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Abstract
Plant growth promoting rhizobacteria (PGPR) are the residents of rhizosphere that are known to influence plant growth and
survival through the production of various regulatory chemicals under a variety of circumstances. This growth promotion is
accomplished by both direct and indirect means. Direct effects of PGPR encompass two major activities, that is, Bio-fertilization
(Enhancement of nutrient uptake including nitrogen and phosphorous primarily) and phytostimulation (Production of plant
growth promoting hormones). Indirect effects of PGPR are majorly contained within their ability as biocontrol agents that
antagonize the growth and survival of phytopathogens either by the production of antagonizing chemicals (Local antagonism)
or by the induction of systemic resistance throughout the plant against pathogens. The understanding of such diverse growth
promoting abilities of PGPR has led to their application as potent biofertilizers for sustainable agriculture. However, further
analyses of the agro-ecosystem with complex biotic and abiotic mechanisms should not be overlooked for their extensive
commercial applications and future prospects.
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1 Introduction

Plant growth promoting rhizobacteria (PGPR) are the bio-
stimulants that exert beneficial effects to the host plant health
and reduce environmental stress (Calvo et al. 2014). They are
also known as Nodule promoting rhizobacteria (NPR) or plant
health promoting rhizobacteria (PHPR) (Hayat et al. 2010).
They influence the development of plant by synthesis of var-
ious phytochemicals and inhibiting phytopathogenic microor-
ganisms (Son et al. 2014). PGPR have mutualistic association
with plant roots that fulfill essential nutritional requirements
for both plants and associated microorganisms (Atlas and
Bartha 1998).

The rhizosphere microbial community comprises of bacte-
ria, protozoa, algae, fungi and actinomycetes. However,
rhizobacteria overwhelmingly exist in the rhizosphere (Vejan
et al. 2016) and their density in this region is much high
compared to the surrounding soil (Glick 2012). Only 4%–

10% of the actual surface of the plant root (rhizoplane) directly
interacts with micro-organisms; they are mostly present in
adjacent rhizosphere soil (Reddy et al. 2017). Plant roots pre-
dominantly influence the microbial population within the rhi-
zosphere. The successional changes in the rhizosphere during
plant development result in selection of rapidly growing and
opportunistic microbial population (Atlas and Bartha 1998).

Depending on the proximity to plant roots, PGPR are char-
acterized into extracellular PGPR (present in rhizoplane or
rhizosphere) or intracellular PGPR (reside in nodules of plant
cells to exchange metabolites directly (Gray and Smith 2005).
PGPR are also characterized for their distinctive property to
grow and compete with other microorganisms, the ability to
colonize the plant roots and the efficiency to enhance plant
growth (Kloepper 1994). On the other hand, they are function-
ally characterized as phytostimulators, biofertilizers, biopesti-
cides and rhizoremediators, (Antoun and Prévost 2005). Some
of these beneficial activities of PGPR have been demonstrated
bymany researchers in the past few years (Fatnassi et al. 2015;
Huang et al. 2016; Adediran et al. 2016). Several species of
Pseudomonas, Xanthomonas, Bacillus, Bradyrhizobium,
Enterobacter and Rhizobium are considered as the most potent
phytohormone producing rhizobacteria (Karnwal 2009).
However, the different strains of Pseudomonas and Bacillus
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have mostly investigated for their distinctive plant growth
promoting characteristics (Karnwal 2017).

Rhizobacteria act symbiotically with plant roots through
two basic mechanisms to augment plant development and
protection. The direct promotion involves the mechanisms to
increase uptake of water and mineral nutrients, including
Nitrogen fixation and phosphate solubilizing activity and the
production of phytohormones and siderophores (Ryu et al.
2005). Indirect mechanisms involve the control of phytopath-
ogens associated with various plant diseases by the production
of antagonistic substances (such as antibiotics, lytic enzymes,
bacteriocins) and by induced systemic resistance (Lugtenberg
and Kamilova 2009) (Fig. 1).

Apart from providing general functions of mechanical sup-
port and helping in nutrient and water uptake, plant roots help
in symbiotic interaction by secreting different substances in
the soil known as root exudate which acts chemical attractant
for soil microbes. These compounds alter the physiochemical
characteristics of the soil and effects soil microbial community
(Walker et al. 2003; Ahemad and Kibret 2014). The exudation
of these materials is demonstrated by the observation that
bacteria present in the rhizosphere have distinctly different
nutritional requirements compared to bacteria within root free
soil (Atlas and Bartha 1998).

