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during their photosynthetic activity (Baker 2011). Stony 
corals depend on the photosynthesis of their symbiotic dino-
flagellates to obtain nutrients used for growth and reproduc-
tion, which are energetically costly physiological processes; 
hence, they are restricted to the euphotic zone and are more 
abundant in shallow tropical waters (Sheppard et al. 2009) 
with high transparency and low nutrients across the globe 
(Venn et al. 2007; LaJeunesse et al. 2018).

Among the recently designated Symbiodiniaceae family, 
at least five of the current eleven valid genera are associated 
with stony corals: Symbiodinium, Breviolum, Cladocopium, 
Durusdinium and Philozoon (LaJeunesse et al. 2018, 2021; 
Nitschke et al. 2020; Pochon and LaJeunesse 2021), and 
species in each genus have different adaptations to light, 
depth, temperature, and nutrient ranges (LaJeneusse et al. 
2004; Pochon et al. 2006; LaJeneusse et al. 2018; Goulet et 
al. 2019; LaJeunesse et al. 2021). Therefore, different types 
of symbionts present different optimal environmental condi-
tions for their growth and maintenance. For example, some 
Symbiodinium dinoflagellates are more common in waters 
with high irradiancies, there are Breviolum species that can 
be found in high latitudes and at variable depths and light 

1 Introduction

Stony corals are marine invertebrates that distribute glob-
ally from shallow waters to thousands of meters below the 
sea surface (Sheppard et al. 2009). Sallow water Scleractin-
ian corals have an obligate symbiosis with photosynthetic 
dinoflagellates (microalgae) in the family Symbiodiniaceae 
(formerly known as the genus Symbiodinium; LaJeunesse 
et al. 2018). The coral-dinoflagellate relationship is essen-
tial as corals receive most of their metabolic daily require-
ments from their dinoflagellate symbionts as photosynthates 
(mainly carbohydrates; Morris et al. 2019) and in turn, the 
coral provides their symbionts with nitrogen metabolic 
wastes and respiratory CO2 that the microalgae metabolize 
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Abstract
Hermatypic corals maintain obligate symbiosis with symbiodiniacean dinoflagellates, forming either general or specific 
relationships with these microalgae. The differences in these associations can be attributed to local environmental condi-
tions: different symbiont species are adapted to different ranges of environmental conditions, which directly influences 
the vitality of the mutualism in different environments. We identified the Symbiodiniaceae present in deep and shallow 
corals from the two most abundant reef-building coral genera in the Northeastern Tropical Pacific using two molecular 
markers, the complete ITS region and the chloroplast 23 S region. The molecular identification showed that Pocillopora 
corals harbor a symbiont belonging to the genus Durusdinium, while Pavona corals harbor Cladocopium sp. symbionts. 
No differences between deep and shallow coral colonies were observed, suggesting a stable association between coral 
and symbiont across the environmental gradient sampled. These unique associations appear to be thriving a region con-
sidered marginal for coral development and it appears that both kinds of symbionts endure a wide range of environmental 
conditions.
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The coral communities along the Eastern Pacific have 
suffered historical bleaching events associated with El Niño 
Southern Oscillation (ENSO) events Carriquiry et al. 2001; 
Guzmán and Cortés 2007; LaJeunesse et al. 2007; Glynn et 
al. 2015; Cruz-García et al. 2020; Romero Romero-Torres 
et al. 2020), with a slow but constant recovery. Therefore, 
these communities appear highly resilient to ENSO anoma-
lies (Rodríguez-Troncoso et al. 2016; Martínez-Castillo et 
al. 2022). Indeed, the community structure has shown no 
differences in the physiological activity of corals despite the 
non-optimal conditions that characterize the area (Martínez-
Castillo et al. 2020), and the identity of the symbionts inhab-
iting these coral communities can explain the performance 
of corals in this marginal region (LaJeunesse et al. 2008, 
2010), an important topic of research given current rates of 
anthropogenic climate change. Moreover, this research may 
further characterize coral communities in areas that may 

conditions, (Wham et al. 2017; LaJeunesse et al. 2018), 
while Philozoon are principally temperate species (LaJeu-
nesse et al. 2021). Therefore, the stability of these mutual-
isms rely on the coral-symbiont ability to cope with annual, 
interannual, and seasonal environmental fluctuations (Done 
2011; Lough and van Oppen 2018) and, as the ability of 
corals to cope with environmental changes depends on the 
identity of their dinoflagellate symbiont, different physio-
logical responses to such changes are observed among coral 
hosts (Glynn et al. 2001; LaJeunesse et al. 2010a; McGinley 
et al. 2012a, b; Wall et al. 2020). Hence, the specific coral-
dinoflagellate association influences coral distribution along 
environmental gradients while others create specific asso-
ciations with one or a few host species (Baker 2011; Davies 
et al. 2019). These associations can be stable in different 
local, regional, and global scales through time (Pettay et al. 
2011; McGinley et al. 2012b; Pettay and LaJeunesse 2013).

