
9 /Published online: 2 September 2019

Symbiosis (2019) 79:251–262

Endophytic bacteria mitigate mercury toxicity to host plants

Ivani Souza Mello1
& William Pietro-Souza1 & Breno Martins Barros1 & Gilvan Ferreira da Silva2

&

Marcelo Lattarulo Campos1 & Marcos Antônio Soares1

Received: 31 March 2019 /Accepted: 11 August 201
# Springer Nature B.V. 2019

Abstract
Plant communities growing in metal-contaminated areas can develop resistance mechanisms by establishing symbiotic associ-
ations with endophytic microorganisms. The functionality and diversity of endophytic communities depend on the amount and
type of metal present in the soil. To characterise the response of endophytic bacterial communities to mercury-induced abiotic
stress, we analysed the colonization frequency and number of bacterial isolates in the roots of Aeschynomene fluminensis (Joint
Vetch) and Polygonum acuminatum (Smartweed), which represent the families Fabaceae and Polygonaceae, respectively. These
two plant species are found in many mercury-contaminated areas. The isolates were characterised by morpho- and genotyping
and identified by 16S rDNA gene sequencing. The bacteria belonged to the phyla Actinobacteria, Bacteriodetes, Firmicutes, and
Proteobacteria. The Hill series and Venn diagram provided evidence that mercury affects the composition, diversity, and richness
of the endophytic bacterial communities. Inoculation with Bacillus_sp_BacI34, Burkholderia_sp_BacI45,
Enterobacter_sp_BacI14, Enterobacter_sp_BacI26, Enterobacter_sp_BacI18, Klebsiella_pneumoniae_BacI20,
Lysobacter_soli_BacI39, Pantoea_sp_BacI16, and Pantoea_sp_BacI23 promoted the growth of corn (Zea mays) plants in
mercury-supplemented substrata. It is noteworthy that Pantoea sp_BacI23 increased the host plant length (root and shoot) by
117.09 ± 0.28%. Endophytic bacterial strains may well provide important inoculants for plant growth promotion on metal-
contaminated sites and in metal bioremediation programs.

Keywords Endophytes . Tracemetal .Wetland . Bioremediation . Plant growth promotion

1 Introduction

Mercury is a class B metal (Nieboer and Richardson 1980) nat-
urally found in the earth crust that occurs in soil, water, and air in
several chemical forms, including metallic (Hg0), ionic (Hg+,
Hg2+), organometallic ((CH3)2Hg, CH3Hg

+) forms (Carrasco-
Gil et al. 2013). Transformation of this metal via methylation,
demethylation, and reduction depends on its distribution and the
environment conditions (Asaduzzaman et al. 2019). Mercury is
among the 20 substances that the United States Environmental

Protection Agency and the Agency for Toxic Substances and
Disease Registry classify as highly toxic to humans and aquatic
organisms (Ullah et al. 2015; Darko et al. 2016). It therefore
threatens not only human and animal health, but also ecosystems
(Román-Ponce et al. 2016). The high toxicity of mercury has
prompted the search for strategies that minimise its detrimental
effects or contamination levels to the environment (Farias et al.
2012; Seccatore et al. 2014; Oliveira et al. 2015).

The Pantanal is the largest tropical wetland in the world and
comprises one of the largest and most biodiverse biomes in
Brazil (Junk et al. 2014). Anthropic influences, such as defor-
estation, erosion, and gold mining have led to severe mercury
contamination in many parts of the Pantanal (Ceccatto et al.
2016), where the mercury concentration in suspended sedi-
ments has ranged from 0.02 to 0.61 mg.kg−1 (Lacerda et al.
1991). The Brazilian legislation (BRASIL 2009) and World
Health Organization (WHO, 2003) recommend that mercury
concentrations should be lower than 0.5 mg.kg−1 for urban
areas. The main problem is illegal mining activity that has
increased the mercury contamination of soil, water, and biota
(Ceccatto et al. 2016; Cebalho et al. 2017). Mercury levels in
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the soil samples near a gold-mining site of Poconé, Mato
Grosso State, Brazil, are 6.48 times greater than the limit
established by the Brazilian legislation (Pietro-Souza et al.
2017). Mercury contamination is of public interest because it
threatens humans via various exposure routes (Seccatore et al.
2014), and this metal has the capacity to bioaccumulate in the
food chain (Vishnivetskaya et al. 2011; Zhang et al. 2013;
Mani and Kumar 2014; Alanoca et al. 2016).

Mercury contamination of natural areas exerts a strong se-
lective pressure for the development of mercury-resistant
plants (Fidalgo et al. 2016). The association with endophytes
enables the host plants to adapt and face adverse conditions
including attack by phytopathogens (Soares et al. 2016a), high
levels of metal contamination (Shen et al. 2013; Manohari and
Yogalakshmi 2016), and other physical and chemical stresses
(Rodriguez et al. 2008; Soares et al. 2016c). Endophytic mi-
croorganisms inhabit the internal organs of the host plant with-
out causing any disease or infection (Schulz and Boyle 2005;
White et al. 2014). These microorganisms have functional
traits that promote host plant growth, such as phosphate solu-
bilization and the production and release of ammonia,
cyanuric acid, hydrocyanic acid, indoleacetic acid (IAA), ni-
trogen, siderophores, and enzymes (amylase, cellulase, ester-
ase, and protease) (Cuzzi et al. 2011; Glick 2015; Mathew
et al. 2015; Manohari and Yogalakshmi 2016; Soares et al.
2016b).

