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Abstract The distribution and diversity of endophytic fungi
in native hydrophytes from Korea were investigated. Fourteen
hydrophytes (i.e., Hydrocharis dubia, Iris pseudacorus,
Miscanthus sacchariflorus, Miscanthus sinensis,
Nymphoides peltata, Nymphaea tetragona, Nelumbo
nucifera, Pistia stratiotes, Salvinia natans, Sagittaria trifolia,
Trapa japonica, Typha orientalis, Vallisneria natan, and
Zizania latifolia) were sampled from freshwater marshes. A
total of 216 fungal endophytes, isolated purely on the basis of
morphological differences, were identified by
ITS1-5.8S-ITS2 rDNA sequence similarity. The hydrophytes
harbored a variety of endophytic fungi, most of which
belonged to three phyla, seven classes, and 43 genera.
Dramatic differences in diversity values were found among
the six marshes, even within the same hydrophyte species.
This distinguishing diversity or distribution of endophytes
correlated with the specific environmental features but not
the plant taxon. Several endophyte genera that have been
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reported to have biological activity (PGPR, ISR) were identi-
fied. This study provided basic data on the symbiotic relation-
ship between hydrophytes and their endophytic fungi.
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1 Introduction

Freshwater marshes serve as natural habitats for various
plants, animals, insects, and microbes. The ecological role of
marshes is established by the material cycling that occurs as a
result of the natural characteristics of the marshes (Arnold and
Van 2012; Julie and Fennessy 2001; Kuczynska-Kippen
2007). Freshwater marshes may exhibit biological and micro-
bial succession (Denny 1994). Furthermore, natural remedia-
tion, buffering capacity, flooding, storms, groundwater dis-
charge, climate, and nutrients in freshwater marshes (Li et al.
2014a, b; Xiang et al. 2009) all contribute to their characteri-
zation as hot spots of biological and microbial diversity
(Denny 1994). A wide variety of hydrophytes settle and grow
in marshes (Arnold and Van 2012; Kong and David 1993).
They carry out photosynthesis, affecting the dissolved oxy-
gen, nitrogen, and phosphorus concentrations (Carpenter and
Lodge 1986; Desmet et al. 2011; Yeh et al. 2011). Hence
hydrophytes are important resources for purifying
eutrophicated water which can induce salt stress in irrigated
crops (Carpenter and Lodge 1986).

Endophytes in their host plant can provide
growth-promoting activity (You et al. 2015; Varma et al.
1999; Waller et al. 2005). They may also induce systemic
resistance (ISR) in their host against environmental stress
and disease (Mack and Rudgers 2008; Mejia et al. 2008;
Rodriguez et al. 2008; Vandenkoornhuyse et al. 2002;
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Varma et al. 1999). These positive roles may enable hydro-
phytes to be used for effective water purification (Redman
et al. 2002). For this the endophyte diversity of potential
water-purifying aquatic plants in freshwater marshes must
be determined. However, the diversity of endophytic fun-
gi such hydrophytes has not been well established (You
et al. 2015).

The present study was carried out to elucidate the distribu-
tion and diversity of endophytic fungi from the dominant na-
tive hydrophytes in freshwater marshes of the Korean
Peninsula.

2 Materials and methods
2.1 Plant sampling

A total of 14 hydrophyte species (30 individuals per species)
were sampled from (1) the Pyeonggi wetland located at
Hanam-gun (Kyungsdangnam-do), (2) the Junam wetland lo-
cated at Changwon-si, (3) the Jungyang wetland located at
Hapcheon-gun, (4) the Daegok wetland located at
Changnyeong-gun, (5) the Dacbong wetland located at
Changnyeong-gun, and (6) the Hwapocheon wetland located
at the Nakdong river, a state river in Korea (Table 1). The first
five wetlands are marshes in lakes with stable environmental
conditions that are suitale for the development of hydrophyte
communities because they are not subjected to massive level
changes. The Junam (2.85 km?) and Pyeonggi
(0.033058 km?) wetlands are formed by very slow water flow
from lakes, whereas the Jungyang (0.00004 km?), Daegok
(0.44 km?), and Daebong (0.40 km?) wetlands formed around
confined old lakes that are now changing into swamps. In
contrast, the Hwapocheon wetland (138.38 km?) is a back
marsh of a large river. Back marshes always suffer from sea-
sonal or climatic changes (massive flooding, heavy rains,
etc.); thus, their wetland features are not stable and are always
changing.

