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Abstract The solitary ascidian Styela plicata is an intro-
duced species in harbors of temperate and tropical oceans
around the world. The invasive potential of this species has
been studied through reproductive biology and population
genetics but no study has yet examined the microbial diver-
sity associated with this ascidian and its potential role in
host ecology and invasiveness. Here, we used 16S rRNA
gene tag pyrosequencing and transmission electron micros-
copy to characterize the abundance, diversity and host-
specificity of bacteria associated with 3 Mediterranean indi-
viduals of S. plicata. Microscopy revealed low bacterial
abundance in the inner tunic and their absence from gonad
tissues, while pyrosequencing revealed a high diversity of S.
plicata-associated bacteria (284 OTUs from 16 microbial
phyla) in the inner tunic. The core symbiont community was
small and consisted of 16 OTUs present in all S. plicata
hosts. This core community included a recently described
ascidian symbiont (Hasllibacter halocynthiae) and several
known sponge and coral symbionts, including a strictly
anaerobic Chloroflexi lineage. Most recovered bacterial
OTUs (79.6 %) were present in single S. plicata individuals
and statistical analyses of genetic diversity and community
structure confirmed high variability of bacterial communi-
ties among host individuals. These results suggest that
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diverse and variable bacterial communities inhabit the tunic
of S. plicata, including environmental and host-associated
bacterial lineages that appear to be re-established each host
generation. We hypothesize that bacterial communities in S.
plicata are dynamic and have the potential to aid host
acclimation to new habitats by establishing relationships
with beneficial, locally sourced bacteria.
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1 Introduction

Ascidians, or sea squirts, are sessile marine invertebrates often
found at high densities in harbors and marinas (Turner et al.
1997; Connell 2001; Cohen et al. 2005) and are among the
most important marine invaders worldwide (Lambert 2002,
2007; Whitlatch and Bullard 2007). In fact, many cosmopol-
itan species rely on anthropogenic transport for long-distance
dispersal as larval life spans are short, ranging from a few
hours in brooders up to a week in oviparous ascidians (Svane
and Young 1989). Although the rate of introduction of non-
indigenous ascidians has been increasing over recent decades
(Lambert 2007), some species relocated centuries ago and
have now become ancient introductions whose origins are
largely unknown (Lambert 2001; Pineda et al. 2011). While
introductions are frequent in ascidians, only few species (e.g.,
Didemnum vexillum) have become invasive (Bullard et al.
2007; Lambert 2009; Stefaniak et al. 2012). Invasive ascidians
are the focus of considerable research due to their threat and
disruptive potential towards native communities and overall
biodiversity (Lambert 2002, 2009). However, before becom-
ing invasive, introduced species may reside in a given location
for decades or centuries, until favorable shifts in local con-
ditions trigger their spread and colonization of new habitats
(Blackburn et al. 2011).
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The study of ascidian introductions has increased in
recent years and focused on acquiring the necessary knowl-
edge to develop appropriate management plans that limit
species introductions and their spread from current bound-
aries (McDonald 2004; Locke 2009; Lejeusne et al. 2011).
Studies have targeted a wide range of subjects, including
phylogeography and population genetics (Lopez-Legentil et
al. 2006a; Rius et al. 2008; Pineda et al. 2011), reproductive
biology (Bourque et al. 2007; Shenkar and Loya 2008; Rius
et al. 2009; Wong et al. 2011), and larval development and
sensitivity (Vazquez and Young 1996; Vazquez and Young
2000; Thiyagarajan and Qian 2003; Bellas 2005; Bellas et
al. 2001; Bennett and Marshall 2005; Rius et al. 2010;
Pineda et al. 2012a). However, most ascidians do not form
independent entities, instead establishing symbiotic associ-
ations with diverse microorganisms (termed holobionts), as
has been observed in other marine invertebrates. The eco-
logical implications of these microbial symbionts are not
well characterized in ascidians, but may contribute to sec-
ondary metabolite production (Schmidt et al. 2005) and
enhance host metabolism, as occurs in other invertebrate
hosts (Mouchka et al. 2010; Webster and Taylor 2012).

In contrast to sponges and corals, microbial associates in
ascidians are under-studied, although research in this field is
increasing rapidly. These symbiotic microbes are commonly
reported in the polysaccharide envelope (tunic) of the ascid-
ian body, a region that surrounds the zooids and is separated
from the filtration apparatus (branchial sac) and digestive
system where prey microbes are captured and consumed. By
far, the most frequently reported and stable association
known is between ascidians from the family Didemnidae
and the unicellular cyanobacteria Prochloron (Prochlorales)
(Carpenter and Foster 2002; Hirose et al. 2004; Hirose and
Maruyama 2004; Hirose et al. 2009; Lewin 1978;
Miinchhoff et al. 2007; Stam et al. 1985; Yokobori et al.
2006). While other bacteria have been reported in ascidians,
only a few of these associations have been characterized
using molecular approaches (Martinez-Garcia et al. 2007,
2010, 2011; Tait et al. 2007; Miinchhoff et al. 2007; Lopez-
Legentil et al. 2011; Erwin et al. 2011; Behrendt et al. 2012).
Based on these studies, the most abundant bacterial sym-
bionts in ascidians are affiliated with Proteobacteria, in
particular Alpha- and Gammaproteobacteria (Tait et al.
2007; Martinez-Garcia et al. 2007; Erwin et al. 2011). In
addition, Archaea (Crenarchaeota) were recently reported
for the first time in an ascidian host and shown to be
involved in nitrification (Martinez-Garcia et al. 2008).
Thus, ascidian-associated microorganisms may also play a
critical role in the metabolic needs of their host in a given
habitat.