Plant-associated endophytes can remove, transform, and
even assimilate the contaminants present in sediments, soil,
water, and air as a strategy to mitigate the toxic effects of
metals (Zhang et al. 2013, 2016). Bacteria have mercury re-
sistance mechanisms mediated by enzymes encoded in the
operon mer that are capable of reducing this metal
(Harichová et al. 2012; Yu et al. 2014). Other mechanisms
of bacterial resistance to toxic metals involve alteration of
plasma membrane permeability, cell morphology, and efflux
systems; biosorption, complexation, demethylation, oxida-
tion, precipitation, reduction, and volatilization of metals;
and production of exopolysaccharides (Yu et al. 2014; Ullah
et al. 2015; Xie et al. 2015; Naik and Dubey 2016).

Plants can host mercury-resistant endophytic bacteria
(Pérez et al. 2016; Durand et al. 2018) and fungi (Pietro-
Souza et al. 2017). Soil mercury contamination influences
the composition and structure of root endophytic fungal com-
munities of Aeschynomene fluminensis Vell and Polygonum
acuminatum Kunth. that colonize wetland environments
(Pietro-Souza et al. 2017).We hypothesise that plants growing
in mercury-contaminated environments host endophytic bac-
terial communities. The objectives of the present study were a)
to characterise the endophytic bacterial community isolated
from roots of Aeschynomene fluminensis Vell. and
Polygonum acuminatum Kunth. collected at environments
contaminated or not with mercury; b) to identify the
mercury-resistant community in the collected samples; c) to

characterise functional traits important for bioremediation and
host plant growth; and d) to examine to what extent bacteria
inoculation improves plant growth.

2 Materials and methods

2.1 Sampling and processing

The biological material and soil samples were collected in
September 2014, at three sites of Poconé, a typical Pantanal
region from the State of Mato Grosso, Brazil: Site 1: S 16°15′
42.7”W056°38′43.6″; Site 2: S 16°21′19.7”W056°20′13.9″;
and Site 3: S 16°15′51.3 “W056°38′54.3″. This area is
characterised by a rainy period from October to April, a
drought period from June to December, a long flooding period
from December to May (Junk et al. 2016), annual average
rainfall of 1239 mm, and temperature of 26 °C (Alvares
et al. 2013). The climate is classified as Aw (Köppen 1930).
Data from previous chemical analyses that determined the
total soil mercury concentration were used to select the col-
lection sites (Pietro-Souza et al. 2017).

Endophytic bacteria were isolated from roots of five adult
plants of A. fluminensis (named Asc) and P. acuminatum (named
Pol) collected at areas contaminated or not with mercury (named
HgY and HgN, with Hg2+ levels of 3.24 and < 0.0017 mg/kg,
respectively). These plant species were chosen due to their ca-
pacity to colonize HgY environments abundantly (Pietro-Souza
et al. 2017). The soil and vegetal material were packaged in
plastic bags, identified according to the collection site, and stored
at 4 °C until processing. The samples were superficially cleaned
with neutral detergent, washed with tap water, and further super-
ficially disinfected with ethanol 70% (1 min) and sodium hypo-
chlorite 2.5% (5 min). They were then rinsed five times with
sterile distilled water (Pietro-Souza et al. 2017).

Three bacterial isolation procedures (de Souza et al. 2013;
Franchi et al. 2017) were then used: fragmentation, maceration,
and enrichment. 1) Fragmentation: 120 root fragments of each
sample were transferred to Petri dishes (N = 10) containing
Luria Bertani (LB) medium supplemented with 30 μg.mL−1

of HgCl2 (LB +Hg). 2) Maceration: the disinfected roots were
macerated and diluted (10−1 to 10−3) in 0.87% NaCl, and fur-
ther plated in triplicate in solid LB medium not supplemented
with HgCl2. 3) Enrichment: 5 mL of the macerate were inocu-
lated in 45 mL of LB +Hg broth and shaken (100 rpm; 72 h);
5mL of this culture were inoculated in 45mL of LB +Hg broth
and incubated under the same conditions; finally, the culture
was diluted (10−1 to 10−8) in 0.87% NaCl and plated in tripli-
cate in solid LB +Hgmedium (Cabral et al. 2013). In the three,
the Petri dishes were incubated at 28 °C and analysed daily. The
colonies were characterised macroscopically and grouped mor-
phologically after purification. The strains were stored in 20%
glycerol, at −20 °C.

Mello I.S. et al.252



2.2 Identification of root endophytic bacteria

DNAwas extracted from the isolated strains using the Wizard
Genomic DNA Purification Kit (Promega) following the man-
ufacturer’s protocol. The morphological groups were con-
firmed by ERIC-PCR fingerprinting of the products using
the initiator oligos ERIC-1R (5′-ATGTAAGCTCCTGG
GGATTCAC-3′) and ERIC-2 (5′-AAGTAAGTGACTGG
GGTGAGCG-3′) (Vandamme et al. 1993).

One lineage from each ERIC-PCR group was identified
through 16S rDNA gene sequencing, using the primers 27F
and 1492R to amplify the 16S gene region (Lane 1991). The
amplicons were enzymatically purified using ExoSap-it PCR
Product Cleanup Reagent (GE Healthcare) and sequenced by
the Sanger method using the BigDye™ Terminator Cycle
Sequencing kit. The sequences were edited using BioEdit
software (version 7.2.5) and compared to sequences deposited
at GenBank using the nBLAST tool (http://www.ncbi.nlm.
nih.gov/). The nucleotide sequences were deposited at
GenBank under the accession numbers KX641492 to
KX641588.

