
Role of arbuscular mycorrhizal symbiosis in remediation
of anthropogenic soil pollution

Laura Yesenia Solís-Ramos1 & Cristofer Coto-López1 & Antonio Andrade-Torres2

Received: 29 December 2020 /Accepted: 26 April 2021
# The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Agricultural and industrial activity generates high concentrations of organic and inorganic pollutants, many of which are
incorporated into the trophic chain, affecting ecosystems. There are several strategies for the remediation of polluted areas; we
discuss one of them in the present review that shows the successful evidence of the use of arbuscular mycorrhizal symbiosis in
phytoextraction (the removal of contaminants from soil and water sources with mycorrhizal plants), and in the process of
phytostabilization (the reduction of the mobility of heavy metals in soil by mycorrhizal roots, absorption onto roots, or precip-
itation within the root zone). Mechanisms of action of arbuscular mycorrhizal fungi (AMF) including, altered uptake and
distribution of heavy metals, improvement in the mineral nutrition and water availability, protection against oxidative stress
and increment in the physical stability of the soil by producing glomalin has been discussed with reference to heavy metals (HMs)
and persistent oxidative pollutants (POPs). We report plant species associated with species of mycorrhizal fungi as strategy for
phytostabilizing heavy metals and reducing biotranslocation to the aerial parts of plants.
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1 Introduction

Anthropogenic activities (e.g., mining, pesticides, smelting,
electroplating, sludge waste, industrial discharge, burning of
fossil fuel) have dramatically accelerated the process of envi-
ronmental contamination by the discharge of hazardous wastes
into soil and water (Sodango et al. 2018; Riaz et al. 2020). This
situation has caused air and soil pollution, acid precipitation,
soil degradation, salinity, increasing UV-B radiation and cli-
mate change (Schutzendubel and Polle 2002). Agricultural
wastes include a wide range of organic materials (often contain-
ing pesticides), animal wastes, and timber by-products
(Setyorini et al. 2002). Agricultural soils are a major environ-
mental reservoir for antibiotic residues. Antibiotics are

commonly used in livestock farming and much of it eventually
ends up in manure, which is subsequently applied to agricultur-
al land (Cao et al. 2018). Mining and smelting of metalliferous
ores combined with combustion of fossil fuels have dramatical-
ly increased the global deposition of heavy metals (HMs) over
the past two centuries (Agarwal et al. 2017). Cadmium (Cd) is
added to agricultural systems through atmospheric deposition,
application of sewage sludges and manures, irrigation water,
and in fertilizers and soil amendments (Grant and Sheppard
2008). The excessive accumulation of heavy metals in agricul-
tural soils results in a decrease in the soil quality and crop
growth (Babadi et al. 2019). The latent for toxicity, carcinoge-
nicity, and bioaccumulation in living systems are also a concern
(Tchounwou et al. 2014).

Anthropogenic soil pollution by organic and inorganic com-
pounds is a global problem. Such compounds include HMs,
fuels, hazardous waste, explosives, and petroleum products.
The most significant inorganic pollutants are HMs that include
group of metals and metalloids that have relatively high density
and are toxic even at ppb (parts per billions) levels (Csuros and
Csuros 2002; Ali and Khan 2017). HMs are considered hazard-
ous due to three reasons: persistence, bioaccumulation, and
toxicity (Ali et al. 2019). Bioaccumulation is the process where-
by the accumulation of toxic substances in living beings in-
creases in concentration following a rise in the trophic level:
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the higher the trophic level is, the stronger the concentration of
HMs is as well (Aprile and De Bellis 2020). Regarding their
roles in biological systems, HMs are classified as essential and
nonessential (Ali et al. 2019). Some examples of metals cate-
gorized as essential copper (Cu), iron (Fe), manganese (Mn)
and zinc (Zn) and non-essential include arsenic (As), cadmium
(Cd), chromium (Cr), cobalt (Co), lead (Pb), mercury (Hg),
nickel (Ni) and vanadium (V) (Aprile and De Bellis 2020).
The metals are toxic at higher concentrations because they in-
duce oxidative stress (reactive oxygen species ROS) through
the formation of free radicals, which inhibits most cellular pro-
cesses at various levels of metabolism (Appenroth 2010; Sytar
et al. 2013). HMs are also considered as trace elements because
of their presence in trace concentrations (ppb range to less than
10 ppm) in various environmental matrices (Tchounwou et al.
2014), but they can also be toxic at relatively low concentra-
tions (Ross 1975). The HMs are persistent in the environment.
They accumulate in living organisms and are transferred from
one trophic level to another in the food chains (Ali et al. 2019;).

The organic pollutants added as a result of anthropognic
activities, commonly called persistent organic pollutants
(POPs), are resistant to environmental degradation process
and are affecting health of ecosystems and humans
(reviewed by Lenoir et al. 2016a; Oyetibo et al. 2017). POPs
can persist in the body fat of humans and animals for decades,
and can cause cancer, birth defects, learning disabilities, and
immunological, endocrinal, behavioral, neurological, and re-
productive problems (Lenoir et al. 2016a). The United States
Environmental Protection Agency lists POPs in the soil, such
as polycyclic aromatic hydrocarbons (PAHs), as priority pol-
lutants and having carcinogenic and mutagenic properties
make them a cause of global concern (Gao et al. 2010).