Microbial symbionts associated with marine inverte-
brates have also been implicated in the production of bioac-
tive secondary metabolites that exhibit pharmaceutical
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properties and have potential biotechnological applications
(Schmidt et al. 2005; Bontemps et al. 2010; Erwin et al.
2010). As sessile invertebrates, ascidians are easy prey for
predators and are under constant competitive pressure for
space, food and light. Consequently, most species have
developed a range of mechanisms that include physical
(e.g., tunic toughness, camouflage strategies) and chemical
defenses (e.g., secondary metabolites) to ensure survival
(Pisut and Pawlik 2002; Tarjuelo et al. 2002; Lopez-
Legentil et al. 2006b). Recent studies have shown that the
animal does not always produce these defensive metabolites
and that associated microorganisms can contribute to their
synthesis (Schmidt et al. 2005). Such active participation in
secondary metabolite production by microbial associates may
enhance the chemical defenses of host ascidians, as well as aid
in the processing of detrimental substances or the innocuous
bioaccumulation of heavy metals. For introduced ascidians,
these additional capabilities may provide the host with a
competitive edge over native species. However, no study has
investigated the microbial diversity in an introduced ascidian,
a critical first step in characterizing the relative importance of
microbial symbionts in the ecology and long-term establish-
ment of host ascidians in new habitats.

Styela plicata (Lesueur, 1823) is a solitary, oviparous
ascidian commonly introduced in harbors and marinas of
warm and temperate oceans across the world. In fact, S.
plicata has been present in all studied oceans for such a
long time that recurrent colonization events and shuffling
among populations have blurred the genetic signal needed to
determine the origin of this species (Pineda et al. 2011). The
successful introduction of S. plicata to new regions has been
attributed to the capacity of this species to physiologically
adapt to widely fluctuating environments, particularly to
changes in temperature and salinity (Sims 1984;
Thiyagarajan and Qian 2003; Pineda et al. 2012b). S. plicata
can also tolerate highly polluted waters (Naranjo et al. 1996)
and grows rapidly until reaching sexual maturity (Sabbadin
1957; Yamaguchi 1975; Sciscioli et al. 1978). The high
genetic variability reported in S. plicata may also enable
the species to rapidly adapt to new environments (Barros et
al. 2009; Pineda et al. 2011). In addition, S. plicata or its
associated microbes produce bioactive secondary metabo-
lites, namely the modified octopeptide plicatamide in the
hemocytes (Tincu et al. 2000; Tincu et al. 2003), which may
contribute to anti-predatory defenses as organic extracts of
the gonad deterred consumption by the Caribbean bluechead
wrasse (Pisut and Pawlik 2002). These same features may
also contribute to the invasive potential of the species al-
though to date its distribution is still mostly restricted to
artificial substrata (Pineda 2012, but see Valero-Jiménez et
al. 2012).

In this study, we investigated bacterial community struc-
ture in 3 individuals of Styela plicata from the Western
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Mediterranean using 16S rRNA gene tag pyrosequencing and
electron microscopy to provide the first characterization of
bacteria associated with an introduced ascidian. We incorpo-
rated statistical analyses of the diversity, abundance and host-
specificity of associated bacteria. In addition, the structure and
composition of bacterial associates were assessed and com-
pared to known environmental and host-associated microbes
to examine the potential contribution of symbiotic microbes to
the ecology and invasive potential of S. plicata.

2 Material and methods
2.1 Sample collection

Four individuals of the solitary ascidian Styela plicata
(Tunicata; Stolidobranchia; Styelidae) were collected in the
harbor of Vilanova i la Geltrti, Spain (41° 12’ 53" N, 1° 44’
11" E) by pulling up ropes (Fig. 1). Immediately after
collection, each animal was carefully dissected. From one
individual, we cut 2 mm? pieces from the gonad and inner
tunic (polysaccharide envelope) and fixed them separately
in 2.5 % glutaraldehyde 2 % paraformaldehyde using fil-
tered seawater as buffer for transmission electron microsco-
py (TEM). Samples were incubated in the fixative overnight
at 4 °C, washed several times in filtered seawater and stored
at 4 °C until processed. Gonad sections were examined to
assess potential vertical transmission (i.e., parent-to-
offspring passage) of bacterial symbionts, which if present
would occur during gamete development within the gonads,
since S. plicata is an oviparous species that releases sperm
and eggs for external fertilization and larval development