Each of the six wetlands exhibited hydrophyte communi-
ties, particularly the Hwapocheon wetland. Generally, plant
communities vary according to environmental factors. Each
of the five wetlands exhibited different plant biota and the
dominant hydrophyte from each wetland was sampled.
These plants commonly flourish at the margin of the wetlands
or were floating on or under the water surface. The hydro-
phytes can be categorized into groups based on their habitat
(Table 2) (Arnold and Van 2012; Julie and Fennessy 2001).
Emergent hydrophytes commonly colonize the edge of shal-
low freshwater marshes. Floating-leaved hydrophytes estab-
lish roots in the bed of freshwater marshes, with the leaves
floating at the surface while the entire plant body of sub-
merged hydrophytes is under the water. Finally, free-floating
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hydrophytes are found at the water surface and have poorly
developed roots.

The sampled native plants were hydrophytes known to pu-
rify eutrophicated water. To prevent any physiological chang-
es, the plant samples were collected and transported along
with their respective freshwater and some rhizosphere soil
from the sampling site. Hydrophytes species from the five
reservoir wetlands used in this study are as follows: Iris
pseudacorus, Nelumbo nucifera and Salvinia natans (from
the Pyeonggi marsh), Hydrocharis dubia, Pistia stratiotes, S.
natans and Trapa japonica (from the Junam marsh), H. dubia,
Nymphaea tetragona, Sagittaria trifolia and Typha orientalis
(from the Jungyang marsh), H. dubia, S. natans (from the
Daegok marsh), H. dubia, S. natans, and Trapa japonica
(from the Daebong marsh). The hydrophyte used in this study
from the river back marsh (Hwapocheon wetland) are as fol-
lows: H. dubia, I. pseudacorus, T. orientalis, Nymphoides
peltata, Zizania latifolia, Miscanthus sinensis, Miscanthus
sacchariflorus, and Vallisneria natans.

2.2 Isolation of endophytic fungi

The harvested plant samples were washed with strong running
sterile distilled water (SDW) and treated with sterilized 0.1 %
Tween 80 solution (Sigma-Aldrich, St. Louis, MO, USA) for
10 min to eliminate suspended solids or microflora on the
plant surfaces and were subsequently washed 3—4 times with
SDW (Yamada et al. 2001). The samples were submerged in
1.0 % perchloric acid three times for 10 min each and subse-
quently washed 3—4 times with SDW. Residual surface mois-
ture was removed with sterile gauze, and roots from plant
samples were cut to a length of 3—4 c¢cm (You et al. 2015). To
exclude root bacteria, the treated samples were paced on
Hagem minimal medium (You et al. 2012) containing
80 ppm streptomycin (Sigma-Aldrich) and incubated at 25 °
C for 5-7 days (Hasan 2002; Khan et al. 2008; You et al.
2013). Subculture of any endophytic fungi to obtain pure cul-
tures was done using potato dextrose agar (Difco, Detroit, M1,
USA) under the same incubation conditions. Finally, isolates
were selected for further study on the basis of morphological
differences.