In order to remove these toxic compounds from polluted
soils, different technologies and methods have been developed,
most of which include the physical elimination of soil into land-
fills or extraction through physical or chemical means (Oyetibo
et al. 2017). Even though these techniques are fast, their eco-
nomic and environmental cost and potential detrimental impact
on the physical, chemical, and biological properties of the soil
make them less desirable and feasible (Glick 2010). As an alter-
native to these methods, researchers have developed
phytoremediation approaches that include the use of plants for
the elimination or neutralization of a variety of compounds.
Phytobioremediation is the process of using plants and soil mi-
crobes for removing and cleaning chemical pollutants from soil,
both organic and inorganic pollutants (Dua et al. 2002).
Phytoremediation could be classified as: phytoextraction,
phytodegradation, rhizodegradation, phytostabilization, and
phytovolatilization (Miransari 2011). Phytoextraction and
phytostabilization are the most researched processes of
phytoremediation. In the process of phytoextraction, plants con-
centrate the HMs in their aerial parts by removing them from
soil, while the process of phytostabilization HMs are not

removed from the environment but immobilizes them in plant
roots (Abdelhameed and Metwally 2019) (Fig. 1).
Phytostabilization is an alternative strategy that reduces the mo-
bility and bioavailability of heavy metals in soil, thereby
preventing their migration into groundwater or entry into the
food chain (Chen et al. 2018b).

Plant root-fungal symbioses (mycorrhizas) have recently
been projected to have a role in phytoremediation of anthro-
pogenic soil pollution (Dhalaria et al. 2020; Janeeshma and
Puthur 2020; Riaz et al. 2020). Mycorrhizas are ubiquitous
and comprise two main groups: ectomycorrhizas, formed
mainly by forest trees; and, arbuscular mycorrhizas (AM),
formed mainly by herbaceous plants. The fungi derive carbon
and lipids from the plant and transfer mineral nutrients, mainly
phosphorus (P) and nitrogen (N) to the plant (Smith and Read
1997). They also help in alleviation of HM stress in soil,
improvement of soil structure, protection of roots from plant
pathogens and interaction with other soil microbes (Miransari
2011; Gupta et al. 2019; Gupta and Abbott 2020). The
arbuscular mycorrhizal fungi (AMF) belong to the subphylum
Glomeromycotina which is composed of approximately 330
fungi species (Schüßler et al. 2001, Spatafora et al. 2016;
Tedersoo et al. 2018, Goto and Jobim 2020, Gupta and
Abbott 2020; Wijayawardene et al. 2020). These fungi form
mutualistic and obligate symbiotic associations with around
80% of vascular plants and particularly important components
because, they can significantly increase the efficiency of agro-
ecosystems (Wang and Qiu 2006; Brundrett and Tedersoo
2018; Solís-Ramos and Andrade-Torres 2020). AMF can alter
productivity, by acting as biofertilizers, bioprotectors or
biodegraders (Xavier and Boyetchko 2002; Gupta et al.
2018; Chen et al. 2018a).

In the present review, we have explored the role of
arbuscular mycorrhizal symbiosis in phytoremediation of an-
thropogenic soil pollution. The review summarizes the current
knowledge regarding AMF assisted remediation of HMs and
POPs and some of the strategies used by mycorrhizal fungi to
cope with stressful environments. Moreover, this review pro-
vides the specific information on application of different AMF
species along with the mechanism involved in both
phytoaccumulation and phytoextraction of these pollutants.

2 Applications of AMF in phytoremediation

Notwithstanding the role of AMF in plant-soil-microbe inter-
actions and plant nutrition, there were fewer studies focusing
on the potential of bioremediation. One possible reason is that
the initial studies on bioremediation were focused on the use
of plant families reported as non-mycorrhizal, such as
Brassicaceae and Caryophyllaceae (Abdul 2006). The plant
families Chenopodiaceae, Cruciferaceae, Plumbaginaceae,
Juncaceae, Juncaginaceae, Amaranthaceae, and some
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members of the Fabaceae, do not form symbiosis with AMF
(Smith and Read 1997; Brundrett and Tedersoo 2020).
However, Thlaspi praecox (Brassicaceae) was discovered as
metal hyperaccumulating plants species colonized by AMF.
The first report of AMF colonization of Zn, Cd and Pb
hyperaccumulating Thlaspi praecox Wulfen (Brassicaceae)

under greenhouse conditions, which was favored by a high
demand of nutrients (for example, during the reproductive
period) (Vogel-Mikus et al. 2006). The roots colonization of
Thlaspi praecox (Brassicacear) in the polluted soils was char-
acterized by the presence of AMF typical structures ofGlomus
species (Pongrac et al. 2009). Changes in Zn, Cd and Pb

Fig. 1 Scheme summarizing the phytostabilization and phytoextraction
strategies for bioremediation of soils contaminated with heavy metals
us ing plants wi th arbuscula r mycorrh iza l symbios is : 1)
phytostabilization, absorption of HMs to the roots with AMF, to be

deposited within the cell wall or accumulated within the vacuoles of
AMF and or roots. 2) Phytoextraction: HMs are transferred from the
roots to the host shoots via xylem and phloem, to be accumulated in the
aerial parts (leaf vacuoles)
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uptake strategies strongly suggest AM colonization may be
one of the tolerance strategies of plant establishment of
T. praecox on polluted sites (Vogel-Mikus et al. 2006).

Research approaches have mostly focused on the diversity
and tolerance of AMF in soils polluted with HMs, trying to
understand the fundamental basis of the adaptation and toler-
ance of AMF to HMs in the soil in order to facilitate their soil
microorganisms for restoration and bioremediation programs
(Leyval et al. 2002). AMF can contribute to phytoremediation
in two ways: First. they can either accumulate and sequester
toxic metal ions themselves, thus protecting their host from
the pollutant (phytoaccumulation) or they can deliver HMs to
the host just like essential mineral nutrients such as Cu and Zn,
resulting in heavy metal accumulation in the host
(phtyostabilization) (Chen et al. 2018a). The situation is ap-
plied for plant production in polluted sites, with minimal toxic
effect on the crop. In the second case, however, harvested
plants are destroyed to reduce the heavy metal load of the site.