Fig. 1 The introduced ascidian Styela plicata in the harbor of Vilanova
i la Geltru, NE Spain

(Sciscioli et al. 1978; Pineda et al. in press). From the
remaining three specimens (individuals SP1, SP2 and
SP3), a 4 mm? piece of the inner tunic (i.e., not in contact
with ambient seawater) was carefully dissected with a sterile
scalpel to avoid including epibionts or water-borne bacteria,
washed several times with filtered seawater, and stored in
100 % ethanol until the DNA was extracted.

2.2 Identification and phylogeny of host ascidians

Morphological identifications of S. plicata samples were
complemented with phylogenetic analyses of ascidian 18S
rRNA gene sequences, recovered from the eukaryotic data
component following sequence sorting by Metaxa (see be-
low). Sequences were processed with Geneious v5.6.3
(Drummond et al. 2012) and aligned using Clustal X
(Thompson et al. 1997). To build phylogenetic trees, addi-
tional sequences were retrieved from GenBank (see acces-
sion numbers and codes in Fig. 2). Neighbor-joining (NJ)
and maximum likelihood (ML) analyses were conducted in
MEGA v5.05 (Tamura et al. 2011) considering gaps as full
deletions. For NJ analyses, the Jukes-Cantor model of nu-
cleotide substitution was used and data were re-sampled
using 10,000 bootstrap replicates (Felsenstein 1985). The
ML tree was built based on the GTR+I+G (Tavaré¢ 1986)
model with substitution rates varying among sites according
to an invariant and gamma distribution and re-sampled
using 1,000 bootstrap replicates. Bayesian phylogenetic
analyses (BI) to calculate the posterior probabilities of
branch nodes were conducted with MrBayes 3.1.2
(Ronquist and Huelsenbeck 2003), as implemented in
Geneious using the GTR+I+G likelihood model. Monte
Carlo Markov Chain length was set to 3 million generations
with sampling every 500th generation and a burn-in value of
1,500. The average standard deviation of split frequencies
reached values of less than 0.01 after 1,492,000 generations.

2.3 Transmission electron microscopy

To construct resin blocks, samples were dehydrated in a
graded ethanol series and embedded in Spurr’s resin at room
temperature. Semi-thin (5 wm) and ultrathin sections (ca.
60 nm) were cut with a Reichert Ultracut microtome.
Ultrathin sections were stained with uranyl acetate and lead
citrate for ultrastructural observation (Reynolds 1963). TEM
observations were conducted on a JEOL JEM-1010 (Tokyo,
Japan) electron microscope coupled with a Bioscan 972 cam-
era (Gatan, Germany). Resin blocks, ultrathin sections and
TEM observations were performed at the Microscopy Unit of
the Scientific and Technical Services of the University of
Barcelona. For both gonad and inner tunic samples, twenty-
five squares of the ultrathin sections (96 umx96 um each)
were carefully scanned for microbial cells.
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Fig. 2 Phylogeny of partial Support Values Styela montereyensis L12443
18S rRNA gene sequences from Clade NJ ME ML PP Styela plicata (SP1)
ascidians in the family .

Styelidae. Sequences obtained (1 93 93 94 098 Styela plicata (SP3)

in this study are highlighted @ 9 9 96 1 (1| Styela gibbsii AY903923
(bold lettering) and include ® 73 73 70 0.78 Styela plicata M97577
sample name and code (in . @ 94 94 92 077 Styela plicata (SP2)
parenthesis). Labels on terminal ® 88 87 87 0.91

nodes of reference sequences ‘ Styela clava L12442

indicate the ascidian species ® -~ - - 055 Styela plicata L12444

and GenBank accession Cnemidocarpa clara AJ250775

numbers. Tree topology was
obtained from neighbor-joining
(NJ) analysis. Individual boot-
strap values from NJ and maxi-
mum likelihood (ML) analyses
and posterior probabilities
derived from Bayesian infer-
ence (PP) are located on the
upper-left of the figure,
corresponding to circled numb-
ers on tree nodes. Scale bar
represents 0.005 substitutions
per site

@
Cnemidocarpa finmarkiensis L12413

o Botryllus schlosseri FM244858
@ Botrylloides violacea AY903927

] _| Botryllus planus DQ346653
(5),Symplegma reptans AF165826
Symplegma viride DQ346655
Polycarpa mytiligera FM244860