2.3 Plant growth-promoting properties and mercury
resistance of the isolates

The isolated bacterial strains were characterised with
respect to their capacity to solubilize inorganic phos-
phates (Podile and Kishore 2007), fix nitrogen
(Cavalcante and Dobereiner 1988), synthesize ammonia
(Pandey et al. 2015) and IAA (Cuzzi et al. 2011), and
secrete hydrocyanic acid (HCN) (Lorck 1948),
siderophores (Milagres et al. 1999), and the hydrolytic
enzymes amylase, cellulase, esterase, and protease
(Carrim et al. 2006). The presence of halo, color change
and/or colony growth was analysed for each methodol-
ogy. The minimal inhibitory concentration (MIC) of
mercury was determined in LB broth containing serial
concentrations of Hg2+ (0–500 μg/mL) (El-deeb et al.
2012).

2.4 Mitigation of mercury toxicity to host plants
by endophytic bacteria

Asc and Pol seed germination and growth in the greenhouse
are very irregular, making it very difficult to use them in bio-
remediation assays. Corn (Zea mays hybrid maize AG 1051)
plants were chosen due to their agronomic importance to this
region of Brazil (Duarte and Pasa 2016) and their effective-
ness for bioremediation of contaminants andmetals (Mani and
Kumar 2014; Dixit et al. 2015; Ullah et al. 2015; Shinwari
et al. 2015), including mercury remediation (Pietro-Souza
et al. 2017).

Endophytic bacterial strains isolated using the frag-
mentation and enrichment methods in mercury-
supplemented medium were selected for the assays of
corn plant growth promotion. First, corn seeds were
disinfected by immersion in 70% ethanol (1 min) and
2.5% sodium hypochlorite (5 min), rinsed in sterile dis-
tilled water, and submerged for 1 h in the test bacterial
suspension previously activated in LB broth (OD:
108 CFU.mL−1). Next, the seeds were transferred to
1.0 dm3 vessels containing vermiculite:sand 1:1 (m:m)
supplemented with 40 mg.kg−1 of HgCl2. Seven days
after sowing, bacteria were reinoculated by adding
1 mL of bacterial inoculum (OD: 108 CFU.mL−1) to
the soil near the plants. The field capacity of the sub-
stratum was maintained at 70%, and it was irrigated
weekly with 70% ionic strength Hoagland solution
(Hoagland and Arnon 1950). The control groups
consisted of plants not inoculated with endophytic bac-
teria (P), and plants inoculated with endophytic bacteria
grown in vessels with (CHgY) or without (CHgN) ad-
dition of mercury. After 20 days of cultivation, the
length of aerial shoots and roots was measured. The
growth promotion efficiency was calculated to determine
how effectively endophytic bacteria promoted plant
growth (Almoneafy et al. 2014).

2.5 Data analysis

The colonization frequency in root fragments inoculated with
bacteria was calculated and data were analysed using the F
and Student’s t tests (p < 0.05) (Harris and Sommers 1968).
The diversity of bacterial communities was analysed using
the Hill Series (Hill 1973). The species composition of the
communities (AscHgN, AscHgY, PolHgN, PolHgY) was vi-
sualized in the Venn diagram constructed with the aid of the
online software DrawVenn (http://bioinformatics.psb.ugent.
be/webtools/Venn/).

The co-occurrence patterns of microbial taxa within
the host and contaminated soil was explored by
Network analysis. A Spearman’s correlation between
two genera was considered statistically robust if
p < 0.05 (Vegan package on R). Bacterial modules or
sub-communities of the community were calculated
using the Louvain algorithm (Blondel et al. 2008)
and network properties were calculated using the sta-
tistics tools implemented in Gephi 0.9.1 (Bastian et al.
2009).

Results from the qualitative functional characterisation
were expressed as positive (+) or negative (−) when the pro-
duction of functional traits were detected or not, respectively.
Differences between treatments in the corn growth parameters
were analysed by the Dunnett’s test, using the softwares R
(version 3.2.5) and Assistant 7.7.
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3 Results

3.1 Structure of the endophytic bacterial community
of A. fluminense and P. acuminatum

This section comprises data from four endophytic bacterial
communities isolated from roots of A. fluminense (Asc) and
P. acuminatum (Pol) collected at areas contaminated (HgY) or
not (HgN) with mercury, which were named as AscHgN,
AscHgY, PolHgN, and PolHgY.

Fragmentation of root tissues allowed estimation of the
extent of plant tissue colonization by endophytes. The per-
centage of root fragments colonized by endophytic bacteria
in the HgYarea (41.88 ± 34.56%) was higher than the percent-
age found in the HgN area (14.12% ± 13.49) (p < 0.05), re-
gardless the plant species. Colonization rate in Pol roots
(48.10% ± 29.59) was greater than colonization rate in Asc
roots (7.92% ± 7.79) collected at both sites (p < 0.05).