Arbuscular mycorrhizae exhibit different tolerance levels
depending on HM type and concentration. For example,
Acaulospora laevis is sensitive to Cu and particularly to Cd
and Glomus caledonium is more tolerant to these two HMs
under the same sand culture experimental conditions. This
study suggests that G. caledonium can be a promising mycor-
rhizal fungus for the bioremediation of soils polluted with these
HMs (Liao et al. 2003). Mycorrhizal fungi are capable of in-
creasing the growth and fitness of plants in soils containing Cd.
The addition of AMF to polluted agricultural soils is also a
viable option if the fungi decrease or do not increase the amount
of Cd accumulated in the parts of plants for human consump-
tion (Hancock et al. 2012). Another study demonstrated that
AMF (Glomus macrocarpum, Paraglomus occultum and
Glomus sp.) have beneficial effects on plant growth and allevi-
ation of pollutants in Acacia mangium, Sorghum bicolor, and
Urochloa brizantha in soils polluted with Zn, Cu, Pb, and Cd,
even though there were no differences in HMs concentration
between shoots of plants with and without mycorrhizas
(Pedroso et al. 2018). Nevertheless, AMF is a complex system
and the inconsistent results regarding the effect of AMF on
HMs uptake are a consequence of a wide range of factors, such
as metal concentration and species (Andrade et al. 2010), com-
petition between metals, physical-chemical soil characteristics,
plant-microorganism association type, plant growth conditions,
and root density (Lebeau et al. 2008), mycorrhizal fungus spe-
cies, plant tolerance to contaminants and bioavailability of
heavy metals (Yang et al. 2015). It is important to highlight that
the results vary between treated and untreated soils (pasteur-
ized/sterilized) (Joner and Leyval 2001).

There has been a diverse influence of the pollutants on
these fungi. For example, Whitfield et al. (2004) mentioned
that HMs concentration only influences vesicle (lipid storage
structures) abundance, which were higher in polluted sites,
and probably reflects a difference in the fungal species mix

colonizing the roots, where Glomus was the predominant
species. However, Del Val et al. (1999) showed that AMF
spore number and species richness depend on the level of soil
pollution and, host plant species selectively influence AMF
population size and diversity. Furthermore, Orłowska et al.
(2012) observed a lower amount of mycelium in strains iso-
lated from sites polluted with As, than in those from non-
polluted sites inoculated into plants of Plantago lanceolata.
One study showed that G. mosseae had the highest extracel-
lular HMs absorption of Cd and it was higher than Ca and Zn
(Joner et al. 2000).

Mycorrhization benefits revegetation processes in polluted
areas due to a better establishment of plants in these areas
(Pedroso et al. 2018). According to the results by Hassan
(2005), cotton plants are good candidates for revegetation
and phytostabilization of HMs in polluted soils, since AMF
use an exclusion strategy in which the deposition of metals
within the mycelium and cortical cells of the roots of AMF
prevent the translocation of metals from roots to shoots. The
application of amendments allows the increase of P, which, at
the same time, can increase biomass as well as growth param-
eters and, thus, detoxify the potential effects of metals by the
dilution, precipitation, or absorption of metals on phosphate
granules; in that way, limiting their entrance to root cells. The
results of the study of Gu et al. (2017), indicated that AMF
inoculation has a species-specific effect: each plant species
showed variation in biomass production and metal accumula-
tion. For example, among the plants studied Perennial
Ryegrass (Lolium perenne), Tall Fescue (Festuca
arundinacea), Showy Stonecrop (Hylotelephium spectabile),
and Purple Heart (Tradescantia pallida), H. spectabile
showed the greatest growth response to mycorrhizal inocula-
tion and the lowest concentrations of Pb, Zn, Cu, and Cd in
both shoots and roots. A relevant aspect to be considered in
the design of bioremediation programs together with the se-
lection of endemic metallophytes and AM fungal strains, is
the selection of species that can produce glomalin at high
quantities (Cornejo et al. 2017).

The success of AMF for phytoremediation of POPs has
showed a wide range of components and their mixtures, such
as aliphatic hydrocarbons, fuel oils and other petroleum hy-
drocarbon mixtures, polycyclic aromatic hydrocarbons
(PAHs), explosives, pesticides, and chlorinated organic com-
pounds (Joner and Leyval 2003a). The hyphae and
extraradical mycelium of AMF can play an important role in
the uptake and translocation of phenanthrene (PHE) and
pyrene (PYR) in plants, which suggests their potential use
for the remediation of soils polluted with polycyclic aromatic
hydrocarbons (PAHs) (Gao et al. 2010; Gao et al. 2011). AMF
inoculated into plants significantly contribute to the degrada-
tion of petroleum hydrocarbon (Joner and Leyval 2003b;
Volante et al. 2005; Verdin et al. 2006; Alarcón et al. 2008;
Wu et al. 2009; Hernández-Ortega et al. 2012). There is
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evidence that AMF can reduce the presence of aromatic hy-
drocarbons (benzene, toluene, ethylbenzene, and xylene,
BTEX) in artificially polluted soils. It is interesting to see that
the effects vary with AMF species and BTEX nature (Volante
et al. 2005). One study documented that AMF colonizing and
establishing in the rhizosphere of Eleocharis obtusa and
Panicum capillare grown at high petroleum hydrocarbon
levels, where twenty-one taxa were identified, encompassing
the major families within Glomeromycota. This suggests that
AMF can be potentially important microbial candidates in the
bioremediation of oil-contaminated soils (De la Providencia
et al. 2015). It has also been observed that the application of
mycorrhizal fungi combined with surfactants has a potential
biotechnological use in the decontamination of soils with or-
ganic pollutants (Wu et al. 2008). This was demonstrated by
Wu et al. (2008), who found that the colonization of alfalfa
roots by AMF (Glomus etunicatum) and the application of
Triton X-100 favor the accumulation of DDD (1,1-dichloro-
2,2-bis (p chlorophenyl) ethane) in the roots and decrease it in
the shoots.