Dendrodoa aggregata AJ250774

® ) Dendrodoa grossularia L12416
L Polycarpa pomaria L12441

Metandrocarpa taylori AY903922

Polycarpa papillata DQ346654
Polyandrocarpa misakiensis AF165825

0.005

2.4 DNA extraction and amplification

DNA extractions were performed using the Power Plant®
DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA) and
a fragment of the 16S rRNA gene amplified with the primer
set pyro926F (5'-AAA CTY AAA KGA ATT GRC GG-3')
and pyro1392R (5-ACG GGC GGT GTG RC-3) comple-
mented with adaptors B and A, respectively (Roche, Basel,
Switzerland). Multiplex identifier (MID) barcodes unique to
each sample were attached to the reverse primer. Total reaction
volume was 50 pl, including 10 pL of 5xBuffer (containing
5 mM dNTPs and 15 mM MgCl,), 0.4 uL of BSA (10 mg/
ml), 0.25 puL (1.25 units) of My Tag DNA Polymerase
(Bioline®, London, United Kingdom), 0.2 uL of each primer
(100 uM), ca. 10 ng of template DNA and sterile Milli-Q
water. PCR conditions were as follows: 1 cycle at 95 °C for
1 min; 35 cycles at 95 °C for 30 s, 60 °C for 30 s, and 72 °C for
45 s, and a final elongation at 72 °C for 10 min. PCR products
were visualized on 1 % agarose gels to assess amplification
specificity and initial product quantity.

2.5 Pyrosequencing and data analysis
PCR products were sent to Macrogen, Inc. (South Korea)
for purification, amplicon library construction and massive-

ly parallel 16S rRNA gene tag pyrosequencing using the
Roche 454 GS-FLX Titanium system. Pyrosequencing data
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Phallusia nigra FM244845

were deposited as flowgrams (sff file) in the Sequence Read
Archive (SRA) of the National Center for Biotechnology
Information (NCBI) under the accession number
SRA056317. Sequence data from three S. plicata individu-
als presented herein (SP1 barcode = CGTGT, SP2 barcode =
CTAGT, SP3 barcode = CTGAC) represent a portion of the
multiplexed pyrosequencing run (1/16th plate). Raw se-
quence data were processed with stringent filtering and
screening criteria to minimize the occurrence of spurious
sequences and overestimation of microbial diversity (Huse
et al. 2010; Schloss et al. 2011), using the mothur software
package (Schloss et al. 2009). Sequences were reverse com-
plemented and adaptor, MID and primer sequences were
removed. Initial de-noising and quality filtering removed
sequences that contained ambiguous base calls, long homo-
polymers (> 8 bp), barcode mismatches (> 1 bp), or primer
mismatches (> 2 bp). Further, short sequences (<200 bp)
and low quality reads (average quality scores less than
35 over 50 bp windows) were discarded. The remaining
high-quality dataset was screened for non-target sequen-
ces (e.g. cukaryotic 18S rRNA, mitochondria, chloro-
plast) using Metaxa v1.1 (Bengtsson et al. 2011) to
obtain a pool per individual containing only archaeal
and bacterial 16S rRNA gene sequences. These sequen-
ces were aligned to the GreenGenes database and
trimmed to an overlapping alignment space (449 bp).
Putatively chimeric sequences were identified with self-
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reference searching using UChime (Edgar et al. 2011) in
mothur and removed from the data set.

High quality sequences from all three S. plicata individ-
uals (n=791) were assigned to taxonomic groups using a
naive Bayesian classifier and bootstrap algorithm for confi-
dence scoring (Wang et al. 2007), as implemented in mothur
(kmer size = 8§, iters = 100, cutoff = 60) using the improved
GreenGenes taxonomy template (McDonald et al. 2012).
Sequences were grouped into operational taxonomic units
(OTUs) based on 97 % sequence similarity and mothur’s
average neighbor algorithm. The taxonomic assignment of
each OTU was constructed by majority consensus (Schloss
et al. 2011). Sampling coverage and expected total OTU
diversity were calculated using Good’s estimator (Good
1953) and the Chaol estimator (Chao 1984).

OTU-independent assessments of genetic diversity and
differentiation among the bacterial communities in replicate
S. plicata hosts were conducted using nonparametric tests of
homogeneity of variance (HOMOVA) and analysis of mo-
lecular variance (AMOVA; Stewart and Excoffier 1996). In
addition, approximate maximum-likelihood trees were con-
structed in FastTree v2 (Price et al. 2010) and used to assess
the distribution of unique lineages and differences in phylo-
genetic structure of bacterial communities among host indi-
viduals, using lineage-sorting (phylogenetic, or P) tests
(Martin 2002) and the unweighted UNIFRAC algorithm
(Lozupone et al. 2007). OTU-independent statistical

Fig. 3 Transmission electron
microscopy images of bacteria
observed in the inner tunic of
the solitary ascidian Styela
plicata. a Bacterial cell in the
tunic, b transverse section, ¢
longitudinal section of a
bacterium and, d ultrastructural
detail of its mid-region showing
a bacterial wall (w), cytoplas-
matic membrane (m) and
riboplasm (rb)

analyses were conducted as implemented in the mothur
software package.

