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Abstract Arthropods, particularly insects, form successful
long-term symbioses with endosymbiotic bacteria. The
associations between insects and endosymbionts are re-
markably stable; many stretch back several hundred million
years in evolutionary time. With the exception, perhaps, of
the filarial nematodes no other group of metazoans shows
such a proclivility for their intracellular symbionts. The
identification and classification of bacterial symbionts and
hosts has grown rapidly over the last two decades and these
relationships form a continuum from classical mutualism to
parasitism. Complete genomes have been sequenced for
many of these bacteria and some of their hosts. Now more
intractable questions regarding endosymbiosis are being
addressed. Investigations on the role of the host immune
system in the maintenance of symbiosis, the nature of
bacteriophages and transposable elements found in the
genomes of many bacterial symbionts, and the molecular
mechanisms involved in establishing reproductive pheno-

types such as parthenogenesis, male killing, cytoplasmic
incompatibility and feminization have been recently
reported. This review will focus on the impact of the
secondary endosymbionts Wolbachia, Cardinium, and
Spiroplasma on host fitness and immunity and will revisit
the question of whether these bacteria are friend or foe from
an insect’s point of view.
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1 Introduction

Insects are the most speciose animal group known. They
inhabit many of the earth’s environments in overwhelming
numbers and their success in part is attributed to a genetic
repertoire that permits them to rapidly adapt to changing
environments. These may occur as the result of natural
processes such as changing climates, or as a result of
human interventions such as the development of a wide
range of man-made molecules that initially cause substan-
tial morbidity and mortality in numerous insect species. The
relatively recent discovery of a wide array of endosymbiotic
microbes in insects has revealed an expanded genetic
repertoire that may account for additional mechanisms
contributing to their success. The ability to utilize nutrient
deficient food sources, counter parasite infection, and rapidly
develop new species may result from this interaction.

Insects make good hosts for intracellular prokaryotic
organisms. Arthropods are more frequently exploited by
endosymbiotic bacteria than all other animal phyla and both
deleterious and beneficial associations have been widely
reported. For this reason insects provide a profitable field
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for the discovery of new symbiotic relationships and they
have proven to be excellent model systems for investigating
host-symbiont interactions. Bacterial symbionts are important
promoters of insect diversity and speciation (Bordenstein
2003; Hurst et al. 2003b; Moran et al. 2005). They alter a
variety of host cellular functions, including signal transduc-
tion (Ikeya et al. 2009), cell cycle progression (Tram et al.
2003), vesicular trafficking (Azzouna et al. 2004) and
programmed cell death (Bentley et al. 2007). These
responses have been reported in model systems involving
intracellular pathogens, leading to a clearer understanding of
the relationship between bacterium and host. However, many
fastidious obligate endosymbionts cannot be maintained in
culture and, therefore, the mechanisms by which they
manipulate their host cells are difficult to unravel. With the
availability of complete and partial genome sequences for a
growing number of bacterial endosymbionts (Akman et al.
2002; Foster et al. 2005; Gil et al. 2003; Gomez-Valero et al.
2007; McLeod et al. 2004; Shigenobu et al. 2000; van Ham
et al. 2003; Wu et al. 2004) postgenomic approaches are
being used to characterize obligate host-endosymbiont
interactions (Brennan et al. 2008; Delmotte et al. 2006;
Moran 2007; Xi et al. 2008).

In this paper we review recent advances involving
insects and the secondary endosymbionts, Wolbachia,
Cardinium, and Spiroplasma. These symbiotic bacteria are
obligate residents of insect cells and are maternally
inherited, but are not nutritionally essential for their hosts,
nor are they restricted to specialized host cells called
bacteriocytes. Although these bacterial endosymbionts most
certainly do not exhaust the list of secondary symbionts
identified in the current literature (Hypsa and Novakova
2009), they were chosen because they represent three
separate prokaryotic lineages, α-Proteobacteria, Bacterio-
detes and Mollicutes, respectively. In this review, common
characteristics of their lifestyles will be emphasized to
elucidate cellular mechanisms supporting stable symbioses.
Systems that can be exploited to control insect hosts and
enhance bacterial survival will be discussed.

2 Secondary endosymbionts of three bacterial lineages

2.1 Wolbachia pipientis

Wolbachia appear as small rods or spheres ranging in size
from 0.2 to 1.5 μm (Louis and Nigro 1989; O’Neill et al.
1997a; Popov et al. 1998; Trpis et al. 1981; Wright et al.
1978). They occur in all tissue types examined including
larval salivary glands, imaginal discs and fat body (Clark et
al. 2005), but are more prevalent in ovaries and testes of
infected hosts (Clark and Karr 2002). Wolbachia are
maternally inherited cytoplasmic particles which utilize

host microtubules to localize to the anterior of the
developing oocyte during oogenesis (Ferree et al. 2005b).