3 Mechanism of AMF mediated
phytoremediation

The general role of AMF symbiosis in phytoremediation in-
volves several processes including, enhanced uptake through
an enhanced microbial activity in soils with low HMs concen-
trations, metal-binding contributing to plant biomass and tol-
erance to HMs stress in soils with high HMs concentrations,
absorption by extraradical hyphae or spores and chelation in
fungal cells or through chelating molecules (Rivera-Becerril
et al. 2005; Audet and Charest 2007; Riaz et al. 2020; Dhalaria
et al. 2020). AMF can facilitate the movement of HMs to plant
roots through various mechanisms, such as: deposition in the
cellular wall or fungal vacuoles, sequestration by siderophores
that can deposit HMs in root apoplasm or in the soil,
metallothioneins or phytochelatins can result in the deposition
of HMs in fungal or plant cells, and allocation of HMs from
the cytoplasm by metal transporters in the plasmalemma or
tonoplast of both symbionts (Miransari 2011).

Some examples are included below to illustrate the mech-
anisms through which AMF immobilize heavy metals in soil
or roots and thus, demonstrate the suitability of AMF for
phytostabilization applications (Ambrosini et al. 2015).

1. AMF influence the uptake and distribution of metals in
host plants - For example, in roots of Lotus japonicus
inoculated with AMF species Rhizophagus irregularis,
it was observed that the arbuscules and intercellular hy-
phae accumulated large amounts of Cd, followed by the
vesicles, while plant cells did not. This distribution pattern
suggested that after the extraradical hyphae uptake and

translocate Cd to intraradical hyphae, this toxic metal
was mainly retained in the fungal structure, particularly
in the arbuscules, and did not seem to be delivered to plant
cells (Chen et al. 2018b). The tolerance mediated by AMF
can occur by metal exclusion mechanisms, where fungal
structures, such as the extraradical mycelium, can play an
important role (Ambrosini et al. 2015). For example,
AMF can immobilize uranium (U) in soil by absorption
and, potentially, by the formation of complexes with
AMF glycoproteins and intracellular polyphosphates.
Even though AMF can transfer U to their hosts and con-
sequently, participate directly in U accumulation by the
plants, it is also clear that most of the U translocated by
AMF towards their intraradical mycelium remain within
AMF structures, thus restricting roots to shoots transloca-
tion of U (Dupré de Boulois et al. 2008). In mycorrhized
coffee plants, it has been observed that if the concentra-
tion of Cu in the soil is between 50 and 100 mg-kg, the
metal is mostly retained in the roots, which acts as a bar-
rier for translocation to the shoots (Andrade et al. 2010).

The AMF promotes the absorption of P through the
roots and may cause the formation of less mobile metal-
phosphate compounds in plants, reducing the transloca-
tion of trace elements from the roots to the shoots. This
was observed in the wine plants, in the presence of Cu and
inoculated with six AMF species (Dentiscutata
heterogama, Gigaspora gigantea, Acaulospora
morrowiae, A. colombiana, Rhizophagus clarus, R.
irregularis). Where R. clarus and R. irregularis showed
a high colonization in the wine roots and improved the P
absorption and roots growth in soils with high levels of
Cu (Ambrosini et al. 2015). Different levels of Cd in the
soil have an important effect on the behavior of mycor-
rhiza fungi, and these fungi could increase or decrease the
uptake of Cd by plants and regulate accumulation in the
plant tissues. In a study related to inoculate sorghum with
Claroideoglomus etunicatum under stress for Cd, the re-
sults revealed the key role of AMF in translocation of Cd
in the rhizobox and also, in precise control of Cd concen-
tration of plant tissues (increment or decrease of them
depending on Cd composition and Cd availability). The
metal is probably stored in roots, in fungal hyphae and
mycelium, and its transmission and toxic effects to shoots
are largely prevented. AMF action enhance both, plant
tolerance and phytostabilization of Cd contaminated soil
(Babadi et al. 2019).

HMs can be deposited in root cell walls or accumulated
within root cells, forming complexes with organic mole-
cu les such as polyphosphates , amino ac ids ,
metallothioneins, or phytochelatins (Gupta and
Goldsbrough 1991; Andrade et al. 2010). One study
showed that AMF isolated from a HM-tolerant plant
(Viola calaminaria) have a significant effect on HM
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accumula t ion in p lan t roo t s in a non- tox i c
form;apparently, by restricting the transfer of metals to
shoots (Tonin et al. 2001). HM can be stored in cellular
compartments, including spores and vesicles. Following
this storage process, the metabolic rate is reduced and the
effect of HMs on plant metabolism is decreased, having a
beneficial effect on the plant and AMF growth, for exam-
ple Cu (Ambrosini et al. 2015). Rhizophagus irregularis
accumulates Cu in vesicles, improving the tolerance of
Tagetes erecta L., even when accumulation increases in
the roots, which suggests that this system has a potential
use as phytostabilizer of Cu in polluted soils (Castillo
et al. 2011).

2. The plants inoculated with AMF reduce the HMs toxicity-
For example, in mycorrhizal coffee plants, it was ob-
served that Cu and Zn in high concentrations cause a
decrease in the shoots and roots growth, indicating the
high phytotoxicity at these concentration (Andrade et al.
2010). Nevertheless, Cd tolerance with AMF inoculation
is ascribed to augmented accumulation of stress metabo-
lites such as sugar, proteins, proline, and glycine betaine,
eventually leading to increased growth (Sharma et al.
2016; Janousková et al. 2006; Abdelhameed and
Metwally 2019).