Fig. 1 Study site in the Central Mexican Pacific. Black dots mark the sampling sites at each island in the Islas Marietas National Park (IMNP)
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Pavona. From each genus 10 adult colonies were sampled 
at each depth (N = 40): at Isla Larga, 20 Pocillopora spp. 
colonies were sampled (10 at 2 m and 10 at 7 m), while 
at Isla Redonda 20 Pavona gigantea adult colonies (10 at 
6 m and 10 at 15–16 m) were sampled. After sample collec-
tion, coral fragments were immediately preserved in 90% 
ethanol, translated to the laboratory, and stored at 4 °C until 
DNA extraction was performed.

2.3 DNA extraction and sequencing

In the laboratory, individual coral polyps from each frag-
ment were removed from the coral skeleton using a needle 
and a surgical blade; DNA was then extracted from the pol-
yps using a Wizard® Genomic DNA Purification kit (Pro-
mega, Madison, WI, USA) following the manufacturer’s 
instructions. To genetically identify the symbionts pres-
ent in corals, two ribosomal regions were amplified: the 
first comprises the entire ITS region and partial sequences 
from both the large and small ribosomal subunits (further 
referred in this manuscript as ITS), and the second com-
prises the ribosomal region of the chloroplast (further 
referred as 23S). The ITS region was amplified using prim-
ers S_DINO (5’-CGCTCCTACCGATTGAGTGA-3’) and 
L_O (5’-GCTATCCTGAG(AG)GAAACTTCG-3’) to 
generate fragments of ~ 1500 bp (Pochon et al. 2001); the 
23 S region of the chloroplast was amplified using prim-
ers 23S4F (5’-GACGGCTGTAACTATAACGG-3’) and 
23S7R (5’-CCATCGTATTGAACCCAGC-3’) to gener-
ate fragments of ~ 600 bp (Pochon et al. 2005). PCR mix 
reactions included 7.23 µl of nuclease-free H2O, 0.75 µl of 
MgCl2, 0.66 µl of dNTPs, 2.5 µl of 10x buffer, 0.13 µl of 
each primer, 0.10 µl of Taq polymerase (Promega), and 2 µl 
of DNA. PCRs were performed with the following program: 
one initial denaturation step at 94 °C for 30 s, 40 cycles 
comprising of 1 min at 94 °C, 30 s at 58 °C (ITS) or 54 °C 
(23 S), 2 min at 72 °C, and a final extension step at 72 °C for 
5 min. To confirm the presence of PCR products, samples 
were visualized in a TAE (Tris-acetate-EDTA) 2% agarose 
gel. Positive PCR products were cleaned and purified using 
a Wizard® SV Gel and PCR Clean-Up System kit (Pro-
mega, Madison, WI, USA) following the manufacturer’s 
protocol and sent to Macrogen, Inc. (Seoul, Korea) to obtain 
the symbiont sequences.

2.4 Bioninformatic analyses

The sequences were manually edited using ®Geneious 
v.2021.1.1. software (https://www.geneious.com) and 
aligned (forward and reverse) to obtain a consensus sequence 
of each ribosomal marker from each coral sample. To verify 
that the sequences belonged to the Symbiodiniaceae family, 

represent future coral refugia in need of protection. In this 
study we evaluated.

Symniodiniaceae present in Pavona and Pocillopora 
(Cupul-Magaña and Rodríguez-Troncoso 2017) colonies, 
two of the main reef-building coral genera from the Central 
Mexican Pacific (CMP). We collected coral samples at two 
different depths in two nearby locations in a region charac-
terized by widely fluctuating environmental conditions both 
at large (annual) or small (daily) time scales (e.g., annually, 
temperature ranges from 18 to > 25 °C, while daily fluctua-
tions in sea surface temperature can be of 4 °C; Plata et al. 
2006; Portela et al. 2016), variations associated with internal 
waves, seasonal upwellings, and the convergence of three 
water masses (Plata et al. 2006; Portela et al. 2016). Our 
goal is to determine if corals at different depths harbored 
different species of dinoflagellate symbiont and whether the 
identity of symbionts between Pocillopora and Pavona cor-
als were different as was previously reported in higher lati-
tude communities (LaJeunesse et al. 2008).