Wolbachia are α-Proteobacteria classified within the
order Rickettsiaceae, family Anaplasmataceae, and closely
related to the intracellular pathogens Ehrlichia, Anaplasma
and Neorickettsia (Dumler et al. 2001; Rudakov et al.
2003). The genus Wolbachia has been divided into eight
(Lo et al. 2007) and more recently, nine (Ros et al. 2009)
major clades based on molecular phylogenies. According to
Lo et al. (2002) clades A and B include the majority of
insect Wolbachia; clades C and D Wolbachia infect filarial
nematodes only (Casiraghi et al. 2001; Lo et al. 2002);
clade E Wolbachia are found in the springtail Fulsomia
candida (Colembola) (Bandi et al. 1999; Lo et al. 2002;
Vandekerckhove et al. 1999), F Wolbachia are known from
two termite (Isoptera) species (Bandi et al. 1999); clade G
Wolbachia infect spiders, although its status as a clade has
been disputed (Baldo and Werren 2007); clade H Wolbachia
infect some arthropods and nematodes; K Wolbachia infect
spider mites species of the genus Bryobia (Ros et al. 2009).

The frequency of Wolbachia in insect species measured
by PCR screens seems to be about 20% (Kikuchi and
Fukatsu 2003; Nirgianaki et al. 2003; Werren and Windsor
2000; Werren et al. 1995), although this number may be an
underestimate (Hilgenboecker et al. 2008; Weinert et al.
2007). Consistent with this, the frequency of Wolbachia
infection in Drosophila melanogaster wild-type lines
maintained by the Bloomington Drosophila Stock Center
is 23.3% (Clark et al. 2005). Recently, 23% of 39 species of
bedbugs (Hemiptera:Cimicidae) from live and museum
specimens were found to be infected with Wolbachia
(Sakamoto et al. 2006). In the Acari the situation is similar;
a recent study of spider mites in Japan (Gotoh et al. 2003)
found that 17% of species were infected with Wolbachia
alone. However, infected populations frequently carry more
than one type of symbiont (Breeuwer and Jacobs 1996;
Perotti and Braig 2004). In a few cases, higher frequencies
have also been reported. Wolbachia was detected in all 25
populations of 19 species of sucking (Anopleura) and
chewing (Mallophaga) lice (Kyei-Poku et al. 2005). In
another study, when testing was limited to insect pest
species or insect species used as biocontrol agents, infection
was found in 46% of the 48 species tested (Floate et al.
2006).

The genomes of Wolbachia are 1.27 Mb in wMel from
D. melanogaster (Wu et al. 2004), 1.48 Mb in wPip from
Culex pipiens (Klasson et al. 2008) and 1.45 Mb in wRi
from D. simulans (Klasson et al. 2009b). All sequenced
Wolbachia genomes include a high number of mobile
elements and simple repetitive DNA sequences (Brownlie
and O’Neill 2006), show general plasticity and frequent
rearrangement, and loss of synteny between strains
(Klasson et al. 2008). A rather surprising recent discovery
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is the presence of Wolbachia sequences in some host
genomes. Horizontal gene transfer (HGT) from Wolbachia
to host DNA was first reported in the Adzuki bean beetle,
Callosobruchus chinensis (Fukatsu et al. 2003; Kondo et al.
2002) and then in Drosophila ananassae, D. sechellia, D.
simulans, the parsitoids Nasonia vitripennis, N. longicornis,
N. giraulti, and mosquitoes Culex pipiens (Hotopp et al.
2007), Aedes aegypti and Culex quinquefasciatus (Klasson
et al. 2009a). HGT has also been found in nematodes
Brugia malayi, Dirofilaria immitis (Hotopp et al. 2007) and
Onchocerca volvulus (Fenn et al. 2006). Transfer has also
possibly occurred in the opposite direction, from A. aegypti
to Wolbachia (Woolfit et al. 2009).

