ance in mycorrhizal symbiosis.

Expression of AMF cell cycle-related genes is related 
to AMF proliferation in roots in response to environmental 
changes (Sugimura and Saito 2017). AMF cell cycle-related 
genes were found to be downregulated during the suppres-
sion of AMF colonization in roots caused by high phosphate 
exposure. In our experiments, the presence of B. velezensis 
S141 led to an increase in the expression of cell cycle-related 
genes in R. irregularis (Fig. S2B). This finding is consist-
ent with the increase in abundance of R. irregularis in L. 
japonicus roots after inoculation with B. velezensis S141, 
thus supporting the occurrence of activation of AMF pro-
liferation by the PGPR strain in terms of gene expression. 

We also analyzed gene expression related to P metabolism, 
an important function in AM symbiosis, as an effect of the 
coexistence of B. velezensis S141 on AMF. Polyphosphate 
synthesized in AMF is an important source of P for plants, 
and the amount of polyphosphate in AMF is thought to be 
regulated through a metabolic balance between polyphos-
phate synthesis by the vacuolar transporter chaperone (VTC) 
complex and degradation by endopolyphosphatases (PPNs) 
(Ezawa and Saito 2018). Based on our gene expression anal-
ysis, the amount of PPN transcripts in AMF was not affected 
by B. velezensis S141 inoculation, but VTC transcripts had 
decreased (Fig. S2B). Although polyphosphate levels were 
not determined, polyphosphate may progress in the direc-
tion of degradation in intraradical hyphae and arbuscules of 
AMF. Since short-chain polyphosphate acts as a pool of P 
supply to the plant (Takanishi et al. 2009), the higher shoot P 
content of plants inoculated with B. velezensis S141 may be 
related to modulation of polyphosphate metabolism genes in 
AMF. In addition, the expression of MST2, which is involved 
in sugar transport to AMF cells, was downregulated after 
co-inoculation with B. velezensis S141.

Intriguingly, B. velezensis S141 was localized within 
plant cells, with no bacteria detected in the intercellular 
space (Fig. 5). This observation suggests a specific and 
targeted mode of communication, with the bacteria poten-
tially relying on obtaining nutrients from living plant cells, 
indicative of a mutualistic relationship. These results shed 
light on the intricate mechanisms involved in nutrient and 
sugar acquisition, as well as delivery within the plant-AMF 
partnership. They also underscore the potential role of co-
inoculation with an endophytic PGPR in these processes, 
warranting further investigation.

5 � Conclusions

To summarize, our study sheds light on the beneficial effects 
of B. velezensis S141 on the plant-AMF symbiosis. The 
results suggest that B. velezensis S141 leads to enhance-
ment of root growth in the early stages and later promotes 
the abundance of AMF. However, the production of a plant 
growth hormone, IAA, is not the key mechanism used by 
B. velezensis S141 to promote mycorrhizal symbiosis. Sur-
prisingly, strain B. velezensis S141 was identified as an 
endophyte in L. japonicus, and this strain had the capability 
of inducing the expression of plant marker genes mainly 
involved in mycorrhizal formation and nutrient uptake. 
Moreover, induction of the expression of marker genes 
related to the cell cycle of R. irregularis when co-inoculated 
with B. velezensis S141 strongly supports its potential for 
promoting fungal growth. These results highlight the impor-
tance of exploring the potential of beneficial microbes in 
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enhancing AMF growth and promoting plant growth through 
the nutrient uptake pathway.
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