3. The inoculation with AMF significantly increases the an-
tioxidant enzyme activity - For example, this was evident
in trigonella plants (Trigonella foenumgraecum L.) inoc-
ulated with AMFs (Glomus monosporum, G. clarum,
Gigaspora nigra and Acaulospora laevis), where the
damage to the plant caused by the stress provoked by
the metal was reduced due to the increase in the antioxi-
dant enzymes activity (Abdelhameed and Metwally
2019). This was suggested to be a tolerance strategy of
mycorrhizal trigonella plants against Cd stress
(Abdelhameed and Metwally 2019). This agrees with a
study where Cassia italica Mill plants under Cd stress,
inoculated with the AMF mixture (Funneliformis
mosseae syn.Glomus mosseae, Rhizophagus intraradices
syn. Rhizophagus irregularis and Claroideoglomus
etunicatum syn. Glomus etunicatum), show an increment
of the chlorophyll and protein content and additionally,
reduced the Cd uptake (Hashem et al. 2016). The inocu-
lated plants with AMF under stress by the metal, reduced
the peroxidation of membranes, that may be caused due to
the possible role of AMF in phosphate uptake and antiox-
idant activity. The negative impact mitigation of the stress
caused by the metal, due to the increased activity of anti-
oxidants mediate quick scavenging of reactive oxygen
species and hence, result in membrane protection, mitigat-
ing the negative impact. (Hashem et al. 2016).
Mycorrhizal red kidney plants accumulated relatively
high metal concentrations (Zn, Cu, Pb and Cd) in shoots

more than in their roots. This is attributed to the reduced
heavy metal toxicity effects in AMF red kidney plants to
antioxidative protection through detoxification of heavy
metals, chelation through metal-binding proteins
(peptides) and dilution through increased plant growth
induced by AMF (Glomus mosseae) (Hassan 2005).

4. The AMF increase the production of GRSP- Glomalin
related soil protein (GRSP) can join some metals.
GRSP, an insoluble glycoprotein produced in high quan-
tities by AMF external hyphae, is an important compo-
nent of the organic matter complex in the soil and plays
different roles, like in carbon fixation and cycle, aggregate
soil stability, prevent water loss and alleviate in toxic or
harsh conditions (Vodnik et al. 2008; Malekzadeh et al.
2016; Gao et al. 2019). This was seen in the study related
to inoculated sorghum with Claroideoglomus etunicatum
under stress for Cd. The results showed that the glomalin
production increased, suggesting a role of glomalin in
response to soil stresses (Babadi et al. 2019). Also, in
Oenothera picensis inoculated with Claroideoglomus
claroideum it was determined the high capability of union
of Cu for Bradford-reactive soil protein whose fraction
includes the glomalin produced by AMF.

The principal suggested function of GRSP production
is to protect the living hyphae and AMF itself, and the
effects in the soil are secondary, so, it is a stress induced
protein (Cornejo et al. 2008; Ferrol et al. 2009;
Malekzadeh et al. 2016; Gao et al. 2019). In the “second-
ary” roles GRSP can sequestrate different heavy metals
(González-Chávez et al. 2004; Cornejo et al. 2008;
Vodnik et al. 2008; Ferrol et al. 2009; Gil-Cardeza et al.
2014; Wu et al. 2014; Singh 2015; Malekzadeh et al.
2016; Ghasemi et al. 2017; Ferreira et al. 2018; Wang
et al. 2020a; Wang et al. 2020b) and toxics like phenan-
threne (Gao et al. 2017; Chen et al. 2019; Chen et al.
2020), and it contributes to reduce the bioavailability of
the toxics. It has different affinities for bonding to HM,
depending on factors like metal chemistry and content. It
seems that GRSP is more abundant in high concentrations
of the toxic (Vodnik et al. 2008; Wu et al. 2014;
Malekzadeh et al. 2016; Ferreira et al. 2018; Wang et al.
2020a). The binding mechanisms of the toxics to the
GRSP are not well elucidated. González-Chávez et al.
(2004) suggests that the binding of Copper was caused
by, electrostatic sorption or strong complex formations.
Recently, it has been demonstrated that for the bonding of
certain heavy metals, ion exchange is the principal mech-
anism, so functional groups like carbonyl, hydroxyl, am-
ide and carboxyl may participate in this process (Wang
et al. 2020a; Wang et al. 2020b).

GRSP is part of the mechanism that AMF could use on
alleviation in remediation processes. Elucidating more in-
formation of this protein could be considered to maximize
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the potential of the applications, because of environmental
processes and conditions, and also, the AMF species can
affect the production or peak intensity of GRSP (Singh
2012, 2015; Wu et al. 2014; Wang et al. 2020a; Wang
et al. 2020b). Diversity of AMF and glomalin content can
be considered good indicators of rehabilitation of soils
contaminated with Zn, Cu, Pb, and Cd (Leal et al.
2016). GRSP production should be considered in
biostabilization of polluted soils since it participates in
the sequestration of different PTEs (potentially toxic ele-
ments) (González-Chávez et al. 2004; Rilling and
Steinberg 2002). AMF protect plants against stress caused
by the HMs pollution when it accumulates high concen-
trations in the radical system and decreases the transloca-
tion to the aerial parts (Tonin et al. 2001).

5. Stimulating the growth of hyperaccumulators – The plants
that have the capacity to tolerate high levels of HMs present
in the soil and after that, and accumulate it in their tissues,
are known as metallophytes or hyperaccumulators.
Tolerance is the capacity of plants or microorganisms to live
and adapt to elevated heavy metal concentrations in soil
(Dietz et al. 1999). These hyperaccumulators absorb heavy
metals, translocate them through tonoplast and accumulate
in vacuoles, in that way, they protect cell metabolism from
metal toxicity (Maiti et al. 2004). The use of plants, with
hyperaccumulating ability or in association with soil mi-
crobes including the symbiotic fungi, arbuscular mycorrhi-
za, are among the most common biological methods of
treating heavy metals in soil (Miransari 2011). Once metals
enter the hyphae of AMF, they can be immobilized or trans-
ferred to the root, and, in the root, they can be sequestered or
translocated to the shoot (Leyval et al. 1997).