The ability of Wolbachia to manipulate the reproduction
and/or sex ratio of their host species contributes to the
prevalence of Wolbachia infections within all major insect
orders and marks them as reproductive parasites. Wolbachia
infections in insects and mites can lead to various
phenotypes depending on the strain of Wolbachia and the
genotype of the host. They induce cytoplasmic incompat-
ibility (CI), male-killing (Dyer and Jaenike 2005; Hurst et
al. 1999b; Ikeda 1970) feminization and parthenogenesis
(Stouthamer et al. 1999) in a wide range of host species. In
at least one insect, Asobara tabida (Hymenoptera, Braco-
nidae), Wolbachia have become obligate mutualists. A.
tabida, a parasitoid of Drosophila, is dependent on
Wolbachia to support oogenesis (Dedeine et al. 2005;
Dedeine et al. 2001). This insect is host to three separate
Wolbachia strains, only one of which is required for
oogenesis. The other two strains cause cytoplasmic incom-
patibility (Dedeine et al. 2004).

2.2 Cardinium hertigii

Cardinium (Flexibacteriaceae, Class Sphingobacteria, Phy-
lum Bacteroidetes) were first seen in cell cultures estab-
lished from the tick Ixodes scapularis (Kurtti et al. 1996).
These unusual bacteria were observed in electron micro-
graphs and in later studies their presence was confirmed by
PCR and phylogenetic analysis. Cardinium are transova-
rially transmitted gram negative pleiomorphic rods 1-2
microns long and approximately 0.5 microns wide. They
have a distinctive parallel array of hollow filaments
resembling microtubules that extend from the inner mem-
brane into the cytoplasm (Bigliardi et al. 2006; Nakamura
et al. 2009). The function of these structures is unknown.

Cardinium were originally named Encarsia (EB, Zchori-
Fein et al. 2001), and then, Cytophaga-like organisms
(CLO, Hunter et al. 2003), Cytophaga-Flavobacterium-
Bacteroides (CFB) (Weeks and Breeuwer 2003) and,
finally, Cardinium hertigii (Zchori-Fein and Perlman
2004; Zchori-Fein et al. 2004). Like Wolbachia, the true
incidence of infection with Cardinium remains to be

determined. Cardinium initially appeared to be limited to
Hymenoptera (Hunter et al. 2003; Matalon et al. 2007;
Weeks et al. 2003; Zchori-Fein et al. 2001; Zchori-Fein et
al. 2004), Hemiptera (Bigliardi et al. 2006; Weeks et al.
2003; Zchori-Fein and Perlman 2004), Acari (Enigl and
Schausberger 2007; Gotoh et al. 2007; Groot and Breeuwer
2006; Hoy and Jeyaprakash 2008; Weeks et al. 2001;
Weeks et al. 2003), and Areneae (Duron et al. 2008).
However, Nakamura et al (2009) found 27 of 57 species
(47.4%) of planthoppers, 9 of 22 species (40.9%) of spider
mites, and 4 of 25 species (16%) of the biting midges
Culicoides (Diptera: Ceratopogonidae) infected with Car-
dinium. One study found Cardinium less prevalent in
mites than Wolbachia (Zchori-Fein and Perlman 2004),
however, two recent reports found the opposite. Forty
percent of tested mite populations representing 58% of
mite species were infected in a study by Enigl and
Schausberger (2007) and Gotoh et al (2007) found
Cardinium in all five species of spider mites that were
tested. Both predatory (Weeks et al. 2003; Zchori-Fein and
Perlman 2004) and herbaceous mite species (Chigira and
Miura 2005; Groot and Breeuwer 2006; Weeks et al.
2003) can be infected. In many cases, Wolbachia and
Cardinium co-infect a single host species (Duron et al.
2008; Nakamura et al. 2009; Ros and Breeuwer 2009;
Weeks et al. 2003; Zchori-Fein and Perlman 2004). The
distribution of Cardinium may be broader than expected
since a closely related bacterium has been found in a plant
parasitic nematode and named “Candidatus Paeniccardinium
endonii” (Noel and Atibalentja 2006).

The Cardinium genome has not been sequenced and
since they have only recently come to our attention, little is
currently known about their metabolism, phylogenetic
diversity and distribution.

Cardinium, like Wolbachia, are reproductive parasites.
They cause CI in the spider mite, Estetramychus sugina-
mensis, (Gotoh et al. 2007), the red poultry mite,
Dermanyssus gallinae (De Luna et al. 2009) the parasitoid
wasp, Encarsia pergandiella (Hunter et al. 2003) and the
sexual spider mite, Bryobia sarothamni (Ros and Breeuwer
2009); parthenogenesis in scale insects (Provencher et al.
2005) and Encarsia hispida; and feminization in Brevipal-
pus phoenicis (Groot and Breeuwer 2006; Weeks et al.
2001). Although male-killing Cardinium have not been
reported, unnamed bacteria belonging to the Phylum
Bacteriodetes, Class Flavobacteria cause male-killing in
ladybird beetles, Coleomegilla maculata and Adonia
variegate (Hurst et al. 1999a; Hurst et al. 1996). An
increase in fecundity due to Cardinium has also been
reported (Weeks and Stouthamer 2004). The reproductive
phenotypes caused by infection with Cardinium are
surprisingly similar to those induced by Wolbachia. It will
be interesting to see if conserved mechanisms produce
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these similar outcomes in both Wolbachia and Cardinium
infection.