A total of 207 bacterial strains were isolated from root
fragments of AscHgN, AscHgY, PolHgN, and PolHgY inoc-
ulated in mercury-supplemented medium: 34, 44, 59, and 70
strains, respectively. The isolated strains belonged to phyla
Proteobacteria (PolHgY = AsHgY = 100%, PolHgN =
98.31%, and AscHgN = 76.47%) and Firmicutes (PolHgN =
1.69% and AscHgN = 23.53%) (Table 1); the last phylumwas
exclusively found in HgN areas. The classes identified were:
Alphaproteobacteria, Bacilli, Betaproteobacteria, and
Gammaproteobacteria; the two last ones were isolated from
all the communities evaluated, and they were abundant in Pol
and Asc roots, respectively. The class Bacilli was exclusively
found in HgN areas, especially in Asc (23.53%). Nine genera
distributed in 23 species were identified, among which
Enterobacter was the most frequent in AscHgY (47.73%)
and PolHgY (51.43%), and Burkholderia was the most fre-
quent in AscHgN (66.7%) and PolHgN (44.12%). The dom-
inant species were Burkholderia_sp_BacI41 (32.35%) in
A s cHgN , Bu r k h o l d e r i a _ c e p a c i a _Ba c I 4 7 a n d
P a n t o e a _ s p _ B a c I 1 6 ( 6 4 . 4 0% ) i n A s c H gY,
Enterobacter_sp1_X (29 .55%) in PolHgN, and
Enterobacter_cloacae_X (51.43%) in PolHgY (Table 1).

The Hill series demonstrated that richness and diversity
indices depended on the plant species and the presence or
absence of mercury in the soil (Fig. 1). Endophytic bacterial
communities from the HgN site had richness (when a = 0,
AscHgN = 7 and PolHgN = 8) and diversity α greater than
communities from the HgY site (AscHgY = 4 and
PolHgY = 7). The Shannon diversity indice confirmed these
parameters (eH’when a = 1; AscHgN = 1.54, AscHgY = 1.38,
PolHgN = 1.63, and PolHgY = 1.28). The Simpson diversity
indice (1/Dwhen a = 2) evidenced that Pol was represented by
dominant species and low diversity as compared with Asc,
regardless mercury contamination (AscHgN and AscHgY =
0.75, PolHgN = 0.76, PolHgY = 0.64) (Fig. 1a).

Pol roots had lower number of cultivable endophytic bacte-
ria per gram of macerated root tissue (PolHgN = 1.04 × 105 ±
5.02 × 103 UFC/g and PolHgY = 3.27 × 105 ± 1.36 × 104 UFC/
g) than Asc roots (AscHgN = 1.11 × 105 ± 6.82 × 103 UFC/g
and AscHgY = 5.72 × 105 ± 3.23 × 104 UFC/g) (p < 0.05).
Fifty-one morphotypes were differentiated on the basis of the
growth characteristics in culture medium. They belonged to
phyla Bacteriodetes (0.39%), Actinobacteria (8.05%),
Proteobacteria (21.58%), and Firmicutes (69.98%), and were
distributed in 18 genera and 39 species (Table 1), as determined
by ERIC-PCR fingerprinting and 16S rDNA gene sequencing.
Bacteriodetes was exclusively found in the PolHgN community
while Actinobacteria was exclusively found in Pol, indepen-
dently of the environment. The most abundant species in
AscHgN, AscHgY, PolHgN, and PolHgY communities were
Burkholderia_kururiensis_BacI100 (20.65%), Ralstonia_sp_X
(22.49%), Bacillus_subtilis_BacI75 (17.96%), and
Enterobacter_sp3_X (23.08%), respectively (Table 1). The
Hill Series of diversity indices provided evidence that endo-
phytic bacterial communities from plants grown in HgY areas
had richness, diversity, and dominance indices (AscHgY: rich-
ness = 8, Shannon = 1.99, Simpson = 0.85; PolHgY: richness =
18, Shannon = 2.67, Simpson = 0.91) greater than communities
from plants grown in HgN areas (AscHgN: richness = 6,
Shannon = 1.78, Simpson = 0.83; PolHgN: richness = 13,
Shannon = 2.14, Simpson = 0.86). Pol had richness, diversity,
and dominance indices greater than Asc, regardless the collec-
tion site (Fig. 1b).

The four endophytic bacterial communities differed mark-
edly with respect to their composition (Fig. 2). Data from both
isolation methods revealed that more species were specific to
one host than were shared (Fig. 2). Enterobacter_sp1_X spe-
cifically colonized Asc roots while Enterobacter_cloacae_X
and Klebsiella_pneumoniae_X specifically colonized Pol
roots, as evidenced by fragmentation of root tissues
(Table 1). Enterobacter_ludwigii_X was isolated from Asc
and Pol roots collected at contaminated sites (AscHgY and
PolHgY), using the maceration technique (Table 1).

The endophytic bacterial communities of plants collected
at HgY areas were enriched after three cycles of passage in
culture media supplemented with mercury. Inoculation with
root samples from hosts collected at the HgN site did not result
in microbial growth, but inoculation with root samples col-
lected at the HgY site resulted in bacterial isolates from the
phyla Proteobacteria (84.61%) and Firmicutes (7.69%), that
included 8 genera and 12 species (Table S1). This method also
resulted in the isolation of the yeast Rhodotorula
mucilaginosa_X from Asc roots.