2 Direct effects of PGPRs

2.1 Bio-fertilization

PGPRs are known to improve the uptake of nutrients by the
plants that are crucial to their optimal growth—an attribute

that allow them to undertake bio-fertilization. In this respect,
these rhizospheric bacteria are involved in two major activi-
ties, that is, nitrogen fixation and phosphate solubilization.

1) Nitrogen fixation

Plant growth and development is contingent on an ample
supply of nitrogen. Though atmosphere is much of nitrogen
(nearly 78%), but this atmospheric N2 is non-utilizable to the
plants (Ahemad and Kibret 2014; Kim and Rees 1994). This
situation led to the development of an intricate process of
Biological Nitrogen Fixation (BNF) involving a great diversi-
ty of nitrogen fixing microflora primarily rhizobacteria popu-
lating the roots of plants. PGPRs carry out this process mainly
by two means: either in a symbiotic relationship with the
plants or in a non-symbiotic manner which can be of free-
living, associative or endophytic in nature. Symbiotic bacteria
reside within the host plant tissues and are involved in direct
exchange of metabolites. So far, nearly all rhizobial species
have been found associated to 11 genera of alpha- and 3 gen-
era of beta-proteobacteria (Laranjo et al . 2014).
Endosymbiotic rhizobacteria, for example, Rhizobium,
Bradyrhizobium (Jordan 1982), Sinorhizobium (Chen et al.
1988) and Mesorhizobium (Jarvis et al. 1997) fix N2 in the
root nodules of legumes, while Frankia spp. in root nodules of
non-leguminous plants. Non-symbiotic counterpart includes
Azoarcus, Azotobacter, Azospirillium, Gluconobacterium
diazotrophicus, Enterobacter, Pseudomonas, Burkholderia
and cyanobacteria Anabaena and Nostoc (Ahemad and
Kibret 2014). Yadegari et al. (2010) demonstrated the incre-
ment in symbiotic potential of Rhizobium with increased nod-
ule number and shoot dry weight in addition to greater amount
of fixed N2 and better seed yield by co-inoculating the com-
mon bean with Pseudomonas fluorescens and Azospirillium
lipoferum. The molecular machinery that forms the basis of
BNF is nitrogenase enzyme system of nitrogen fixing micro-
organisms that converts the atmospheric N2 to NH3 which can
then be assimilated by plants. Nitrogenase is a metallo-
enzyme complex comprising of two subunits namely
Dinitrogenase reductase –an Fe protein and Dinitrogenase
having a metal cofactor. Based on the cofactor, three
nitrogen-fixing systems have been classified as 1)
Molybdenum (Mo) nitrogenase; 2) Vanadium (V) nitroge-
nase; and 3) Iron (Fe) nitrogenase. Different bacterial genera
have different nitrogenase enzyme systems but most of the
BNF is carried out by the Mo nitrogenase which is present
in all diazotrophs (Hu and Ribbe 2016). Nitrogen fixation (nif)
genes are present in both symbiotic and free-living bacteria. A
nif gene cluster of 20 to 25 kb with seven operons is found in
diazotrophs (Ahemad and Kibret 2014). The Mo nitrogenase
system is encoded by nifDK and nifH genes. Dinitrogenase,
which is a heterotetramer containing two α and two β (α2 β2)
polypeptides, is encoded by nifD and K respectively. ThisFig. 1 Plant growth promoting bacteria and their effects
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protein also contains two active metalloclusters iron-sulphur
and iron-molybdenum cofactors. Fe-Mo cluster is the site of
nitrogen reduction (Atlas and Bartha 1998). The symbiotic
expression of nif genes is dependent on low level of O2 which
is regulated by fix genes which is found in symbiotic as well as
free-living diazotrophs (Kim and Rees 1994).