2.3 Extraction of genomic DNA and polymerase chain
reaction (PCR)

Each isolate was inoculated into sterile potato dextrose
broth medium and shake cultured at 25 °C and 120 rpm
for 7 days. The mycobionts were then filtered and lyophi-
lized for 2 days. Genomic DNA of the lyophilized
mycobionts was extracted using a DNeasy Plant Mini Kit
(Qiagen, Gaithersburg, MD, USA). The primers used to
target the ITS regions for PCR were ITS1
(5'-TCCGTAGGTGAACCTGCGG-3') and ITS4
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Table 1  Information of hydrophytes collected from various marshes in Korea
Geographical type of wetland ~ Sampling area Scientific names GPS information Geographical position  Isolates
number
Marsh of resorvoir Pyeonggi weland . pseudacorus 35°21'3.97"N/128°24'1.35"E Gyeongsangnam-do 10
N.nucifera 35°21'3.90"N/128°24'1.01"E Haman 16
S. natans 35°21'3.85"N/128°24'1.70"E 5
Junam weland H. dubia 35°1825.48"N/128°40'28.67"E  Gyeongsangnam-do 5
P, stratiotes 35°18'38.73"N/128°40'49.28"E Changwon 14
S. natans 35°18'25.47"N/128°40'28.79"E 11
T. japonica 35°18'23.34"N/128°40'29.87"E 7
Jungyang weland H. dubia 35°33'12.08"N/128° 9'56.05"E Gyeongsangnam-do 3
N. tetragona 35°33'10.76"N/128° 9'56.80"E Hapcheon 10
S. trifolia 35°33'9.58"N/128° 9'58.04"E 2
T. orientalis 35°33'9.58"N/128° 9'58.04"E 10
Daegok weland H. dubia 35°26'11.31"N/128°23'19.28"E ~ Gyeongsangnam-do 2
S. natans 35°26'17.04"N/128°23"24.04"E Changnyeong 5
Daebong weland H. dubia 35°26'25.23"N/128°27'6.45"E Gyeongsangnam-do 2
S. natans 35°26/25.23"N/128°27'6.45"E Changnyeong 2
T. japonica 35°26'26.41"N/128°27'12.23"E 3
Back marsh of large river Hwapocheon weland  H. dubia 35°18'47.55"N, 128°48'31.10"E ~ Pusan City, 16
1. pseudacorus 35°18'47.48"N, 128°48'30.84"E Nakdong River 14
T. orientalis 35°18'47.48"N, 128°48'30.84"E 19
N. peltata 35°18'55.25"N, 128°48'3.17"E 17
Z. latifolia 35°18'49.53"N, 128°47'36.11"E 13
M. sinensis 35°18'49.95"N, 128°47'37.01"E 6
M. sacchariflorus  35°18'42.34"N, 128°47'13.73"E 11
V. natans 35°18'42.34"N, 128°47'13.73"E 10

(5'-TCCTCCGCTTATTGATATGC-3") (White et al. 1990).
The PCR conditions were as follows: predenaturation (94 °
C, 4 min), denaturation (94 °C, 1 min), annealing (55-58 °©
C, 1 min), and extension (72 °C, 2 min) for a total of
35 cycles, followed by a final extension (72 °C, 2 min)
(You et al. 2015). The amplified PCR product was purified
using an AccuPrep PCR Purification & Gel Extraction Kit
(Bioneer, Daejeon, Korea) and sequenced on an ABI
3730x1 DNA analyzer (Applied Biosystems, Carlsbad,
CA, USA) (You et al. 2015).

2.4 Phylogenetic analysis and diversity

Using the BLASTn tool, ITS sequences of the fungal isolates
were compared with the most similar sequences of fungal
species published in the GenBank database of the National
Center for Biotechnology Information (NCBI; www.ncbi.
nlm.nih.gov).

Phylogeny was performed using the MEGA program
(Version 6.0) with sequence alignments prepared using the
Clustal program (Tamura et al. 2013). The phylogenetic trees
were inferred with the maximum-likelihood algorithm using

the Kimura 2-parameter model. The stability of relationships
was evaluated by bootstrap analysis, with resampling repeated
1000 times (Tamura et al. 2013). To construct the trees,
Kluyveromyces lactis Y-8279" (NR 131273) was used as an
outgroup.

2.5 Biodiversity

The diversity of endophytic fungi from each host hydro-
phyte species was deduced and compared. Diversity at
the genus level was revealed using Margalef’s richness
index (Margalef 1958) and Menhinick’s index (Whittaker
1977).

3 Results

3.1 Distribution of endophytic fungi

A total of 216 endophytic fungal strains were isolated from the

six representative freshwater marshes (Supplementary Data
1). In total, 106 strains were isolated from the Hwapocheon
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Table 2 Phylogenetical, ecological classification of each hydrophyte