2 Materials and methods

2.1 Study area

The Central Mexican Pacific (CMP) region is a transi-
tion zone between tropical and temperate waters in the 
Northeastern Tropical Pacific that harbors important coral 
communities along the western Mexican coast (Carriquiry 
and Reyes-Bonilla 1997). Within the CMP, Islas Marietas 
National Park (IMNP) is a Marine Protected Area with two 
main islands (Isla Larga and Isla Redonda) and several 
islets located ~ 6 km off the coast (20.69 °N, 105.57 °W; 
CONANP 2007; Fig. 1). At Isla Larga, Pocillopora colonies 
are found within the first 7 m in a small shallow continen-
tal shelf with higher light conditions than at Isla Redonda 
(Cupul-Magaña et al. 2000), where Pavona colonies are 
distributed in a depth range from 6 to 16 m in a deep rocky 
slope where corals develop along its wall (Cupul-Magaña 
et al. 2000). Differences in the structure of these islands 
cause corals to develop at different depths and environments 
despite being at close sites (Cupul-Magaña and Rodríguez-
Troncoso 2017), with corals developing from 1 to 20 m 
depth (Hernández-Zulueta et al. 2017).

2.2 Sample collection and processing

Coral sampling was performed in November 2018 (fed-
eral Mexican permit PPF/DGOPA-224/18) at two different 
depths using a hammer and a chisel to obtain coral frag-
ments of 1 cm2 from both shallow and deep coral colonies 
from the main reef building coral genera: Pocillopora and 
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bootstraps using the Kimura 2-parameter model (Pavona 
and Pocillopora ITS and Pocillopora 23 S analyses) and 
the Tamura 3-parameter model (Pavona 23 S analysis) since 
they were the best-fitting nucleotide substitution models. 
BI analyses were performed in Mr.Bayes v.3.2.7a (Ron-
quist et al. 2012) with appropriate substitution models for 
each marker and 100 000 Markov chain Monte Carlo gen-
erations. Both ML and BI analyses were conducted using 
Alexandrium tamarense (Dinophyceae: Gonyaulacales) as 
the outgroup. All consensus sequences were submitted to 
NCBI with the following accession numbers: MZ147809-
15 and MZ147852-57 for ITS complete sequences, and 
MZ158686-91 and MZ158693-96 for 23 S sequences.

they were first analyzed in the Basic Local Alignment Search 
tool (BLAST) of the National Center for Biotechnology 
Information (https://blast.ncbi.nlm.nih.gov). The identity of 
the dinoflagellate symbionts present in both Pocillopora and 
Pavona corals from IMNP were determined by the nucleo-
tide relationship among sequences obtained in this study 
and all available sequences from each gene from Symbio-
diniaceae genera obtained from the GenBank database (ITS 
N = 38, 23 S N = 40; Benson et al. 2013). All sequences were 
aligned in Mega-X software using the Clustal W alignment 
tool (Kumar et al. 2018). ITS sequences were trimmed 
when conducting the alignment since available GenBank 
sequences are shorter than the ones obtained in this study 
(500–600 bp), after which maximum likelihood (ML) and 
Bayesian Information (BI) analyses were performed with 
the resulting molecular datasets. ML analyses were per-
formed in Mega-X software (Kumar et al. 2018) with 1000 

Fig. 2 Consensus trees of the Symbiodiniaceae family including available GenBank sequences and the dinoflagellates sampled from Pocillopora 
corals of the CMP (this study). (A) Consensus tree for the ITS region. (B) Consensus tree for the 23S region. The trees show the name of the 
dinoflagellate’s host from which Symbiodiniaceae were obtained, sequences from this study are shown in bold. Sequences with a (*) were obtained 
from deep corals. Boostrap values and posterior probabilities are indicated in the nodes (ML/BI)
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symbionts, from which 107 were informative; while in the 
Pavona dinoflagellate alignment, there were 358 variable 
sites, from which 126 were informative.

In general, three monophyletic clades in both the ML 
and BI analyses of the ITS and 23 S regions were formed: 
one comprising Symbiodinium dinoflagellates, a second one 
formed by Cladocopium organisms, and a third one consist-
ing of Durusdinium symbionts; all clades were supported 
by high posterior probabilities and bootstraping (Figs. 2 and 
3). In all the resulting phylogenetic trees, the Pocillopora 
dinoflagellates analyzed in this study were grouped within 
the genus Durusdinium (Fig. 2), while Pavona dinoflagel-
lates were clustered within the genus Cladocopium (Fig. 3). 
For both the ITS and 23 S markers, the ML and BI topolo-
gies generated for the Symbiodiniaceae found in Pocillo-
pora and Pavona corals agreed (Figs. 2 and 3). Finally, each 
genus exhibited one type of dinoflagellate regardless of the 
depth at which each coral colony was sampled, i.e., each 
coral genus exhibited only one type of endosymbiont along 
its depth distribution range.