3 Results
3.1 Host identification and phylogeny

Partial 18S rRNA gene sequences (430 to 434 bp) obtained
for the three pyrosequenced individuals of S. plicata (SP1,
SP2 and SP3) were identical. The topologies of the ML, NJ
and BI trees were congruent so only the phylogeny obtained
with NJ is depicted (Fig. 2). All species of Styela (S. mon-
tereyensis, S. plicata, S. gibbsii and S. clava) formed a
monophyletic and well-supported clade (>93 support in all
cases). In fact, all Styela sequences were identical. Two
species in the genus Cnemidocarpa formed the most closely
related, sister group to the Styela clade (Fig. 2).

3.2 Bacterial ultrastructure

TEM examination revealed that bacterial cells were random-
ly distributed and extremely rare in the inner tunic of Styela
plicata, averaging ca. 35 cells per mm?. All bacterial mor-
photypes were ovoid to rod-shaped cells (ca. 0.2 pmxca.
1 wm) always observed in complete isolation and never
forming groups or aggregations (Fig. 3a and b). No bacteria
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were observed interacting with animal cells. The cytoplas-
mic membrane of bacterial cells appeared to be enclosed by
a thin wall and encased riboplasm and nucleoplasm, without
a distinct central nucleoplasmic area (Fig. 3d). Peripheral
cell regions were rugose, typical of Gram-negative bacteria,
but granulated, thus outer membranes were indistinct. No
bacterial cells were observed in gonad sections.

3.3 Bacterial diversity, structure and host-specificity

The microbiota associated with S. plicata exhibited high
diversity, comprised of 284 microbial OTUs (97 % sequence
identity). Bacterial OTUs dominated the recovered microbi-
al community, accounting for nearly all OTUs (99.3 %, n=
282), and corresponded to 12 described bacterial phyla and
3 candidate bacterial phyla (Fig. 4). The domain Archaea
was represented by only 2 OTUs, each comprised of a single
sequence tag (i.e., singleton OTUs) and corresponded to
Crenarchaeota (Nitrosopumilus and an unidentified lineage,
pMC2A209). High sampling coverage estimates (77.1 %)
indicated that the recovered OTUs account for the majority
of microbial diversity in S. plicata-associated communities.
However, total richness estimates (Chaol) predicted over
twice the number of OTUs than represented in our samples
(n=654, confidence interval=527—-848), due to a high prev-
alence of singleton OTUs (63.7 % of OTUs, n=181). In fact,
rare OTUs (<1 % relative abundance) accounted for the vast
majority of microbial OTUs (93.6 %, n=264) with only 5
OTUs having greater than 3 % relative abundance.
Comparison of the microbial communities associated
with replicate S. plicata individuals revealed similar bacte-
rial composition at the phylum level among hosts. Seven

1007 Bunclassified
B0ther
80 1 OVerrucomicrobia
v @SBR1093
E B entisphaerae
"05 B0 OChloroflexi
g‘., B Acidobacteria
‘E 40 BFirmicutes
g -8 B Actinobacteria
& - DCyanobacteria
201 -p OPlanctomycetes
- - DOBacteroidetes
o4 BProtecbacteria

Styela plicata  Styela plicata  Styela plicata
(sP1) (sP2) (sP3)

Fig. 4 Phylum level microbial composition (97 % OTUs) in three
individuals of Styela plicata. Proteobacteria OTUs are further divided
into classes: Alpha- (), Beta- (3), Gamma- (y) and Delta- (d) and
unclassified (uncl.) Proteobacteria. Other = phyla represented by less
than 3 sequence tags (Cladithrix, Crenarchaeota, GN04, OP3,
Tenericutes)
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dominant phyla were recovered in all S. plicata individuals
and accounted for over 89 % of microbial OTUs per
host (Fig. 4). Proteobacteria was the most dominant
phylum, accounting for 25.4-50.0 % of OTUs per indi-
vidual, and consisted primarily of taxa affiliated with
Alphaproteobacteria and Gammaproteobacteria, recov-
ered from all host individuals. Deltaproteobacteria and
Betaproteobacteria sequences were less common and only
recovered in 2 of 3 host individuals. Bacteroidetes was the
second most common phylum (19.5-32.7 % of OTUs per
host) and included numerous OTUs from the classes
Bacteroidia (n=5), Flavobacteria (n=30) and
Sphingobacteria (n=33). Planctomycetes represented the
third most common microbial phylum (9.8-12.8 % of
OTUs per host) and encompassed the nominal classes
Phycisphaerae (n=2) and Planctomycea (n=19) and the
candidate classes: agg27 (n=7), FFCH393 (n=1), PW285
(n=1), and vadinHA49 (n=1). Sequences affiliated with the
phyla Cyanobacteria, Actinobacteria, Firmicutes and
Chloroflexi were also present in all S. plicata individuals,
but exhibited lower OTU diversity (each accounting for <8 %
of OTUs per host).