2.3 Spiroplasma spp.

Spiroplasmas are helical, motile Gram-positive bacteria
lacking a cell wall and are widely associated with plants and
insects. They can be transmitted to plant hosts by phloem-
feeding insects such as leafhoppers and psyllids (Hemiptera)
(reviewed in Ammar and Hogenhout 2006; Regassa and
Gasparich 2006). Spiroplasmas of insects are extracellular or
intracellular and range from mutualists to pathogens. Some
spiroplasmas are restricted to the insect gut and are non-
pathogenic. Other symbiotic forms cross the gut epithelial
barrier and are predominantly found in the hemolymph but
are also seen in ovaries, fat bodies, hypodermis and salivary
glands. Intracellular spiroplasmas are oval or flask-shaped
rather than helical, with the tip of the flask-like structure used
for orientation, adhesion to midgut cells, and invasion of
basal lamina and plant sieve tubes (Ammar and Hogenhout
2005). Some insect-infecting spiroplasmas are entomopath-
ogens. For example, Spiroplasma melliferum and S. apis are
pathogens of the honey bee. These bacteria move into the
hemolymph, where they multiply and kill the host.

The spiroplasmas belong to the Phylum Firmicutes and
Class Mollicutes. Three well-studied species, S. citri, S.
kunkelii, and S. phoeniceum are plant pathogens. Other
spiroplasmas have been isolated from predatory and herbiv-
orous insects (Anbutsu and Fukatsu 2003; De Luna et al.
2009; Duron et al. 2008; Fukatsu et al. 2001; Hurst et al.
1999c; Jiggins et al. 2000a; Mateos et al. 2006; Weinert
et al. 2007) including Drosophila spp. (Anbutsu and Fukatsu
2006; Haselkorn et al. 2009; Watts et al. 2009), ticks
(Brinton and Burgdorfer 1976; Tully et al. 1995), parasitic
dermanyssoid mites (De Luna et al. 2009; Reeves et al.
2006), the predatory mite Neoseiulus californicus, and a
herbivorous spider mite, Tetranychus urticae (Enigl and
Schausberger 2007). Spiroplasmas are currently divided into
four paraphyletic clades based on 16S rDNA phylogeny; the
Ixodetis clade, the Citri-Chrysopicola-Mirum clade, the Apis
sensu latu clade, and the Mycoides-Entomoplasmataceae
clade (Gasparich et al. 2004). Spiroplasmas within each
clade show diverse host range and broad geographical range.

Spiroplasma genomes are small, ranging in size from
760 to 2,220 kb, have a G+C content of 24 to 31%
(Gasparich et al. 2004) and contain several large plasmids
(Bai et al. 2004; Davis et al. 2005). Although they have a
reduced genome and lack genes for basic metabolic path-
ways, some have been cultured outside their host in
complex medium (Ammar and Hogenhout 2006).

S. poulsonii, discovered in the hemolymph of Drosoph-
ila willistoni in 1961 (Poulson and Sakaguchi 1961), are
parasites that kill male progeny. As a result, they were

given the name sex ratio organism, SRO. Male-killing
spiroplasmas are also found in several other Drosophila
species including D. hydei and D. nebulosa, in ladybird
beetles including Adalia bipunctata (Hurst et al. 1999c) and
Anisosticta novemdecimpunctata (Tinsley and Majerus
2006), and in butterflies including Danaus chrssippus
(Jiggins et al. 2000a). Other spriroplasmas, including those
infecting the pseudococcid, Antonina crawii, (Fukatsu and
Nikoh 2000) the pea aphid, Acyrthosiphon pisum, (Fukatsu
et al. 2001) and D. hydei (Kageyama et al. 2006) are not
male killers. Spiroplasmas injected into A. pisum decrease
several fitness parameters including growth, longevity and
number of offspring (Fukatsu et al. 2001), however, they
are not known to induce CI, parthenogenesis or feminiza-
tion in their insect hosts. Although spiroplasmas are found
in ticks and mosquitos these insects do not transmit them to
humans or other mammals.