In a study focused on Cannabis sativa (var. Carmagnola)
associated with Glomus mosseae, in a soil polluted artificially
with Cr, Cd and Ni, it was reported a significantly higher
concentration of Ni in the plants leaves and stems. So, this
associat ion G. mosseae-C. sat iva st imulated the
hyperaccumulating plant species, enhancing the root to shoot
metal translocation to sequester the exceeding toxic metals in
the shoot cell vacuoles by means of molecules such as
metallothioneins and phytochelatins (Citterio et al. 2005).
Eucalyptus globulus is suitable to grow and rehabilitate
heavy-metal-polluted soils (Arriagada et al. 2004, 2007). In
a study, it was shown that the synergy action of AMF (Glomus
mosseae or with Glomus deserticola), with a saprophyte fun-
gus (Fusarium concolor and Trichoderma koningii), allowed
a higher Cd and Pb growth and absorption in trees stems and
leaves of E. globulus (Arriagada et al. 2007). The AM fungi
seems to contribute to the redistribution of Cd inside the plant.
In fact, it was higher accumulation of Cd in the stem that in the
leaves of eucalyptus colonized with G. deserticola, where the
harmful effects on the development of the plant are minimal

(Arriagada et al. 2004), This redistribution of heavy metals in
the less metabolically active part of the plant might explain
why AMF increased the content of heavy metals and en-
hanced the growth of eucalyptus (Arriagada et al. 2007)
(Table 1).

6. Mycorrhizal fungi change the structure of the microbial
community and the physical and chemical properties of
rhizosphere soils – For example Ogar et al. (2015) andMa
et al. (2019) evaluated the impact of microbial inoculation
on phytoremediation. In case of nickel (Ni)-contaminated
saline soils using Helianthus annuus together with salt
resistant plant beneficial bacterium, Pseudomonas
libanensis TR1 and AMF Claroideoglomus claroideum
showed bioaugmentation. The results of this study
showed that the bioaugmentation using other microbial
strains in addition to AMF may be a preferred strategy
for improving phytoremediation of metal-polluted saline
soils. (Ma et al. 2019).

4 Species of AMF in phytorremediation

D i f f e r e n t s p e c i e s o f AMF a r e u s e f u l f o r
phytoremediation and their efficiency depend on plant
species; however, few AMF are widely used and studied
(Table 1). Research has focused mainly on the effects
of AMF on HMs, but there are also species that have
been used for other kind of pollutants. Studies analyzing
species such as Glomus mosseae, G. intraradices,
Funneliformis mosseae, or Rhizophagus irregularis are
the most common. Some of the most studied heavy
metals in the presence of AMF are Cd, Pb, Cr, and
Ni. In the case of these metals, the symbiosis provides
benefits in the alleviation of different plants by using
species like G. mosseae (Jamal et al. 2002; Janousková
et al. 2006; Azcón et al. 2009; Ruscitti et al. 2011;
Garg and Aggarwal 2012; Garg and Bhandari 2012),
G. intraradices (Turnau and Mesjasz-Przybylowicz
2003; Malcová et al. 2003; Janousková et al. 2006;
Sudová and Vosátka 2007; Andrade et al. 2008;
Ruscitti et al. 2011; Liu et al. 2018; Zhang et al.
2019a), G. aggregatum (Singh et al. 2019; Zhang
et al. 2019a), R. fasciculatus (Singh et al. 2019),
R. intraradices (Yang et al. 2015; Jiang et al. 2016;
Singh et al. 2019), F. mosseae (Yang et al. 2015;
Singh et al. 2019; Zhan et al. 2019), and Diversispora
spurcum; this last species has been used for Pb, Cd, and
Zn (Zhan et al. 2019). For Pb and Cd, species used
have been G. etunicatum (Souza et al. 2012; Zhan
et al. 2019) and R. irregularis (Zhang et al. 2019b;
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Table 1 Details of AMF species exploited in phytoremediation and in the presence of inorganic/organic pollutants

AMF Plants Pollutant Mechanisms or remarks Reference

Funneliformis
mosseae

Glycine max, Lens culinaris Zn, Ni Phytoextraction Jamal et al. (2002)*

Nicotiana tabacum Cd Phytostabilization Janousková et al. (2006)*

Oryza sativa Chlorothalonil Alleviation Zhang et al. (2006)*

Coreopsis drummondii,
Pteris vittata, Lolium perenne

Cu Phytostabilization Chen et al. (2007)*

Trifolium repens Cd, Mo, Mn, Zn,
Cu, Al, As, Ni

Phytostabilization Azcón et al. (2009)*

Medicago sativa Phenanthrene, pyrene Alleviation Gao et al. (2011)*

Capsicum annum Cr Phytostabilization Ruscitti et al. (2011)*

Lolium multiflorum decabromodiphenyl
ether (BDE-209)

Enhanced debromination Wang et al. (2011)*

Zea mays Phenanthrene, pyrene Alleviation Wu et al. (2020)*

Lolium multiflorum Phenanthrene, pyrene Enhance dissipation Yu et al. (2011)*

Cajanus cajan Cd, Pb Phytostabilization Garg and Aggarwal (2012)*

Cajanus cajan Cd Phytoextraction Garg and Bhandari (2012)*

Cucurbita pepo Aroclor 1242 Enhance dissipation Qin et al. (2014)*

Robinia pseudoacacia Pb Phytostabilization Yang et al. (2015)

Canna indica Atrazine Alleviation, enhances
removal

Dong et al. (2016)

Medicago sativa Atrazine Alleviation Fan and Song (2018)

Zea mays Cd, Cr, Ni, Pb Phytoextraction Singh et al. (2019)

Phragmites australis TiO2NPs Alleviation Xu et al. (2019)

Cynodon dactylon Pb, Zn, Cd Alleviation,
Phytostabilization

Zhan et al. (2019)

Zea mays Simazine Alleviation Cheng et al. (2021)