Sampling area Scientific names Plant taxon Life cycle of Ecological types
hydrophytes
Phylum Order
Pyeonggi weland 1. pseudacorus Phanerogamae Liliales Perennial Emerged plant
N.nucifera Angiospermae Ranunculales Perennial Floating leaf
S. natans Pteridophyta Polypodiales Annual Floating plant
Junam weland H. dubia Angiospermae Psammophytes Perennial Floating plant
P, stratiotes Angiospermae Arales Perennial Floating plant
S. natans Pteridophytap Polypodiales Annual Floating plant
T. japonica Phanerogamae Memecylaceae Annual Floating leaf
Jungyang weland H. dubia Angiospermae Psammophytes Perennial Floating plant
N. tetragona Phanerogamae Nymphaeales Perennial Floating leaf
S. trifolia Phanerogamae Alismatales Perennial Emerged plant
T. orientalis Angiospermae Pandanales Perennial Floating leaf
Daegok weland H. dubia Angiospermae Psammophytes Perennial Floating plant
S. natans Pteridophyta Polypodiales Annual Floating plant
Daebong weland H. dubia Angiospermae Psammophytes Perennial Floating plant
S. natans Pteridophyta Polypodiales Annual Floating plant
T. japonica Phanerogamae Memecylaceae Annual Floating leaf
Hwapocheon weland H. dubia Angiospermae Psammophytes Perennial Fmerged plant
1. pseudacorus Phanerogamae Liliales Perennial Fmerged plant
T. orientalis Angiospermae Memecylaceae Perennial Floating leaf
N. peltata Phanerogamae Nymphaeales Perennial Floating leaf
Z. latifolia Angiospermae Poales Perennial Emerged plant
M. sinensis Angiospermae Poales Perennial Emerged plant
M. sacchariflorus Angiospermae Poales Perennial Emerged plant
V. natans Angiospermae Alismatales Perennial Submerged plant

wetland, 34 strains were isolated from the Pyeonggi wetland,
37 strains were isolated from the Junam wetland, 25 strains
were isolated from the Jungyang wetland, seven strains were
isolated from the Daegok wetland, and seven strains were
isolated from the Daebong wetland. The most isolates were
from the Hwapocheon wetland reflecting the greater diversity
of hydrophytes at this site (Table 3). A total of eight hydro-
phyte species were dominant groups in the Hwapocheon wet-
land (i.e., H. dubia, I. pseudacorus, T. orientalis, N. peltata, Z.
latifolia, M. sinensis, M. sacchariflorus, and V. natans),
whereas at the other sites there were fewer: in Pyeonggi
(I. pseudacorus, N.nucifera, and S. natans), in Junam
(H. dubia, P. stratiotes, S. natans, and T. japonica), in
Jungyang (H. dubia, N. tetragona, S. trifolia, and T.
orientalis), in Daegok (H. dubia and S. natans), and in
Dacbong (H. dubia, S. natans, and T. japonica) (Table 4). A
diversity of endophyte fungi were found in these native
Korean hydrophytes (Table 1). The number and distribution
of fungal isolates from the dominant plants was differed be-
tween marshes. There were also variations in isolate numbers
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among the marshes, even within the same species of
hydrophyte.

3.2 Molecular identification and phylogenetic analysis

The 216 endophytic fungal strains isolated from the 14 host
plant species were categorized into three phyla, seven classes,
and 43 genera. Most of isolates belonged to the phylum
Ascomycota; however, three strains belonged to
Basidiomycota and one strain belonged to Zygomycota.
This demonstrated the numerical dominance (98.1 %) of
Ascomycota as hydrophytic endophytes in native to freshwa-
ter wetland environments.

The following classes were confirmed: Sordariomycetes
(76 strains, 35.1 %), Dothideomycetes (70 strains, 32.4 %),
Saccharomycetes (30 strains, 13.8 %), Eurotiomycetes (20
strains, 9.2 %), Leotiomycetes (13 strains, 6.0 %),
Ustilaginomycetes (three strains, 1.3 %), and
Mucoromycotina (one strain), as shown in Fig. 1a. Thus, the
classes Sordariomycetes, Dothideomycetes, and
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Table 3 Diversity index of
endophytic fungi distributed in Fungal taxon Hwapocheon Junam Pyeonggi Jungyang Daegok Daebong

each freshwater marshes wetland wetland wetland wetland wetland wetland

Acephala 1 1

Alternaria 15 1 1

Anguillospora 3

Aspergillus 1

Calonectria 1 1
Cephalosporium 1
Cladosporium 1
Clavariopsis 1
Colletotrichum 2
Curvularia 2
Dimorphospora 0
Epicoccum 1
Filosporella