Despite the broad, phylum-level similarity in microbial
communities among S. plicata hosts, most microbial OTUs
were present in only a single host individual. Accordingly,
OTU-independent statistics revealed significant differences
in symbiont structure among the three S. plicata hosts,
including genetic diversity, genetic differentiation, phyloge-
netic lineage distribution and community structure
(Table 1). The core symbiont community of S. plicata (i.e.,
OTUs shared by all host individuals) was comprised of 16
OTUs (Fig. 5). Core OTUs accounted for less than 6 % of
all OTUs but were disproportionately abundant, represent-
ing 22.0-38.5 % of all bacterial sequence tags. An addition-
al 42 OTUs were shared between 2 of the 3 individuals,
while the majority of OTUs (79.6 %, n=226) were recov-
ered in a single S. plicata individual (Fig. 5), often repre-
senting singleton OTUs (80.1 %, n=181). To assess whether
the prevalence of singleton OTUs (63.7 % of all OTUs) was
driving the differentiation of bacterial communities among
hosts, the genetic and phylogenetic metrics were repeated
with singleton OTUs removed from the dataset. Significant
differences among hosts were retained for all metrics, with
identical results for all pairwise comparisons except for two
individuals (SP1 and SP3; Table 1).

Additional analysis of core OTUs revealed high similar-
ity of S. plicata-associated bacteria sequences to known
environmental and invertebrate-associated microbes (>
99 % sequence identity, Table 2). Most of the 16 core
OTUs matched to seawater (n=5) or sediment-derived (n=
5) bacteria, including the widespread genera Bacillus and
Prochlorococcus, while the remaining core OTUs matched
to host-associated bacteria from sponges (n=2), corals (n=2),
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Table 1 Statistical comparisons
of the genetic diversity and Test Dataset Statistic All SP1-Sp2 SP1-SP3 SP2-SP3
phylogenetic structure of
bacterial communities in three HOMOVA Full B 1.746 1.726 0.653 0.010
individuals of Styela plicata P-value ok ok *ok 0.674
(SP1, 8P2 and SP3) No Singletons B 0.929 0.925 0.174 0.066
P-value * * 0.099 0.171
AMOVA Full Fs 8.337 14.421 5.959 2.561
P'Value ek ek sk *
No Singletons Fs 9.196 14.713 6.740 3.988
P'Value sk sk sk sk
P-test Full Score 155 92 45 64
P'Value ks ks ks sksk
No Singletons Score 108 64 34 45
P—Value ko ks ks Kk
UNIFRAC Full uw 0.664 0.740 0.683 0.728
P-value ** ** * 0.164
No Singletons uw 0.430 0.523 0.501 0.556
P-value ** ** 0.067 0.462

*P<0.05, **P<0.01

algae (n=1) and other ascidians (n=1). Notably, the second
most abundant core OTU was affiliated with a strictly anaer-
obic lineage of Chloroflexi (Anaerolineae).

4 Discussion

This study represents the first investigation of bacteria as-
sociated with a widespread introduced ascidian. We

SP3

SP2 SP1

Fig. 5 Specificity of microbial OTUs in three individuals of Styela
plicata (SP1, SP2 and SP3). Pie charts depict the percentage of total
sequence tags by host and numbers denote total 97 % OTUs. Black
partitions show the core microbial OTUs present in all host individuals.
Gray, light gray and barred portions represent OTUs shared between
two host individuals. White portions depict OTUs present in a single
host individual

examined three individuals of Styela plicata and confirmed
their identification and phylogenetic placement by 18S
rRNA gene sequence analysis. A combined approach of
electron microscopy and pyrosequencing of 16S rRNA gene
tags revealed a low abundance yet high diversity of bacteria
residing inside this introduced ascidian, consisting of 284
OTUs from 16 microbial phyla. The comparison of three S.
plicata individuals revealed conserved microbial composi-
tion across hosts at a broad taxonomic level but OTU-level
comparisons showed that only a small fraction of microbial
OTUs were present in all hosts. Accordingly, statistical
analyses confirmed significant differences in the genetic
diversity, genetic differentiation and community structure
of bacteria among the three host individuals. These results
suggest that a wide range of bacteria can establish associa-
tions with S. plicata and that these communities are highly
variable among individual hosts in the same population.
The phylogenetic signature of bacterial communities as-
sociated with S. plicata was conserved at the phylum level
across individual hosts and consistent with previous studies
of ascidian-associated bacteria. The dominant bacterial taxa
in the ascidians Botryllus schlosseri, B. violaceus and
Didemnum sp. from the Western Atlantic (Tait et al. 2007),
Cystodytes dellechiajei from the Mediterranean (Martinez-
Garcia et al. 2007) and Didemnum sp. from the Gulf of
Mexico (Erwin et al. 2011) were Alphaproteobacteria,
Gammaproteobacteria and Bacteroidetes which were also
prevalent in the microbiota of S. plicata herein. Additional
bacterial phyla present in S. plicata and observed in other
ascidians, though less common, were Firmicutes (Moss et
al. 2003; Tait et al. 2007; Erwin et al. 2011) and
Planctomycetes (Tait et al. 2007; Erwin et al. 2011), the
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Table 2 Relative abundance, closest BLASTn match and taxonomic classification of core bacterial symbiont OTUs in Styela plicata