3 Results

The dinoflagellate symbionts’ ITS sequences obtained in 
the present study from both Pocillopora and Pavona cor-
als were 1560–1570 bp long, which include the complete 
ITS-1, 5.8 S, and ITS-2 regions and partial sequences from 
the 18 and 28 S regions; the resulting 23 S sequences were 
524–525 bp long. A BLAST analyses confirmed that all 
sequences obtained and used in this study were similar to 
those of other Symbiodiniaceae organisms found not only 
in corals, but in other marine invertebrate hosts as well. 
From the 40 coral colonies sampled, good-quality ITS 
sequences from 7 Pocillopora and 6 Pavona samples, and 
23 S sequences from 6 Pocillopora and 4 Pavona samples 
were retrieved and used in the MI and BI analyses along 
with the available GenBank sequences obtained from other 
Symbiodiniaceae. Alignments showed that there were 396 
variable sites in all the ITS sequences analyzed, from which 
347 were informative. As for the 23 S region there were 330 
variable sites in the alignments built with the Pocillopora 

Fig. 3 Consensus trees of the Symbiodiniaceae family including available GenBank sequences and the dinoflagellates sampled from Pavona corals 
of the CMP (this study). (A) Consensus tree for the ITS region. (B) Consensus tree for the 23S region. The trees show the name of the dinoflagel-
late’s host from which Symbiodiniaceae were obtained, sequences from this study are shown in bold. Sequences with a (*) were obtained from 
deep corals. Boostrap values and posterior probabilities are indicated in the nodes (ML/BI)/
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2010a; Portela et al. 2016), it is surprising that Pocillopora 
across the region commonly has D. glynni.

The presence of one symbiont species servicing the 
needs of Pocillopora populations from this region may be 
the result of colonies with more resistant symbionts domi-
nating the community after stress events (Iglesias-Prieto et 
al. 2004; LaJeunesse et al. 2010a). Previous observations 
in ETP coral communities show host-symbiont stability 
and also specificity between the coral host and its dinofla-
gellate taxon/taxa (Iglesias-Prieto et al. 2004; LaJeunesse 
et al. 2008, 2010a), even though corals in this region have 
been affected by severe ENSO events (Hughes et al. 2018). 
The association of Pocillopora with Durusdinium allows 
them to be highly resistant to abnormal or fluctuating tem-
peratures and to turbid environments (Wham et al. 2017; 
LaJeunesse et al. 2018); therefore, the permanence, resis-
tance, and stability to recover from stress events can be 
attributed to the tolerance of the symbionts to such condi-
tions (LaJeunesse et al. 2008, 2010a; Rodríguez-Troncoso 
et al. 2014, 2016; Romero-Torres et al. 2020), including 
both warm and cold bleaching episodes (Reyes-Bonilla et 
al. 2002; Romero-Torres et al. 2020). Corals in this region 
were particularly affected by the 1997–1998 El Niño event, 
but 20 years later, this negative effect was not evident during 
the last and most severe 2015–2016 El Niño event to date. 
Our results add evidence to demonstrate that not only the 
physiological traits and acclimatization capacity of Pocil-
loporidae is a major characteristic thriving resilience in ETP 
coral communities (Rodríguez-Troncoso et al. 2014, 2016; 
Tortolero-Langarica et al. 2017; Martínez-Castillo et al. 
2020; Romero-Torres et al. 2020), but also the identity of 
their symbionts.

In the Pavona genus, specificity is lower given that this 
genus can present Symbiodinium, Breviolum, Cladocopium, 
or Durusdinium endosymbionts along the ETP (Baker et al. 
2017). In the Mexican coast, Pavona corals only present 
Cladocopium sp. symbionts (LaJeunesse et al. 2008; Wal-
ther-Mendoza et al. 2016; this study). Therefore, at least in 
the Northeastern Pacific, this particular association can be 
considered a stable one. Cladocopium species are adapted 
to a wide range of irradiances (LaJeneusse et al. 2018) and 
can inhabit warm and turbid zones (i.e., fluctuating envi-
ronments; Lee et al. 2020); hence, their inherent capacity 
to cope with different environmental gradients may explain 
their specificity with Mexican Pacific Pavona corals, along 
their vertical distribution range (Iglesias-Prieto et al. 2004; 
LaJeunesse et al. 2008; Walther-Mendoza et al. 2016).