2) Phosphate solubilization

Phosphorous (P) is considered as the second essential mac-
ronutrient for plant growth and development because it is
involved virtually in all metabolic pathways in plants namely
photosynthesis and respiration, cell signaling, energy transfer
and biosynthesis of macromolecules (Khan et al. 2010). Both
organic and inorganic forms of phosphorous are present in soil
abundantly but they are sparingly obtainable by the plants
generally at concentrations 1mgkg−1 or less of soil. The phos-
phorous when applied to the soil, 90–95% of it is rendered
unavailable to the plants by its conversion to insoluble
organic (inositol phosphate/soil phytate, phosphomono-
and triesters) forms as well as inorganic minerals (phos-
phates of iron mainly apatite, calcium and aluminium)
(Pandey and Maheshwari 2007). Plants take up two soluble
forms, monobasic (H2PO4

−) and dibasic (HPO4
2−) ions.

PGPRs solubilze the insoluble phosphates primarily by
two different strategies: 1) Release of chelating agents or
mineral dissolving compounds like organic acid anions,
hydroxyl or hydrogen ions and CO2 to solubilize inorganic
phosphate compounds; 2) Production of extracellular en-
zymes (phosphatases/phytases) that mineralize organic
forms of phosphate by the hydrolysis of phosphoric esters
(Glick 2012; Sharma et al. 2013). Phosphate-solubilizing
bacteria (PSBs) are among the most potent biofertilizers
and they have drawn attention as soil inoculums of agri-
culturists. PSBs among PGPRs belong to diverse bacterial
genera l ike Azotobacter, Azospiri l l ium Bacil lus,
Burkholderia, Enterobacter, Pseudomonas, Rhizobium
and Serratia to name a few (Bhattacharyya and Jha 2012).

2.2 Phytohormone production/phytostimulation

1) Auxin

The most important plant growth regulator is the auxin re-
ferred to as Indole 3-acetic acid (IAA), which is naturally pro-
duced by plants. Nearly 80% of rhizospheric bacteria can also
produce and liberate auxin as a secondary metabolite (Patten
and Glick 1996). Some other indole derivatives such as indole-
3-acetamide, indole-3-acetaldehyde, and indole-3-pyruvate are
also known to have auxin activity (Olanrewaju et al. 2017).
Auxin (IAA) acts as a notable signaling molecule in plant cell
division, elongation and differentiation; in tropical responses
(geo-and phototropism); apical dominance and root initiation

of lateral and adventitious types (Grobelak et al. 2015). IAA
influence these mechanisms by 1) altering the plant auxin pool;
2) increasing the root length and area which in turn causes
greater absorption of soil nutrients; 3) loosening the plant cell
wall causing greater exudation by the roots that facilitate the
growth of rhizospheric microorganisms (Glick 2012).
Tryptophan in root exudates acts as precursor for IAA biosyn-
thesis which follows five different pathways. These are named
for a key intermediate within the pathway as 1) Indole-pyruvate
pathway; 2) Indole-acetamide pathway; 3)Indole- acetonitrile
pathway; 4) Indole-acetaldehyde pathway; and 5) Tryptamine
pathway (Duca et al. 2014). PGPRs such as Rhizobium,
Bradyrhizobium, Pseudomonas, Enterobacter and Klebsiella
undertake indole-pyruvate and indole-acetaldehyde pathways
for IAA biosynthesis (Shilev 2013). Microbially synthesized
phytohormones are effective as compared to their chemical
counterparts owing to their slow but continuous release.
Moreover, chemical phytohormones have a low threshold be-
tween their stimulatory and inhibitory levels.