Fusarium 13 2 7 16 1 2
Geomyces
Gibberella
Ilyonectria
Leptosphaerulina
Massarina
Microsphaeropsis

Mucor

—_ = N W — =
—

Nectria
Neopestalotiopsis 1 1

Paraconiothyrium 1

Paraphaeosphaeria 5 1 3 2

Paraphoma 5

Penicillium 4

Pestalotiopsis 2 3 1

Phaeosphaeria 1

Phoma 7 4 3 1
Plectosphaerella 2 1

Pseudeurotium 1

Pseudozyma 2 1

Robillarda

Sarcopodium 2

Setophaeosphaeria 1

Stagonosporopsis

Talaromyces 3 2 7 2 1
Tetraplosphaeria
Thielavia
Trichoderma
Torula
Westerdykella
Total 106 37 34 25 7 7

S 29 15 15 8 4 6
Margalef’s richness 6.004 3.877 3.970 2.175 1.542 2.569

Menhinick’s index 2.817 2.466 2.572 1.600 1.512 2.268
(Dmn)

W o= = =
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Fig. 1 The distribution of fungal isolates in different different marshes at the classes (a) and genera (b) levels

Saccharomycetes were the most dominant endophyte group in
these Korean hydrophytes. However, Eurotiomycetes were
dominante in the Pyeonggi wetland, and this is may be ex-
plained by the emergence of a high proportion of Talaromyces
from the hydrophyte N. nucifera. Incidentally, this plant has
been known as water-purifying hydrophyte, and several spe-
cies of Talaromyces have been shown to have biological ac-
tivity for PGPR (plant growth-promoting rhizobacteria) or
ISR (Li et al. 2014a, b; Murray et al. 1977; Soltani and
Hosseyni Moghaddam 2015). Studies are required to charac-
terize better some of the isolates belonging to Talaromyces.
At the genus level, there were no variations in dominant
endophyte genera among wetlands or host hydrophyte species
(Fig. 1b). However, within the same species, fungal distribu-
tion or diversity varied according to the wetlands they
inhabited. Endophytic biotas therefore seem to be affected

more by the specific freshwater wetland environment than
by the plant species. The nucleotide sequences of the endo-
phytic fungal strains recovered have been registered at the
NCBI GenBank database. The phylogenetic trees of the endo-
phytic fungi isolated from the roots of hydrophytes native to
each marsh were constructed. To construct the trees, Bacillus
altitudinis 41KF2b" (AJ831842) was used as an outgroup

(Fig. 2).

3.3 Biodiversity

The biodiversity of the fungal flora was assessed on the basis
of the results from each hydrophyte species native to each

marsh. Based on the genera count by plant sample, the diver-
sity value was calculated (Table 4). In the Hwapocheon
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wetland, the fungal biota from each hydrophyte exhibited the
following diversity values:

H. dubia,3.967; 1. pseudacorus, 2.652; T. orientalis, 1.698;
N. peltata, 1.765; Z. latifolia, 4.289; M. sinensis, 1.674; M.
sacchariflorus, 2.502; and V. natans, 3.474 (Margalef’s rich-
ness, Dmg) or H. dubia, 3.000; I. pseudacorus, 2.138; T.
orientalis, 1.376; N. peltata, 1.455; Z. latifolia, 3.328; M.
sinensis, 1.633; M. sacchariflorus, 2.111; and V. natans,
2.846 (Menhinick’s index, Dmn). Z. latifolia (4.289 and
3.328) had the highest diversity values according to both the
Margalef’s richness (Dmg) and Menhinick’s index (Dmn).
This result was likely due to the relatively low dominance of
fungal genus (Cladosporium) and the higher richness. The
reason that 7. orientalis had the lowest diversity values for
both indices may be the dominance of the specific genera
(Fusarium, Cladosporium) and low species richness. The
thicknesses of the root epidermis and root cap differ among
hydrophyte species and may have an influence on the fungal
biotas (Arnold and Van 2012; Julie and Fennessy 2001).