Coral development hence does not only depend on the 
host’s ability to acclimatize to environmental changes, it 
may also primarily depend on the algae-host association 
that enables the holobiont to survive in a region histori-
cally considered as marginal for coral development (Glynn 

4 Discussion

Coral associations with different types of symbionts change 
over different latitudinal, longitudinal, and environmen-
tal gradients (LaJeunesse et al. 2004, 2008, 2010b), thus, 
coral colonies belonging to the same species may associ-
ate with different symbionts depending on the surrounding 
environment, even at local scales (Wall et al. 2020). Within 
the Eastern Tropical Pacific (ETP), shallow coral communi-
ties (above 6 m) are dominated by corals from the genus 
Pocillopora, while in deeper coral reef zones (below 10 m) 
colonies of Pavona are common (Iglesias-Prieto et al. 
2004). While there are differences in depth zonation among 
coral species, both occur in deep and shallow habitats, and 
therefore, variations in the dinoflagellate composition might 
be expected across this vertical distribution even in colo-
nies belonging to the same coral species. Our results found 
different symbionts in each species; however, symbiont 
identity was homogeneous across colonies over a range of 
depths. Pocillopora colonies were symbiotic with Durus-
dinium glynnii dinoflagellates; in contrast, distinct species 
of Cladocopium populated individual colonies of Pavona. 
Therefore, specificity between species of host and symbiont 
is greater than the influence of environmental factors as pre-
viously observed along the Eastern Pacific (Iglesias-Prieto 
et al. 2004; LaJeunesse et al. 2008; Pettay and LaJeunesse 
2013; Walther-Mendoza et al. 2016).

However, along the ETP, Pocillopora colonies are known 
to harbor both Cladocopium and Durusdinium dinoflagel-
lates, and in some cases, mixtures of both (e.g., colonies 
distributed along the southern Gulf of California; Pettay et 
al. 2011). In places where both symbionts occurred, differ-
ent partner combinations were not explained by external 
physical factors (depth, light, among others) like in the 
Pocilloporidae found in the Western Pacific (Sampayo et al. 
2007), where differences in the symbiotic community cor-
respond to different environmental conditions (Glynn et al. 
2001; LaJeunesse et al. 2007, 2008; Sampayo et al. 2007). 
In the Central Mexican Pacific (CMP) as well as in the ETP, 
D. glynnii seems to be the most prevalent symbiont species 
in Pocillopora colonies and is therefore the most abundant 
endosymbiont in the Eastern Pacific (LaJeunesse et al. 
2008, 2010; Pettay and LaJeunesse 2013). Symbionts in the 
genus Durusdinium are often associated with animals living 
in shallow warm, often turbid waters in environments with 
wide changes in temperature from season to season and from 
upwelling (LaJeunesse et al. 2014); it remains unknown why 
they can physiologically tolerate stress caused by thermal 
extremes and high irradiances (Baker et al. 2017; Hoadley 
et al. 2019). Given the environmental oceanographic condi-
tions of the Eastern Pacific and history of severe bleaching 
and mortality (Cupul-Magaña et al. 2000; LaJeunesse et al. 
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2017). Moreover, the fact that we could only identify Pavo-
na’s symbionts up to the genus level supports prior inves-
tigations that highlight the relevance to the fact that this 
genus acquires their symbionts from the environment rather 
than inheriting them from the parent colony (LaJeunesse et 
al. 2008), explaining the diversity of Pavona-Cladocopium 
symbioses (Walter et al. 2016; Turnham et al. 2021). Further 
research is needed to fully clarify specific associations in 
Pavona not only in the CMP, but in the ETP as well.

Coral ecosystems from the ETP represent natural labo-
ratories to explore holobiont stability and resilience given 
the environmental variation within this region at both large 
and micro-scales, and their capacity to withstand distur-
bances should be furthermore explored given the current 
climate change scenario and the more frequent and severe 
thermal anomalies caused by ENSO events (Hughes et al. 
2018). Our study confirms stability in the symbiotic asso-
ciations found in Northeastern Pacific corals and that these 
symbioses depend in the identity of the coral host and its 
dinoflagellate, as well as their ability to cope with fluctu-
ating environments and their acclimatization response to 
stress. Instead of adjusting their symbiotic relationship dur-
ing environmental disturbances (e.g., adaptive bleaching 
hypothesis; Buddemeier et al. 2004), corals appear to main-
tain a stable and resistant symbiotic association. This, along 
with the sub-optimal conditions for coral development pre-
viously discussed, evidence the resilience nature of coral 
communities in the region which highlights the necessity for 
their conservation, maintenance, and long-term monitoring.
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