The Asc roots had higher species richness than Pol roots: 8
and 5 species, respectively. The relative abundance of these
species in AscHgY was Rhodotorula mucilaginosa_X
(71 .60%) , Pseudomonas_sp_Bac I38 (10 .76%) ,
Klebsiella_sp_BacI31 (8.52%), Enterobacter_sp_BacI32
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Table 1 Relative frequency of bacteria identified in endophytic isolates from fragments (F) or macerates (M) of Aeschynomene fluminensis (Asc) and
Polygonum acuminatum (Pol) roots collected at areas contaminated (HgY) or not (HgN) with mercury

Phylum Species NCBI ID % PolHgY PolHgN AscHgY AscHgN

Actinobacteria Methylobacterium_
fujisawaense_BacI84

KX641567 99 0.00/0.00** 0.00/12.98 0.00/0.00 0.00/0.00

Microbacterium_sp_BacI80 KX641563 98 0.00/0.00 0.00/1.65 0.00/0.00 0.00/0.00

Streptomyces_novaecaesareae_BacI81 KX641564 99 0.00/0.00 0.00/13.98 0.00/0.00 0.00/0.00

Streptomyces_recifensis_BacI66 KX641550 99 0.00/2.17 0.00/0.00 0.00/0.00 0.00/0.00

Bacteroidetes Chitinophaga_pinensis_BacI77 KX641561 99 0.00/0.00 0.00/1.50 0.00/0.00 0.00/0.00

Firmicutes Bacillus_amyloliquefaciens_BacI76 KX641560 99 0.00/0.00 0.00/1.6 0.00/0.00 0.00/0.00

Bacillus_cereus_X KX641526 98 0.00/5.93 0.00/0.00 0.00/19.38 23.53/15.96

KX641545

KX641569

KX641570

KX641578

KX641579

Bacillus_megaterium_BacI64 KX641548 99 0.00/4.24 0.00/0.00 0.00/0.00 0.00/0.00

Bacillus_ velezensis_BacI82 KX641565 99 0.00/0.00 0.00/13.65 0.00/0.00 0.00/0.00

Fictibacillus nanhaiensis_BacI69 KX641553 99 0.00/1.60 0.00/0.00 0.00/0.00 0.00/0.00

Bacillus_pumilus_BacI67 KX641551 99 0.00/2.18 0.00/0.00 0.00/0.00 0.00/0.00

Bacillus_sp_BacI19 KX641508 99 0.00/0.00 1.69/0.00 0.00/0.00 0.00/0.00

Bacillus_subtilis_BacI75 KX641559 99 0.00/0.00 0.00/17.96 0.00/0.00 0.00/0.00

Proteobacteria Acinetobacter_baumannii_BacI43 KX641527 99 0.00/0.00 0.00/0.00 0.00/0.00 29.41/0.00

Acinetobacter_calcoaceticus_BacI97 KX641580 99 0.00/0.00 0.00/0.00 0.00/0.00 0.00/14.87

Acinetobacter_sp1_BacI21 KX641510 99 0.00/0.00 8.47/0.00 0.00/0.00 0.00/0.00

Acinetobacter_sp2_BacI53 KX641537 99 0.00/4.83 0.00/0.00 0.00/0.00 0.00/0.00

Acinetobacter_tandoii_BacI52 KX641536 99 0.00/4.69 0.00/0.00 0.00/0.00 0.00/0.00

Burkholderia_ambifaria_BacI90 KX641573 99 0.00/0.00 0.00/0.00 0.00/9.90 0.00/0.00

Burkholderia_cenocepacia_BacI71 KX641555 99 0.00/0.00 0.00/2.57 0.00/0.00 0.00/0.00

Burkholderia_cepacia_X KX641531 99 0.00/6.21 32.20/2.18 0.00/0.00 0.00/18.72

KX641547

KX641557

KX641582

Burkholderia_kururiensis_BacI100 KX641583 99 0.00/0.00 0.00/0.00 0.00/0.00 5.88/20.65

Burkholderia_nodosa_BacI5 KX641496 99 8.57/0.00 0.00/0.00 0.00/0.00 0.00/0.00

Burkholderia_seminalis_BacI48 KX641532 99 0.00/0.00 0.00/0.00 25.00/0.00 0.00/0.00

Burkholderia_sp1_BacI28 KX641516 99 0.00/0.00 0.00/0.00 22.72/0.00 0.00/0.00

Burkholderia_sp2_BacI92 KX641575 99 0.00/0.00 0.00/0.00 0.00/11.25 0.00/0.00

Burkholderia_sp3_BacI41 KX641525 99 0.00/0.00 0.00/0.00 0.00/0.00 32.35/0.00

Burkholderia_sp4_BacI98 KX641581 99 0.00/0.00 0.00/0.00 0.00/0.00 0.00/16.80

Burkholderia_sp5_X KX641528 99 0.00/0.00 0.00/0.00 0.00/0.00 2.94/0.00

KX641529

Cronobacter_sakazakii_BacI54 KX641538 99 4.97/0.00 0.00/0.00 0.00/0.00 0.00/0.00

Dyella_jiangningensis_BacI74 KX641558 99 0.00/0.00 1.99/0.00 0.00/0.00 0.00/0.00

Dyella_marensis_BacI94 KX641577 99 0.00/0.00 0.00/0.00 0.00/12.58 0.00/0.00

Enterobacter_cloacae_X KX641492 99 51.43/0.00 13.56/0.00 0.00/0.00 0.00/0.00

KX641494

KX641507

KX641513

Enterobacter_ludwigii_X KX641539 99 0.00/5.10 0.00/0.00 0.00/8.57 0.00/0.00

KX641571
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(3.14%), Pseudomonas_stutzeri_BacI36 (1.94%),
Bacillus_sp_X (1.79%), Sphingomonas_sp_X (1.79%), and
Lysobacter_soli_BacI39 (0.45%), while the relative abun-
dance of species in PolHgY was Enterobacter_sp_BacI14
(97.16%), Klebsiella_pneumoniae_BacI15 (2.65%),
E n t e r o b a c t e r _ s p _ B a c I 1 2 ( 0 . 0 6 % ) ,
No v o s p h i n g o b i um _ s p _B a c I 1 0 ( 0 . 0 6% ) , a n d
Pantoea_agglomerans_BacI11 (0.06%).