The biodiversity of fungal endophytes was also assessed
for each marsh (Table 3). In terms of genus richness, each
marsh had the following Margalef’s richness indices:
Hwapocheon wetland, 6.004; Pyeonggi wetland, 3.97;
Junam wetland, 3.877; Jungyang wetland, 2.175; Daegok
wetland, 1.542; and Daebong wetland, 2.569. The genus rich-
ness according to Menhinick’s index was 2.572 for the
Pyeonggi wetland, 2.466 for the Junam wetland, 1.600 for
the Jungyang wetland, 1.512 for the Daegok wetland, 2.268
for the Daebong wetland, and 2.817 for the Hwapocheon
wetland.

4 Discussion

Since the prehistoric age, marshes have been present in the
Korean Peninsula and been used as sources of irrigation water
(Kong and David 1993). Because of this, hydrophytes have
adapted to specific marshes that have distinct environmental
characteristics. Based on the results of our molecular identifi-
cation and phylogenetic analysis, there are fungal genera that
have positive interactions with their host plants. The genera
Theobroma, Penicillium, Pseudozyma, Paraphaeosphaeria,
Anguillospora, Microsphaeropsis, Gibberella, Talaromyces
have been reported to promote plant growth, induce resistance
to environmental stress, and produce antimicrobial agents
(Bezerra et al. 2015; Buxdorf et al. 2013; Hossain et al.
2007; Hussain et al. 2015; Khan et al. 2011; Khan et al.
2013; Mejia et al. 2008; Nicoletti and Stefano 2012; Sati and
Singh 2014). Thus there are potential biotechnological appli-
cations for endophytes from hydrophytes. If the endophytes
identified in this study can improve the growth or salt toler-
ance of water-purifying hydrophytes, they might represent
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Fig. 2 Phylogenetic analysis of endophytic fungi isolated from various P>
marshes of Korea. This phylogenetic tree was constructed by using the
maximum likelihood (1000 bootstrap replications). Bootstrap values
(70 %) are indicated at relevant nodes. Dendrogram of endophytic fungi
isolated from the hydrophytes in a Hwapocheon Wetland, b Junam
marsh, ¢ Pyeonggi marsh, d Jungyang marsh, e Daegok marsh and f
Daebong marsh. Scale bar: 0.1

new types of microbial agents that can be used to cope with
water pollution or eutrophication.

The endophyte diversity from of the Hwapocheon wetland
was higher than that from the other wetlands, even within the
same hydrophyte species. In the case of H. dubia, the diversity
values were 3.967/3.000 in the Hwapocheon wetland, but
were only 1.674/1.633 in the Junam wetland, 0.910/1.155 in
the Jungyang wetland, and 1.443/1.414 in the Daegok wet-
land. In case of I. pseudacorus, the diversity values were
2.652/2.138 in the Hwapocheon wetland, but 2.502/2.111 in
the Pyeonggi wetland. Furthermore, at the marsh level, the
Hwapocheon wetland exhibited higher diversity values than
the other five reservoir wetlands for both of the diversity in-
dices. Among the five reservoir wetlands, the Pyeonggi and
Junam marshes showed higher diversity values and broader
distributions of fungal genera than the Jungyang, Daegok, and
Daebong marshes. Overall, the Hwapocheon wetland had the
most isolates and the highest endophyte diversity at the hy-
drophyte individual and wetland levels. This may have been
caused by the specific geographical characteristics of each
wetland.

The endophyte distribution and diversity of mesophytes
can vary according to the host plant species because of many
factors including the thickness of the root epidermis or root
cap. Therefore, we attempted to determine the correlation be-
tween the microbial distribution and the characteristics of the
plant (Arnold and Van 2012). Perennial plants were found to
have relatively higher diversity values for endophytes than
those of annual plants within the same marsh land (Tables 1
and 2). Thus, perennial plants appeared to have a dominant
position over annual plants for establishing endosymbiotic
relationships with fungi. The genetic diversity of endophytes
also seemed to be affected by the life cycle of hydrophytes,
interacting with the environment over time. However, this
appeared not to apply to isolated from the Hwapocheon wet-
land. This is may be because back marshes of large rivers
exhibit constant changes in environmental factors as a result
of flooding, precipitation, or drought, Therefore, endophytes
within such environments do not differentiate between annual
or perennial plants. Nevertheless, the diversity values and iso-
late numbers were higher in this wetland which may reflectd
geological factors.