Rhizophagus
intraradices

Agrostis capillaris, Zea mays Pb Alleviation Malcová et al. (2003)*

Berkheya coddii Ni Phytoextraction Turnau and
Mesjasz-Przybylowicz
(2003)*

Sorghum bicolor Cu Phytostabilization Toler et al. (2005)*

Nicotiana tabacum Cd Phytostabilization Janousková et al. (2006)*

Astragalus sinicus Lanthanum Phytostabilization Chen and Zhao (2007)*

Zea mays Pb Phytostabilization Sudová and Vosátka (2007)*

Helianthus annuus Cd Phytostabilization Andrade et al. (2008)*

Nicotiana tabacum Phenol Alleviation Ibáñez et al. (2011)*

Capsicum annum Cr Phytostabilization Ruscitti et al. (2011)*

Medicago sativa, Festuca
arundinacea, Lolium
multiflorum, Apium
graveolent

Phenanthrene PAH dissipation Zhou et al. (2013)*

Avena sativa Mixed petroleum Alleviation and enhanced
degradation

Xun et al. (2015)*

Zea mays Oxytetracycline (OTC) Alleviation, enhanced
degradation

Cao et al. (2015)

Robinia pseudoacacia Pb Alleviation Yang et al. (2015)

Lonicera japonica Cd Alleviation Jiang et al. (2016)

Zea mays Cd Alleviation Liu et al. (2018)*

Medicago sativa Cd Alleviation Zhang et al. (2019a)*

Zea mays Cd, Cr, Ni, Pb Phytoextraction Singh et al. (2019)

Rhizophagus
irregularis

Phragmites australis Cu fitorizomediación Wu et al. (2020)

Medicago truncatula Pb Alleviation Zhang et al. (2019b)
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Table 1 (continued)

AMF Plants Pollutant Mechanisms or remarks Reference

Solanum nigrum Cd Phytostabilization Wang et al. (2020)

Lolium perenne Fe-CN Phytostabilization Sut et al. (2016)

Trifolium aestivum Alkane, polycyclic
aromatic hydrocarbon
(PAH)

Alleviation Lenoir et al. (2016b)

Medicago truncatula Benzo[a]pyrene Alleviation Calonne-Salmon et al. (2018)

Glyceria maxima Ibuprofen, diclofenac Alleviation, enhance
removal

Hu et al. (2020)

Septoglomus
deserticola

Acacia melanoxylum,
Cytisus striatus,
Allium cepa,
Trifolium pratense

hexachlorocyclohexane
(HCH)

Alleviation Sainz et al. (2006)*

Eucalyptus globulus As Phytoextraction Arriagada et al. (2009)*

Eucalyptus globulus Zn Phytoextraction Arriagada et al. (2010)*

Solanum melogena,
Sorghum sudanese

Cd, Zn Phytoextraction Mohammad and Mittra (2013)*

Ampelopteris prolifera Cr Phytoextraction Singh et al. (2014)*

Funneliformis
caledonius

Zea mays Atrazine Enhanced degradation Huang et al. (2007)*

Medicago sativa Polychlorinated
biphenyls

(PCBs)

Enhanced removal Teng et al. (2010)*

Lolium perenne Polychlorinated
biphenyls

(PCBs)

Phytoextraction Lu et al. (2014)*

Festuca arundinacea PAHs PAH dissipation Lu and Lu (2015)*

Acaulospora laevis Astragalus sinicus Lanthanum Phytostabilization Chen and Zhao (2007)

Cucurbita pepo Aroclor 1242 Enhance dissipation Qin et al. (2014)

Claroideoglomus
claroideum

Nicotiana tabacum Cd Phytostabilization Janousková et al. (2006)*

Eucalyptus globulus As Phytoextraction Arriagada et al. (2009)*

Claroideoglomus
etunicatum

Calopogonium mucunoides Pb Phytostabilization Souza et al. (2012)*

Medicago sativa Cd Alleviation,
Phytostabilization

Zhan et al. (2019)*

Rhizophagus aggregatus Zea mays Cd, Cr, Ni, Pb Phytoextraction Singh et al. (2019)*

Medicago sativa Cd Alleviation,
Phytostabilization

Zhang et al. (2019a)*

Rhizophagus
fasciculatus

Triticum aestivum Metsulfovax, Bavistin,
Thiram, Captan,
Aldrin

Alleviation Chhabra and Jalali (2013)*

Zea mays Cd, Cr, Ni, Pb Phytoextraction Singh et al. (2019)

Diversispora spurca Cynodon dactylon Pb, Zn, Cd Alleviation,
Phytostabilization

Zhan et al. 2019)

Funneliformis
constrictus

Zea mays Diesel Alleviation Tang et al. (2009)*

Funneliformis
geosporus

Nicotiana tabacum Cd Phytostabilization Janousková et al. (2006)*

Gigaspora margarita Astragalus sinicus Lanthanum Phytostabilization Chen and Zhao (2007)

Glomus versiforme Lonicera japonica Cd Alleviation,
Phytostabilization

Jiang et al. (2016)

Rhizophagus clarus Costus lucanusianus Crude oil Alleviation and enhanced
degradation

Nkereuwem et al. (2020)*

*= articles in where the AMF species now have a different name. This table uses the AMF current names according to the index fungorum (http://www.
indexfungorum.org/). Also, the species appear in order of number of reports
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Wang et al. 2020). For the presence of Cd or Cr, AMFs
such as G. deserticola (Mohammad and Mittra 2013;
Singh et al. 2014) have been used, and G. geosporum,
G. c laroideum ( Janousková e t a l . 2006) , and
G. versiforme (Jiang et al. 2016) have been used only
for Cd.