A correlation matrix was constructed using qualitative data
from the presence or absence of the species identified through
the three isolation methods – fragmentation, maceration, and

enrichment. The data were also used to construct interaction
networks to compare the hosts and collection sites (Table 2). A
total of 66 species were present in the communities AscHgN,
AscHgY, PolHgN, and PolHgY: 11, 20, 20, and 28, respec-
tively. The parameters of the interaction network of endophyt-
ic bacteria (Table 2) evidenced that (i) Pol had a more struc-
tured network; (ii) the presence or absence of mercury had a
determining force on the interaction and connectivity among
endophytic species; and (iii) endophytic bacterial communi-
ties from plants collected at HgY environments were central-
ized with less modularity (Table 2).

Table 1 (continued)

Phylum Species NCBI ID % PolHgY PolHgN AscHgY AscHgN

Enterobacter_sp_BacI22 KX641511 99 0.00/0.00 1.69/0.00 0.00/0.00

Enterobacter_sp1_BacI85 KX641568 99 0.00/0.00 0.00/0.00 0.00/6.57 0.00/0.00

Enterobacter_sp2_X KX641514 99 0.00/0.00 0.00/0.00 29.54/0.00 2.94/0.00

KX641515

KX641530

Enterobacter_sp3_X KX641534 99 0.00/23.08 0.00/0.00 0.00/0.00 0.00/0.00

KX641541

KX641552

KX641554

Dickeya_chrysanthemi_BacI59 KX641543 99 0.00/5.66 0.00/0.00 0.00/0.00 0.00/0.00

Escherichia_sp_X KX641495 99 7.14/0.00 0.00/0.00 0.00/0.00 0.00/0.00

KX641499

Klebsiella_pneumoniae_X KX641505 99 28.57/0.00 8.47/0.00 0.00/0.00 0.00/0.00

KX641509

Kosakonia_cowanii_BacI60 KX641544 99 0.00/5.80 0.00/0.00 0.00/0.00 0.00/0.00

Mycobacterium_sp_BacI83 KX641566 98 0.00/0.00 0.00/15.30 0.00/0.00 0.00/0.00

Pantoea_sp1_BacI16 KX641506 99 0.00/0.00 32.20/0.00 0.00/0.00 0.00/0.00

Pantoea_sp_BacI51 KX641535 99 0.00/4.55 0.00/0.00 0.00/0.00 0.00/0.00

KX641572

Pantoea_sp1_I23 KX641512 99 0.00/0.00 1.69/0.00 0.00/0.00 0.00/0.00

Pantoea_sp2_BacI65 KX641549 99 0.00/2.15 0.00/0.00 0.00/0.00 0.00/0.00

Pantoea_dispersa_BacI89 99 0.00/2.15 0.00/0.00 0.00/9.24 0.00/0.00

Pseudomonas_knackmussii_X KX641500 99 1.43/0.00 0.00/1.47 0.00/0.00 0.00/0.00

KX641562

Pseudomonas_monteilii_BacI6 KX641497 99 1.43/0.00 0.00/0.00 0.00/0.00 0.00/0.00

Pseudomonas_putida_BacI58 KX641542 99 0.00/5.52 0.00/0.00 0.00/0.00 0.00/0.00

Pseudomonas_sp_BacI7 KX641498 99 1.43/0.00 0.00/0.00 0.00/0.00 0.00/0.00

Ralstonia_mannitolilytica_BacI72 KX641556 99 0.00/0.00 0.00/2.38 0.00/0.00 0.00/0.00

Ralstonia_pickettii_BacI62 KX641546 99 0.00/6.07 0.00/0.00 0.00/0.00 0.00/0.00

Ralstonia_sp_X KX641574 99 0.00/0.00 0.00/0.00 0.00/22.49 0.00/0.00

KX641576

Rhizobium_sp_BacI49 KX641533 99 0.00/0.00 0.00/0.00 22.73/0.00 0.00/0.00

Rhizobium_tropici_BacI102 KX641584 99 0.00/0.00 0.00/0.00 0.00/0.00 0.00/12.99

Serratia_marcescens_BacI56 KX641540 99 0.00/5.24 0.00/0.00 0.00/0.00 0.00/0.00

*% identity, ** data from fragments (F)/macerates (M)
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3.2 Functional characterisation of endophytic
bacterial communities

Thirteen endophytic bacterial strains had score = 7 for the
promising plant growth-promoting functional traits
(Table S1), while six strains had low score (2) for ammonia
and IAA. Strains isolated from plants collected at HgY envi-
ronments exhibited greater proportion of functional traits than
strains isolated from plants collected at HgN areas (Table 3).
PolHgY roots hosted three amylase-secreting strains
(Bacillus_nanhaiensis_BacI69, Enterobacter_sp_BacI14,
and Klebsiella_sp_BacI2), and three siderophore-producing
s t r a i n s ( B a c i l l u s _ m e g a t e r i u m _ B a c I 6 4 ,
Enterobacter_sp_BacI14, and Kosakonia_cowanii_BacI60).
AscHgY and PolHgN roots hosted the cyanide acid-
producing bacterial strains Burkholderia_seminalis_BacI48
and Enterobacter_sp_BacI22, respectively. Ammonia was
produced by 27.63%, 26.80%, 22.68%, and 35.50% of the
bacterial strains isolated from roots of AscHgN, AscHgY,

PolHgN, and PolHgY, respectively (Table 3). IAA-secreting
and nitrogen-fixing bacterial strains predominated in plants
collected at HgY areas (Table 3).