A comparisons of the wetlands based on plant taxon (Julie
and Fennessy 2001). revealed that there were no
distinguishing patterns related to diversity of gymnosperms,
angiosperms, and pteridophyta (Tables 1 and 2). A
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Fig. 2 (continued)
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Kiluyveromyces lactis NRRL Y-82797 NR_131273
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Fig. 2 (continued)

comparisons based on plant lifestyle in the aquatic environ-
ment (Arnold and Van 2012). revealed that floating plants had
higher diversity values than emerged plants or floating-leaved
plants (Tables 1 and 2). Thus the environmental characteristics
of each wetland seemed to affect the diversity or distribution
of endophytes to a greater extent than plant life style or plant
taxon.

The geomorphological features of each wetland modified
by the indigenous topographical characteristics of the Korean
Peninsula (Kong and David 1993). influence the fungal

L Talaromyces flavus JPSO5 KT 184735
Acephala sp. JPS03 KT184733

P Filosporella fistucella JTJO2 KT184757
4]00’ Filosporella versimorpha JTJO3 KT184758
Filosporelia fistucella JTJO6 KT184761

Cladosporium sp. JPS06 KT184736
Cladosporium cladosporioides JPSOT KT184737
Cladosporium tenuissimum JSNO2 KT184746
o |r Cladosporium tenuissimum JHDO1 KT184726
Cladosporium uredinicola JHDOS KT184730
Cladosporium uredinicola JSNO3 KT184747
Cladosporium cladosporioides JSNO4 KT184748
Cladosporium cladosporioides JSNO8 KT184752
Cladosporium sp. JSNO9 KT184753
Pestalotiopsis vismiae JHDO4 KT184729
% Pestalotiopsis sp. JPS01 KT184731

_‘00[ Neopestalotiopsis javaensis JPS11 KT184741

100 | Paraphaeosphaeria sporulosa JPS14KT184744

— L Paraconiothyrium brasiliense JSN10 KT184754

Phaeosphaeriopsissp. JSNOB KT184750

Alternaria alternata JSNO5 KT184749
s0 r Phoma sp. JPS04 KT 184734
Phoma sp. JTJOS KT184760

pg £ Epicoccum nigrum JPS13 KT184743

Epicoccum nigrum JSN11 KT184755

7| - Phoma fungicola JSNO1 KT184745
% | Phoma fungicola JSNO7 KT184751
Kluyveromyces lactis NRRL Y-8279T NR_131273

diversity. The Pyeonggi marsh (approximately 250 m in di-
ameter) and the Junam marsh (2.9 km in length) have been
separated from the main river so there is no chance of fresh-
water exchange. However, the Jungyang marsh (1 km length)
is located between two branches of the river and is not sepa-
rated from the river so large amounts of freshwater can flow in
or out. In the Daegok and Daebong marshes (both approxi-
mately 300-400 m in diameter), water flows in from up-
stream, originating from the surrounding mountains and then
flows out. It would be expected that wetlands not linked to the
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Fig. 2 (continued)

main river might show a higher diversity of endophytic fungi
(Table 3) because of the opportunity for stable interactions
between the fungus and host hydrophyte. However, at least
in the early stages of wetlands developing in reservoirs, this
does not seem to apply (Kong and David 1993). Indeed, the
Hwapocheon wetland periodically is subject to major water
exchanged due to flooding and heavy rain but still exhibits the
highest diversity values for endophytes.

Salvinia natans and H. dubia, are known to control eutro-
phication (Xiang et al. 2009). and had a higher diversity of
endophytic fungi at the Pyeonggi and Junam marshes than at
the Jungyang, Daegok, and Daebong marshes. Endophyte iso-
lates from water-purifying plants native to marshes separated
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from their main river have been assumed to be potential
sources of microbes for promoting the growth such plants
where water quality if low. This is based on the observation
that Nelumbo nucifera from the Pyeonggi wetland harbors a
higher density of Talaromyces, which have been shown to
have biological activity related to associated plant
growth-promoting rhizobacteria (PGPR) or ISR, as described
above (Li et al. 2014a, b; Murray et al. 1977; Soltani and
Hosseyni Moghaddam 2015). Our finding that the stagnant
freshwater marshes, Pyeonggi and Junam which can be easily
eutrophicated, had high endophyte diversity values may re-
flect the importance of these organisms to the success of hy-
drophytes growing there.
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Kluyveromyces lactis NRRL Y-82797 NR_131273
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