There are also studies on phytoremediation involving other
HMs, such as: Zn, Cu, As, and Lanthanum (La). For these
HMs, some investigations have used common species or spe-
cies that also participate in other common HMs remediation,
like the ones mentioned above. Glomus mosseae is also used
in the presence of Zn and Cu (Jamal et al. 2002; Chen et al.
2007; Azcón et al. 2009). Rhizophagus irregularis is used for
Cu or La (Toler et al. 2005; Chen and Zhao 2007) and, for La,
other less used species are Acaulospora laevis or Gigaspora
margarita (Chen and Zhao 2007). Rhizophagus irregularis
has also been used for Cu (Wu et al. 2020). In presence of
Zn and As, G. mosseae (Jamal et al. 2002; Azcón et al. 2009)
and G. deserticola (Arriagada et al. 2009; Arriagada et al.
2010; Mohammad and Mittra 2013) could have alleviation
benefits. For compounds such as TiO2 nanoparticles or iron–
cyanide (Fe-CN), F. mosseae (Xu et al. 2019) and
R. irregularis (Sut et al. 2016), respectively, can be used for
alleviation in plants.

Glomus versiforme has a more beneficial role than Glomus
mosseae in promoting plant growth, nutrient absorption, C:
N:P stoichiometric adjustment, and alleviation of rare earth
element (REE) and HM toxicity in plants. Corn and sorghum
show opposite tendencies in REE uptake in response to AMF
colonization. Results suggest that the effect of AMF on REE
uptake could be related to plant species, AMF isolate, and
REE type and concentration in mine residues. Results indicat-
ed that AMF could increase the ability of plants to restore
ecosystems polluted with the chemical complex of REE in
mine residues or with heavy metals (Guo et al. 2013).

AMF are not only used in HM phytoremediation, since they
may have benefits for plant alleviation in the presence of oil or
PAHs. For PAHs, Lu and Lu (2015) used G. caledonium. For
products like Phenanthrene or Pyrene, G. mosseae (Gao et al.
2011) has been used, and G. intraradices has been used for
Phenanthrene (Zhou et al. 2013). In addition, Calonne-Salmon
et al. (2018) observed that R. irregularis could alleviate the stud-
ied host plant in the presence of Benzo[a]pyrene. Rhizophagus
irregularis alleviated mixed petroleum (Xun et al. 2015) or
Phenol (Ibáñez et al. 2011), andG. clarum can be used for crude
oil (Nkereuwem et al. 2020). There are reports of AM resulting
in plant alleviation and enhanced removal of less studied human
pollutants used in agriculture or veterinary. For herbicides, Dong
et al. (2016) observed that F. mosseae may have benefits in the
presence of chloro-s-triazine or atrazine. For antibiotics widely
used in veterinary, such as Oxytetracycline (OTC),
phytoremediationwithR. intraradices could enhance the process
(Cao et al. 2015).

5 Conclusions and perspectives

The pollution caused by anthropogenic activities is a severe
global problem. We can apply physical and chemical remedia-
tion methods. However, they have a high economic and envi-
ronmental cost. Phytoremediation is a better option, using
plants and microorganisms to remediate contaminated sites.
By specifically using AMF cosmopolitan organisms that re-
quire a host to complete their life cycle, both, the fungus and
the plants receive benefits from this interaction and we obtain
better results. Different reports show that use of AMF improves
plant tolerance to HMs and POPs pollution, as AMF influence
the uptake and distribution of HMs in host plants. They also
immobilize the contaminant at the root level, transport it in
smaller amounts to the aerial parts (phytostabilization) or effi-
ciently translocate in to the aerial parts of hyperaccumulating
plants (phytoextraction).

The application of AMF in the phytoremediation allows: 1)
to improve mineral nutrition and water availability, 2) to pro-
tect against oxidative stress, 3) to increase soil physical stabil-
ity, 4) to increase plant tolerance to soil stress, 5) to increase
concentration in chlorophyll pigments, amino acids, carbohy-
drates, total sugars and essential elements such as P and N, 6)
that glomalin production protects hyphae and AMF from
stress caused by contaminants, 7) that mycorrhizal interaction
favors that contaminants can accumulate in AMF structures
(spores, extraradical and intraradical hyphae, vesicles,
arbuscules), or in the plant (in root cell, shoots leaves or
stems), where metabolic activity is reduced and harmful ef-
fects to the plant are low.

Depending on the type of contaminant, an appropriate se-
lection of plant species and AMF is required to enhance the
phytoremediation process. Selection of a hyperaccumulator
plant, but with higher biomass (e.g., forest species) inoculated
with AMF species could be considered to aid the
phytoextraction process of soil contaminants.

The identification and isolation of indigenous and tolerant
AMF strains can have implications for the future of
phytoremediation of contaminated soils. Some studies have
also documented the application of saprophytic fungi in syn-
ergy with the AMF to take advantage of pollution stress tol-
erance (bioaugmentation). In the case of application of AMF
for HMs uptake with plants, better results are obtained by
using a consortium of fungi adapted to metal containing soils
rather than individual fungal species. However, it is necessary
a deeper study and compare the diversity of AMF in HM
contaminated and non-contaminated soils when associated
with HM tolerant and non tolerant plants. Consequently, we
will acquire more knowledge about these symbiotic relation-
ships, which promise to be a safe, clean, sustainable, and eco-
nomical management strategy that enhances plant growth and
facilitates the remediation of heavy metals in contaminated
soils (Shahabivand et al. 2012).
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Modern biotechnology and gene editing promise a major
breakthrough in bioremediation, including the improvement
of AMF strains for such complex subjects as HMs. However,
there is a need to continue studying indigenous organisms and
record natural biodiversity to learn more about the wide range
of possibilities that already exist, and to conduct further stud-
ies on the application of AMFs in bioremediation strategies. It
is also important to continue researching on the basic princi-
ples and molecular mechanisms that allow us to understand
how contaminants are taken up and how they act at the cellular
and tissue level in both AMF and plants, as well as to identify
genes involved that are attractive for breeding programs. This
will allow us to increase the tolerance and efficiency of plants
and fungi to obtain new soil bioremediation strategies.
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