OTU Abundance (%) BLASTn Sequence Lowest taxonomic
Label SP1 SP2 SP3 Acc. No. Identity (%) Source Phylum Classification

023 6.1 4.2 33 EU236425 99.2 Sponge Proteobacteria C. Alphaproteobacteria
012 39 39 8.8 EU335078 99.6 Sponge Chloroflexi C. Anaerolineae

279 5.5 2.7 2.2 AY 654766 100 Seawater Bacteroidetes F. Flavobacteriaceae
259 39 1.7 2.2 HQ270239 100* Seawater Proteobacteria F. Rhodobacteraceae
249 0.6 2.5 1.1 EF207106 100 Coral Bacteroidetes F. Flavobacteriaceae
224 1.7 1.2 44 HM474863 100 Algae Proteobacteria F. Rhodobacteraceae
071 1.1 0.8 44 HES800810 100* Seawater Firmicutes G. Bacillus

253 1.1 1.3 1.1 DQ416621 100 Sediment Bacteroidetes F. Flavobacteriaceae
225 1.1 1.0 1.1 JQ579799 99.6 Sediment Bacteroidetes F. Rhodothermaceae
251 0.6 1.0 1.1 HQ191067 100 Sediment Proteobacteria F. Chromatiaceae

264 1.7 0.6 1.1 JQ807219 100* Sediment Proteobacteria F. Rhodobacteraceae
257 1.1 0.4 2.2 FJ638616 100 Ascidian Proteobacteria F. Rhodobacteraceae
007 0.6 0.2 2.2 JQ347330 99.6 Coral Cyanobacteria F. Pseudanabaenaceae
194 1.1 0.2 1.1 GU170740 100* Seawater Cyanobacteria G. Prochlorococcus
151 0.6 0.2 1.1 EU290161 99.2 Seawater Bacteroidetes F. Flavobacteriaceae
269 0.6 0.2 1.1 DQ256654 100 Sediment Proteobacteria F. Rhodobacteraceae

C class, F family, G genus
*= 100 additional BLASTn matches with 100 % sequence identity

latter of which was particularly abundant and diverse in S.
plicata.

In addition to the presence of common ascidian-
associated bacterial phyla, S. plicata also hosted bacterial
phyla previously reported as rare or absent from the ascidian
microbiota. To date, only one published study has utilized
pyrosequencing technology to examine the bacteria associ-
ated with an ascidian, focusing on the internal and surface
microbes associated with the didemnid Lissoclinum patella
(Behrendt et al. 2012). Sequences affiliated with
Actinobacteria were characterized as rare (0.08-0.29 % of
the total community) in the cloacal cavity of the ascidian
host, while Chloroflexi were only found on the underside of
L. patella colonies (Behrendt et al. 2012). In S. plicata,
Actinobacteria and Chloroflexi were both common taxa in
the bacterial communities inhabiting the inner tunic of all
three S. plicata hosts. The former phylum is of considerable
interest, due to the diverse array of bioactive secondary
metabolites produced by this bacterial group (Bull and
Stach 2007), while the latter is a common component of
the sponge microbiota (Schmitt et al. 2011). Less common
taxa in S. plicata hosts (present in 1 or 2 individuals) but
new to the ascidian microbiota included Acidobacteria,
Tenericutes and several candidate phyla (SBR1093, GN04,
OP3). The sampling depth afforded by pyrosequencing
allows for greater coverage and fuller characterization of
complex microbial communities (e.g., Webster et al.
2010), including unprecedented access to extremely rare
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community members (i.e., the rare biosphere; Sogin et al.
2006). The ecological significance of microbes in the rare
biosphere remains uncertain (Pedrds-Alio 2012), although
recent experimental evidence suggests that rare microbial
taxa can drive important biogeochemical processes (e.g.,
sulfate reduction) despite their low abundance in environ-
mental assemblages (Pester et al. 2010), and may increase in
abundance in response to specific environmental conditions
(Sjostedt et al. 2012). Similar mechanisms for ecologically
relevant contributions by rare taxa may exist in host-
associated microbial communities and may be of particular
importance for widespread host species like S. plicata that
thrive in diverse marine environments. Further applications
of next-generation sequencing technology to the ascidian
microbiota will continue to expand our knowledge of the
diverse and so far poorly understood bacterial communities
inhabiting ascidian hosts.