2) ACC (1-Aminocyclopropane-1-carboxylate) deaminase

The phytohormone ethylene is crucial to normal plant
growth and development as it is engaged in a diverse array
of biological phenomena including promotion of root initia-
tion and fruit ripening, stimulation of seed germination, low-
ering of wilting, promotion of leaf abscission and activation of
production of other phytohormones (Glick et al. 2007). In
addition to being produced endogenously, many biotic and
abiotic processes can trigger ethylene production. Stress con-
ditions like drought, water logging and salinity, heavy metal
toxicity and pathogenic infections stimulate extraordinary
levels of ethylene which have negative impacts on plant phys-
iology, thus it is also referred to as ‘stress hormone’ (Ali et al.
2014; Saleem et al. 2007). Negative effects may include de-
foliation and diminished crop performance which can be
prevented by the enzymeACC deaminase. PGPRs that exhibit
ACC deaminase activity are able to ease out plant growth and
development by lowering ethylene levels thereby stimulating
salt tolerance and diminishing drought stress in plants
(Nadeem et al. 2009). Rhizobacterial strains with ACC deam-
inase activity are widely distributed among different genera
including Acinetobacter, Achromobacter, Agrobacterium,
Alcaligenes, Azospirillum, Bacillus, Burkholderia,
Enterobacter, Pseudomonas, Ralstonia, Serratia and
Rhizobium (Kang et al. 2010; Shaharoona et al. 2007).
These bacteria convert ethylene to α ketobutyrate and ammo-
nia and prior root or seed inoculation of these PGPRs lowers
ethylene production in response to a pathogenic infection,
thus, releases stress among various positive effects such as
root and shoot elongation, increased nodulation by
rhizobcteria and increased nutrient (N, P, K) uptake
(Ahemad and Kibret 2014; Glick 2012).
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3) Cytokinins and Gibberelins

Though cytokinins are produced by algae, bacteria and
higher plants, little is known about the bacterially-produced
cytokinins. Cytokinin genes are evidently expressed in many
PGPRs, and their application to the growing plants canmodify
the plants’ phytohormone composition. PGPR strains capable
of producing either cytokinins or gibberellins or both of these
include Azotobacter sp., Rhizobium sp., Pantoea
agglomerans, Rhodospirillum rubrum, Pseudomonas
fluorescens, Bacillus subtilis and Paenibacillus polymyxa
(Kang et al. 2010). Lettuce plant growth has been augmented
by inoculating with Bacillus subtilis. Zeatine riboside (ZR)
was the most prominent cytokinin that accumulated in roots
and shoots of the plant thereby increasing root and shoot
weight nearly 30% over a period of 8 days (Arkhipova et al.
2005). Cytokinin-producing PGPRs’ potential has also been
demonstrated to reduce drought stress in oriental thuja. Leaves
inoculated with Bacillus subtilis showed a higher water level
than that of non-inoculated ones. Root and shoot dry weights
in drought seedlings were increased by 19.23% and 13.99%.
This study reflects the prospective of such strains as drought
stress inhibitors in arid environments (Liu et al. 2013).
Purified cytokinins applied to individual plants have also been
shown to delay senescence by accumulating chlorophyll,
stimulating root development and elongation, root-hair forma-
tion, shoot initiation and leaf expansion (Olanrewaju et al.
2017). Four forms of gibberellins GAs (GA1, GA3, GA4,
GA20) are produced by bacteria with GA1 and GA4 being
the most active (Gupta et al. 2016) PGPRs capable of synthe-
sizing GAs Achromobacter xylosoxidans, Gluconobacter
diazotrophicus, Acinetobacter calcoaceticus, Rhizobia,
Azotobacter spp., Bacillus spp., Herbaspirillum seropedicae,
and Azospirillum spp. (Deka et al. 2015; Olanrewaju et al.
2017). Exogenously-added purified GAs boosts up the activ-
ity of endogenous plant gibberellins thereby promoting plant
growth. Specifically, they can induce shoot growth and devel-
opment through the activity of DELLA repressor that regu-
lates the activity of gibberellins activating genes (Nelson and
Steber 2016).

2.3 Siderophore production

Iron is an important micro-nutrient for the growth of all life
forms. Despite of being fourth abundant element on earth, it is
rendered unavailable to bacteria and plants in aerobic soils
owing to the presence of its predominant trivalent form
(Fe3+) which is sparsely soluble and hence not readily
absorbed by these organisms (Rajkumar et al. 2010). To over-
come this problem, microorganisms have evolved to produce
lowmolecular weight (nearly 200 to 2000Da) iron scavengers
named as siderophores that chelate iron and transport it into
their cells (Ahmed and Holmström 2014). PGPR-produced