Maceration of root tissues provided isolation of endophytic
bacterial strains that were more sensitive to mercury, with
MIC values ranging from 0 to 62 μg/mL of Hg2+; MIC values
of most of the strains ranged from 0 to 7.5 μg/mL of Hg2+

(Fig. 3 and Table S1). Endophytic bacterial strains isolated
using the fragmentation and enrichment techniques exhibited
broader ranges of MIC values: 0–250 μg/mL and 15–500 μg/
mL of Hg2+, respectively. The last technique provided isola-
tion of mercury-resistant strains with high MIC values.

3.3 Host growth promotion in the presence
of mercury

Addition of 40 mg.kg−1 of HgCl2 to the substrate reduced the
corn plant length (CHgY = 25.16 ± 2.65 cm) by approximately

PolHgY
PolHgN
AscHgY
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Fig. 1 Diversity of endophytic bacterial communities from Aeschynomene fluminensis (Asc) and Polygonum acuminatum (Pol) collected at areas
contaminated (HgY) or not (HgN) with mercury, as examined through the Hill series, using root a) fragments or b) macerates

PolHgN AscHgY

AscHgNPolHgY

PolHgN AscHgY

AscHgNPolHgY

a bFig. 2 Venn diagram of
endophytic bacterial communities
isolated from Aeschynomene
fluminensis (Asc) and Polygonum
acuminatum (Pol) roots collected
at areas contaminated (HgY) or
not (HgN) with mercury, and
submitted to a) fragmentation or
b) maceration
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40% relative to the plants grown in the absence of this metal
(CHgN = 43.03 ± 4.80 cm) (Dunnett’s test, p < 0.05) (Fig. 4).
Growth reduction was more pronounced in the shoot (43.5%
reduction) than in the root (38.4% reduction) (Fig. 4). Corn
plant inoculation with 27 endophytic bacterial strains promoted
growth of plants seeded in the HgCl2-supplemented substrate
(Fig. 4); 36.36% and 63.64% of such strains were isolated using
the enrichment and fragmentation techniques, respectively.
Inoculation with B. cereus_BacI42 and Pantoea_sp_BacI23
increased the plant length by 57.48 ± 5.45 and 117.09 ±
0.28%, respectively. Inoculation with Bacillus_sp_BacI34,
Burkholderia_sp_BacI45, Enterobacter_sp_BacI14,
Enterobacter_sp_BacI26, Enterobacter_sp_BacI18,
K. pneumoniae_BacI20, L. soli_BacI39, Pantoea_sp_BacI23,
and Pantoea_sp_BacI16 increased the plant length by more
than 70% in HgCl2-supplemented substrate when compared
with non-inoculated plants grown in the same substrate.

4 Discussion

We examined how mercury contamination influenced the di-
versity of endophytic bacteria in A. fluminensis (Asc) and
P. acuminatum (Pol) roots. The predominance of these two
plant species in the community grown in the selected HgY
area suggests that they have developed mechanisms to limit
soil mercury toxicity, and root endophytic fungi communities
appear to play important roles (Pietro-Souza et al. 2017). It is
also clear that, in the case of Asc and Pol, the roots host
endophytic bacteria, regardless the site of plant collection.
Endophytic bacteria colonize root tissues, can migrate to other
plant organs (Jha et al. 2013), and play roles in plant adapta-
tion and growth in contaminated soils (Afzal et al. 2017).
Analysis of endophyte colonization of host plants growing
in environments contaminated with elements such as arsenic,
copper, chrome, nickel, and zinc has shown the presence of
metal-resistant strains with potential in bioremediation (Sun
et al. 2010; Fidalgo et al. 2016; Román-Ponce et al. 2016;
Sánchez-López et al. 2018).

The endophytic bacteria population density in plants collected
at HgY sites ranged from 5.72 × 105 to 3.27 × 105 CFU.g−1 of
tissue, which is smaller than the range reported in the literature:
2.7 × 107 to 1.2 × 108 CFU.g−1 (Pérez et al. 2016). Plant roots
collected at HgY sites had greater colonization frequency and
richness than plant roots collected at HgN sites. Such variations
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roots collected at areas contaminated or not with mercury. The species
were isolated using the enrichment (E), fragmentation (F), andmaceration
(M) techniques

Table 3 Number of endophytic bacterial strains with plant growth-
promoting functional traits, isolated from Aeschynomene fluminensis
(Asc) and Polygonum acuminatum (Pol) roots collected at areas contam-
inated (HgY) or not (HgN) with mercury

Functional trats AscHgN AscHgY PolHgN PolHgY

Ammonia 12(12.37)* 27(27.84) 21(21.65) 33(34.02)

Cyanidric Acid 0 (0.00) 1 (1.03) 1 (1.03) 0 (0.00)

IAA 12(12.37) 25(25.77) 21(21.65) 33(34.02)