The identification and study of core microbial symbionts
are of particular interest due to the ecological relevance and
potential functionality of microbial taxa that consistently
occur in specific habitats (Shade and Handelsman 2012).
The core symbiont communities of S. plicata identified
herein represented a mixed assemblage of environmental
and host-associated bacteria. While some core symbionts
were bacteria common in seawater and thus facultative
symbionts (e.g., genus Prochlorococcus), others represented
host-associated bacteria and putatively obligate symbionts,
such as a sponge-associated Chloroflexi. The presence of
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bacteria associated with specialized host habitats (e.g., ma-
rine sponges and corals) in S. plicata suggests that the tunic
microhabitat can support bacterial lineages adapted to host-
associated lifestyles. Whether host ascidians also benefit
from metabolic activities of these symbiont lineages, as
observed in sponge (Thacker and Freeman 2012; Fan et al.
2012) and coral (Mouchka et al. 2010) hosts, remains to be
resolved. In addition, the presence of a strictly anaerobic
lineage (Chloroflexi, Anaerolineae) in the core microbiota
of S. plicata provides evidence for anaerobic microhabitats
in the inner ascidian tunic that can support anaerobic me-
tabolism. Indeed, a previous study documented anaerobic
conditions in ascidian hosts (Diplosoma spp.) and predicted
the proliferation of anaerobic microbes and processes in
these microhabitats (Kiihl and Larkum 2002). More recent-
ly, anaerobic conditions were documented in the cloacal
cavity of Lissoclinum patella where resident microbial com-
munities included facultative and obligate anaerobic species
(Behrendt et al. 2012). Thus, host ascidians appear to have a
range of microhabitats with variable physical and chemical
conditions capable of hosting diverse bacterial taxa, includ-
ing aerobic and anaerobic microbes, as well as facultative
symbionts and those adapted to host-associated lifestyles.
Electron microscopy allowed for the visualization of the
bacteria in the inner tunic of S. plicata, restricted to a few
isolated, ovoid to rod-shaped cell morphotypes, and sug-
gested their absence in reproductive tissues. The abundance
of bacterial cells in the inner tunic of S. plicata was ex-
tremely low (35 cells per mm?) compared with microbial
communities in other invertebrate hosts, for example, the
sponge Haliclona caerulea (2x10° cells per mm?,
Maldonado 2007). Low symbiont densities have been pre-
viously reported in ascidians (e.g., Turon et al. 2005) and
may result from active host regulation of bacterial commu-
nities by phagocytic ‘harvesting’ of symbiont cells for nu-
tritional gains (e.g., Martinez-Garcia et al. 2007). While the
identification of microbial cells from electron microscopy is
problematic, the size and morphology of some bacterial
cells in S. plicata were consistent with a newly described
bacterium, Hasllibacter halocynthiae, isolated from the sol-
itary ascidian Halocynthia roretzi (Kim et al. 2012). Further,
a core symbiont OTU identified in S. plicata was identical to
Hallibacter halocynthiae, suggesting that this newly de-
scribed bacterium, which represents a new genus in the
family Rhodobacteraceae, may be widespread among soli-
tary stolidobranch ascidians. Future studies (e.g., fluores-
cence in situ hybridization analyses) are required to confirm
this finding and provide additional data on the abundance of
specific symbiont taxa. The absence of bacteria in the
gonads of S. plicata is a first indication that vertical trans-
mission (i.e., direct parent-to-offspring passage) of bacteria
is not a strategy employed by this species, although transfer
of bacterial symbionts to the progeny has often been

observed in colonial ascidian hosts (Hirose 2000; Groepler
and Schuett 2003; Moss et al. 2003; Hirose and Fukuda
2006; Martinez-Garcia et al. 2007; Tait et al. 2007; Kojima
and Hirose 2010, 2012). The acquisition of bacteria from the
environment (i.e., horizontal transmission) appears to be the
predominant means of establishing microbial communities
in S. plicata, a strategy that may allow for local sourcing of
bacterial symbionts across the broad geographic and envi-
ronmental range of this widespread ascidian. Future studies
that target S. plicata individuals from distant populations
and distinct environments are required to appropriately ad-
dress this hypothesis.

The primary objective of the current study was to charac-
terize the bacterial communities associated with the intro-
duced ascidian S. plicata, a critical first step in assessing the
potential for these symbiotic relationships to contribute to
their hosts’ successful establishment in new habitats. The
widespread distribution and prevalence of S. plicata popula-
tions in artificial marine habitats has prompted numerous
studies on the factors that enable this species to rapidly adapt
to new environmental conditions. Here, we show that diverse
bacterial communities inhabit S. plicata and hypothesized that
the functional capabilities underlying this diversity may con-
tribute to the high tolerance of the host. Further, high variabil-
ity among individuals and apparent horizontal transmission of
microbes suggest that dynamic bacterial communities inhabit
S. plicata and that this ascidian has the ability to establish new
(and potentially beneficial) symbiotic relationships sourced
from local environments with each host generation.
Additional study of the biological interactions between S.
plicata hosts and their associated bacterial communities is
now required to fully assess the ecological implications of
these associations and their contribution to host acclimation
and survival in new environments.
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