siderophores bind to iron with a very high affinity with a
dissociation constant (Kd) of 10−20 to 10−50. The
siderophore-Fe complex interacts with special receptors on
bacterial cell surface, internalized and then assimilated by ei-
ther reducing into divalent form (Fe2+) or cleavage of the
siderophore moiety (Saha et al. 2013). On the basis function-
al groups, siderophores have been categorized into three
major groups: 1) Hydroxamate-type siderophores (pro-
duced mainly by fungi); 2) Catecholate-type siderophores
(produced mainly by bacteria and have higher Fe binding
affinity than hydroxamates); 3) Carboxylate-type
siderophores (commonly produced by plants) (Saha et al.
2016). Different PGPR strains can produce different types
o f s ide ropho re s , fo r example , Rhi zob ium and
Mesorhizobium produce catechola te- type whi le
Pseudomonas putida siderophore analysis by TLC re-
vealed the presence of both hydroxamate and catecholate
iron chelating moieties (Sarode et al. 2007) Siderophore-
producing bacteria associated to a variety of plant species
have been isolated including Pseudomonads, Bacillus,
Rhizobium, Bradyrhizobium, Serratia and Streptomyces
(Kuffner et al. 2008). Pii et al. (2015) demonstrated the
restoration of cucumber plants from iron deficiency symp-
toms in Fe-deficient soils. Inoculating the plants with
PGPR Azosprillium brasilense resulted in increased chlo-
rophyll content and biomass and improved iron content of
the leaves. In addition to iron, siderophores can chelate
other heavy metals and hence allow the plants to cope up
with stress induced by heavy metal toxicity. Inoculation of
Brassica juncea with two rhizobial strains allowed the
plants to grow under chromium stress (Ahemad and
Kibret 2014; Rajkumar et al. 2005).

3 Indirect effects

Bacterial genera including Pseudomonas, Bacillus, Serratia,
Burkholderia, Staphylococcus, Enterobacter, Herbaspirillum,
Stenotrophomonas and Ochrobactrum, are well known for
potential inhibitory effects against phytopathogens (Soylu
et al. 2005; Tariq et al. 2010). They produce various antago-
nistic substances for their defense essentially antibiotics in-
cluding (Hydrogen cyanide), hydrolytic enzymes and bacte-
riocins (Beneduzi et al. 2012) Moreover, rhizobacteria combat
with other microbes for nutrients and niches to control their
growth. PGPR also reduce the activity of pathogens by induce
systemic resistance (Van Loon et al. 1998)

3.1 Antagonistic substances

Antibiotics are the low molecular weight organic molecules
that act by inhibiting the metabolic activities of other micro-
organisms. The synthesis of antibiotic compounds is highly
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effective to control and prevent pathogen growth (Tariq et al.
2010). The mode of action of the antibiotics isolated from
bacterial and fungal genera includes inhibition of cell wall or
cell membrane synthesis and blocking of 30s ribosomal RNA
initiation complexes (Maksimov et al. 2011). Six classes of
antibiotics like phenazines, phloroglucinols, pyoluteorin,
pyrrolnitrin, cyclic lipopeptides and hydrogen cyanide
(HCN) are evidenced as more efficient towards biocontrol of
root diseases (Haas and Défago 2005) Aldehyde, alcohol, ke-
tones and sulphides also produce effective volatile antimicro-
bials (Table 1). The antibiotic compounds produced by
Pseudomonas species include Pyocyanin, phenazine-1-
carboxamide, viscosinamide, Cepaciamide A, Rhamnolipids,
Oomycin A, phenazine-1-carboxyclic acid, Butyrolactones,
Ecomycins, sulphonamide N-butylbenzene and 2,4 Diacetyl
phloroglucinol with antifungal activity; Karalicin with antivi-
ral activity; Azomycin and Pseudomonic acid with antibacte-
rial activity; Cepafungins with antitumour activity. Whereas,
the several antibiotic metabolites synthesized by Bacillus are
the following Kanosamine, Plipastatins A and B,
Zwittermycin A, Bacillomycin and Iturin A (Fernando et al.
2005).

Moreover, PGPR synthesize various hydrolytic en-
zymes for instance protease, lipase, glucanase, chitinase
and cellulases to suppress phytopathogens growth rate.
The biocontrol ability of hydrolytic enzymes was found
against fungal species of Rhizoctonia solani, Botrytis
c inerea , Sc lero t ium ro l f s i i , Py th ium ul t imum,
Phytophthora sp. and Fusarium oxysporum (Singh
et al. 1999; Frankowski et al. 2001). These lytic com-
pounds damage the fungal cell wall and help in releasing
biotic stress of host plant (Neeraja et al. 2010; Maksimov
et al. 2011). Microorganisms known for production of
lytic enzymes include Serratia marcescens with effectiv-
ity against Sclerotium rolfsii by synthesis of chitinase
hydrolytic enzyme (Ordentlich et al. 1988), Lysobacter
inhibit Bipolaris and Pythium spp. by producing
glucanase (Palumbo et al. 2005) and Myxobacteria with
antagonistic activity against fungal phytopathogens
(Kobayashi and Nour 1996; Bull et al. 2002).