Nitrogen 11(11.34) 26(26.80) 18(18.56) 32(32.99)

Siderophores 0 (0.00) 0 (0.00) 0 (0.00) 3 (3.09)

Enzymes

Amylase 0 (0.00) 0 (0.00) 0 (0.00) 3 (3.09)

Cellulase 0 (0.00) 7 (7.22) 8 (825) 8 (8.25)

Esterase 4 (4.12) 2 (2.06) 8 (8.25) 5 (5.15)

Phosphatase 8 (8.25) 8 (8.25) 7 (7.22) 17(17.53)

Protease 5 (5.15) 9 (9.28) 10(10.31) 10(10.31)

(*) percentage of isolates analysed

Table 2 Statistical parameters of undirected interpretation of the
interaction networks from endophytic bacteria isolated from
Aeschynomene fluminensis (Asc) and Polygonum acuminatum (Pol) col-
lected at sites contaminated (HgY) or not (HgN) with mercury

Parameter Pol Asc HgN HgY

Average Degree 20.977 14.786 15.600 21.689

Diameter 2 3 2 2

Density 0.499 0.548 0.538 0.493

Edges 451 207 234 488

Modularity 0.448 0.279 0.311 0.476

Nodes 43 28 30 45

Sum change 0.01075 0.00223 0.00253 0.0136
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indicate that environment composition determines the associated
community more strongly than the plant species (Teixeira et al.
2010). The host roots usually have greater richness and diversity
of endophytes than the leaves, bark, flowers, and fruits (Gaiero
et al. 2013), which are determined by edaphic factors (Hardoim
et al. 2008). Soilmercury contamination increased the richness of
the root endophytic bacterial community as has been shown for
fungal communities (Pietro-Souza et al. 2017).

The high soil mercury concentration influenced the diver-
sity and structure of endophytic bacterial communities (Figs.
1and 2), corroborating another report on the composition and
diversity of endophytes (Sun et al. 2010). The interaction
among endophytes, host plants, and the environment pro-
motes diversity variation, increases richness, and provides
competitive advantages to the host plant over native species
(Mallon et al. 2015).

Analysis of the interaction network identified alterations in
the co-occurrence patterns from microorganisms undergoing
different treatments (Long et al. 2018). The most compact and
complex networks – from Pol and HgY areas – indicate that
the species keep a microbial community that is more stable,
with strong correlation and that respond to mercury presence
in the environment (Stegen et al. 2012; Jiao et al. 2016). The
networks from Asc and HgN areas maintained weaker inter-
specific cooperation, which can be associated with the lower

number of positive correlations found among the analysed
species.

Isolation of cultivable bacteria represents only a small frac-
tion of the real diversity that exists in the plant (Tanaka et al.
2014; Fidalgo et al. 2016). Actinobacteria, Bacteriodetes,
Firmicutes, and Proteobacteria were the predominant phyla
in Asc and Pol roots (Table 1). These phyla are often associ-
ated with the two host plants studied (Pereira and PML 2014;
Maida et al. 2015; Maropola and Ramond 2015; Fidalgo et al.
2016; Román-Ponce et al. 2016; Sánchez-López et al. 2018),
including those growing in metal-contaminated environments
(Luo et al. 2011; Mesa et al. 2017; Durand et al. 2018; Gu
e t a l . 2018 ) . The spec i e s Bac i l l u s_c e reu s_X ,
B u r k h o l d e r i a _ c e p a c i a _ B a c I 4 7 , a n d
Enterobacter_cloacae_X were detected with high abundance;
they are usually found in endophytic bacterial communities.
The exclusive presence of the genus Enterobacter in commu-
nities from HgYareas (Table 1) was probably associated with
mercury resistance mechanisms (Mosa et al. 2016) (see
Table S1) that could include increasing the solubility, reducing
or oxidizing the metal to less toxic forms (Mani and Kumar
2014).

Endophytic bacteria isolated from host plants collected at
HgY sites produce more plant growth-promoting functional
traits than those collected at HgN sites (Table 3; Table S1).
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Fig. 4 Growth rate of corn plants (Zea mays) inoculated with endophytic
microorganisms and seeded in mercury-supplemented substrate. Data are
presented as the mean ± standard deviation of four replicates of plants.
CNHg = non-inoculated corn plants grown in substrate non-

supplemented with mercury; CYHg = non-inoculated corn plants grown
in mercury-supplemented substrate. *p < 0.05 (analysis of variance
followed by the Dunnett’s test - control CYHg)
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Bacillus, Burkkolderia, Enterobacter, Klebsiella, Pantoea,
and Pseudomonas are bacterial genera that bear a variety of
plant growth-promoting functional traits (da Costa et al. 2014;
Ullah et al. 2015; Meng et al. 2015).

Endophytic bacteria that carry plant growth-promoting
traits and are resistant to metals can be used to enhance plant
growth (Sun et al. 2010). It is noteworthy that 60.47% of the
isolated bacterial strains mitigated mercury toxicity in corn
plants (Fig. 4). Our data and those of others show that host
plants and endophytes probably established amutualistic sym-
biotic relationship that increases plant growth in the presence
of mercury (Rodriguez et al. 2008). In conclusion, we dem-
onstrated that mercury-resistant endophytic bacterial strains –
especially Pantoea sp_BacI23 – promote host plant growth.
However, further research on mercury remediation under field
conditions, as well as the elucidation of resistance mecha-
nisms are still required.
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