PGPR also produce antagonistic substances such as bacte-
riocins which have inhibitory activity against only closely
related species. Interestingly, bacteriocins produced by
Bacillus sp. have been found with broad spectrum lethal ac-
tivity (Abriouel et al. 2011). They are ribosomally synthesized
proteinaceous antimicrobial agents. Some bacteriocins origi-
nated from Gram-negative microorganisms are recombinantly
synthesized by existing bacteriocins (Riley 1993). Colicins
synthesized by certain Escherichia coli strains are the most
representative bacteriocins. Some other examples of bacterio-
cins include marcescins from Serratia marcescens, megacins
from B. megaterium and pyocins from P. pyogenes strains and
cloacins from Enterobacter cloacae (Cascales et al. 2007). Ta
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3.2 Induced systemic resistance

PGPR indirectly aid in plant development by increasing its
defensive activity against harmful microorganism through
the phenomenon of induce systemic resistance (ISR) and
inhibiting subsequent attack by pathogen through systemic
acquired resistance (SAR) (Van Loon 2007). Plants synthesize
antagonistic substances phytoalexins (proteinaceous antimi-
crobial compounds, polyphenolic and flavonoid) directly at
the site of microbial infection and spread its synthesis to the
adjacent cells. This mechanism not only restraint the plant
disease but also protect plant from further infection (SAR).
Additionally, plants cause the rapid local necrosis and death
of infected cells which leads to invade the pathogen (Atlas and
Bartha 1998). SAR is potentiated by pathogen and can be
regulated by virulent microorganisms (induce using salicyclic
acid SA pathway) and avirulent microorganisms (SA indepen-
dent pathway). In contrast, ISR nor directly involve the path-
ogen rather respond to prevent its deleterious effects. Both
ISR and SA-independent pathway are triggered by ethylene.
ISR is also dependent on jasmonic acid that stimulates defense
response by the plant. But unlike SAR, induce systemic resis-
tance does not rely on pathogenic protein (glucanase,

chitinase) and salicyclic acid. In addition, outer membrane
Lipopolysaccharide, chitin, flagella, cyclic lipopeptide,
pyoverdine, ββ-glucans also act as triggering agents for ISR
(Glick 2012). The best characterized strains for the stimulation
of ISR are Pseudomonas spp., and some bacillus species in-
cluding Bacillus sphaericus, Bacillus subtilis, Bacillus
mycoides, Bacillus amyloliquifaciens, Bacillus pasteurii,
Bacillus pumilus and Bacillus cereus (Choudhary et al.
2007). ISR is quite stable indicating that once resistance is
induced, the plants can withstand the biotic challenges mani-
fested by pathogen and suppress the disease for considerable
time. ISR can be stimulated by avirulent microorganisms as
well as by simulating conditions which initiate the similar
response in the plant (Van Loon et al. 1998).

4 Commercialization and challenges

High yield crops along with eco-friendly fertilizers are the
basic need of developing world. Because of the plentiful ben-
efits, PGPR has become successful to attain the attentions of
agricultural scientists (Tewari and Arora 2013). A lot of work
has been done to find out different attributes of PGPR and

Table 2 List of different commercially available PGPR products

Commercially
available products

PGPR strain Crop Mode of action Producer

Cedomon, Pseudomonas chlororaphis barley and oats biopesticide Lantmännen BioAgri AB,
SwedenCerall Wheat

Cedress Pea, carrot

AMASE Pseudomonas azotoformans cucumber, lettuce, tomato, peppers,
eggplant, cabbage and broccoli

Phytostimulators Lantmännen BioAgri AB,
Sweden

Amnite A100 Azotobacter, Bacillus,
Pseudomonas, Rhizobium and
Chaetomium genera

Cucumbers, tomatoes, lettuce,
capsicums, ornamental flowers and
herbs

Biofertilizer and
biopesticide

Cleveland Biotech Ltd.

BactoFil A10 Azospirillum brasilense,
Azotobacter vinelandii,
Paenibacillus polymyxa, Bacillus
megaterium

monocotyledonous plants (maize,
corns)

Biofertilizer AGRObio Hungary

BactoFil B 10 Azotobacter vinelandii,
Paenibacillus polymyxa, Bacillus
megaterium, B. subtilis

sunflower, sugar beet, rape, Biofertilizer AGRObio Hungary

BactoFil CELL Cellvibrio ostraviensis Corn Biofertilizer AGRObio Hungary

BactoFil Soya Bradyrhizobium japonicum Soya Biofertilizer
(nitrogen fixation)

AGRObio Hungary

Compete Plus Bacillus strains Field Crop Biofertilizer Plant Health care USA

Inomix series Azotobacter vinelandii, Cereals Biofertilizers, IAB, Spain
Bacillus amyloliquefaciens, Phytostimulator
B. licheniformis,

B. megaterium

B. polymyxa,

B. subtilis,

P. fluorescens
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different strains of PGPR showed impressive results in pro-
moting growth of different plants. Commercialization of these
strains is the foremost need of the present time, for which the
connection between research scientists and industries is vital.
Identification and selection of the effective strain of PGPR for
commercialization is also one of the big challenges (Nelson
2004). Although many PGPR execute well under laboratory
settings, their commercialization calls for maximum function-
ality in the fields as well. In addition, the worthwhile market
demand, effective and consistent activity, longer stability, low
cost and informal availability is also required. The affectivity
and consistent activity of PGPR products depend upon the
farmer’s understanding, while at same time it is not easy to
educate them properly. One of the added challenges is the
regulatory policies regarding bio-products. Each country has
its own risk assessments policies so that they can avoid un-
constrained issue of possibly destructive biological entities.
Hence, PGPR products have to pass through different obsta-
cles before reaching the market (Tabassum et al. 2017).

Many products of PGPR are already available in the mar-
ket. They are already being used in different countries like
Sweden, Finland, Switzerland, Austria, Lithuania, Denmark,
Belgium, The Netherlands, Italy, Spain, Portugal, Germany,
France, UK, and Austria. They are applied as biofertilizers,
phytostimulators, rhizoremediators and bio-pesticides to attain
varied benefits for better plant growth (Antoun and Prévost
2005). Famous commercially available PGPR include
Azospirillium, Pseudomonas, Bacillus, Burkholderia,
Azotobacter, Rhizobium, and Serratia (Nandakumar et al.
2001). Different commercialized PGPR based products along
with their intended crops are mentioned in Table 2.

5 Future perspectives

Future perspectives involve the use of biotechnological and
molecular biological approaches to get genetically modified
PGPR. Genetically modified PGPR can boost the production
of plant much better as compared to normal PGPR (Denton
2007). Work should be done to engineer different PGPR to
avoid different soil pollutants, phytopathogens and to increase
the water absorbing capacity (Wu et al. 2006). Fresh alterna-
tive PGPR should also be considered which can enhance the
yield much efficiently. More work should be done on ice-
nucleating plant growth promoting rhizobacteria that have
the capability to increase plant growth at low temperature
(Nadeem et al. 2013). There are some reported PGPR like
Azoarcus , Exiguobacter ium, Methy lobacter ium,
Paenibacillus and Pantoea etc., which have shown very pro-
ductive results for effective growth of plants. Work should be
done for their commercialization as well (Chauhan et al.
2015). In short, the future success of this industry needs pro-
ductive research, effective screening, proper interaction,

appropriate communication, inventive business organization
and product marketing.

6 Conclusion

The phytopathogens, being a great threat for plant health and
longevity, need to be controlled and restricted for invasion.
Using eco-friendly indigenous soil microorganisms can be
of great benefit to combat with these potential pathogens.
The deliberate administration of rhizobacteria in soil can be
of worth importance as their intricate symbiotic and antago-
nistic relationships with plants and plant pathogens respective-
ly, are vital to plant growth and survival. However, prior to
incorporation, the safety aspects should be considered and
standards should be maintained.

Publisher’s Note Springer Nature remains neutral with regard to jurisdiction-
al claims in published maps and institutional affiliations.
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