3 Surviving in intracellular niches

3.1 Refuge within host membranes

Intracellular bacteria characteristically reside and replicate
within vacuoles of host origin (Bao et al. 1996; Finlay and
Falkow 1997; O’Neill et al. 1997b; Popov et al. 1998; Wolf
and Glatzel 1996). In electron micrographs of these
replicative vacuoles, endosymbionts are often seen as
pleiomorphic in size and shape, and single vacuoles
sometimes contain numerous bacteria. Little is known
about the origin of replicative vacuoles of insect endo-
symbionts. Host cholesterol stores of human macrophages
are used to form the vacuolar membrane supporting
replication and maintenance of the intracellular bacterium
Coxiella burnetii (Howe and Heinzen 2006). In contrast,
the lipid composition of the vacuolar membranes surround-
ing intracellular bacteria in insect hosts has not been
studied. In electron micrographs, Wolbachia are surrounded
by a triple-layered structure, the outer one derived from
host membranes (Bao et al. 1996; O’Neill et al. 1997a) and
associated with the endoplasmic reticulum (Wright and Barr
1980). Ultrastructural evidence suggests that these vacuoles
are replicative structures which support Wolbachia cell
division. In addition to its normal intracellular location,
however, Wolbachia also occur in high numbers in the
hemolymph of infected D. simulans and it is not known
whether host membrane surrounds the bacteria in this
acellular compartment. Mosquito cells (Aa23 cells) in vitro
can internalize Wolbachia from the medium by phagocyto-
sis through coated vesicles (Popov et al. 1998).

Unlike Wolbachia, Cardinium and Spiroplasma exist in
the cytoplasm of host cells in ovaries, salivary gland and fat
bodies without an encompassing host vacuolar membrane,
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(Kitajima et al. 2007). Spiroplasmas are phagocytosed into
insect fat cells (Ammar and Hogenhout 2006) but their fate
in the phagosomal compartment is unknown. Host vacuolar
membrane is therefore not a requirement for stable
symbiosis and the fact that Cardinium and Spiroplasma
can exist without a host membrane is evidence that alternate
evolutionary pathways can balance the needs of endosym-
biotic bacteria and their host cells.

3.2 Transfer of bacterial factors between host and symbiont

Intracellular bacteria exchange molecules with their host cells
through Type Three Secretion Systems (TTSS) or Type IV
Secretion Systems (T4SS). T4SS of gram negative bacteria
have evolved from ancestral conjugation transfer systems
(Christie 2001) and are key factors in determining the
intracellular fate of several well known tick-borne human
pathogens, including Brucella abortus, Legionella pneumo-
phila, C. burnetti and R. prowazekii. These bacteria use
T4SS to inject virulence factors into the host cytoplasm, such
as those that modulate lysosomal maturation (reviewed in
Sexton and Vogel 2002). Wolbachia genomes possess
homologs of the T4SS system of Agrobacterium tumifaciens
(virB operon), L. pneumophila (lvhB operon) and R. conorii
(Masui et al. 2000; Wu et al. 2004) which have been shown
to be highly conserved among 37 Wolbachia strains (Pichon
et al. 2009). It is not yet known what proteins are secreted by
Wolbachia into host cells. Proteomics data indicate that
Wolbachia encoded Cu-Zn-superoxide dismutase and bacter-
ioferritin are present in the cytoplasm of Wolbachia infected
Aa23 cells (Brennan et al. 2008), and an N6-adenine
methyltransferase (Braig, unpublished) is present in cyto-
plasm of infected early embryos. These proteins are possible
candidates for export from Wolbachia through the T4SS. A
family of highly divergent proteins containing a variable
number of ankyrin repeats are found in all Wolbachia
genomes so far sequenced (Iturbe-Ormaetxe et al. 2005).
Since ankyrin repeats are unusual in prokaryotic proteins but
common in eukaryotic ones, they have been implicated in
the CI phenotype or other host-symbiont functions involving
protein-protein interactions (Iturbe-Ormaetxe and O'Neill
2007; Sinkins et al. 2005) but experimental evidence that
they are secreted from Wolbachia cells is not yet available.
However, in mammalian cells, C. burnetti secretes a
heterogeneous group of ankyrin containing proteins through
a T4SS. These proteins localize to several different host
organelles and mediate a variety of host cell functions (Voth
et al. 2009).

3.3 Vertical and horizontal transmission

The most important mode of transmission of insect
endobacteria is vertical and transovarial. The transmission

efficiency for mutualistic symbionts such as Wolbachia in
nematodes and in the paraitoid wasp A. tabida is extremely
high (Funk et al. 2000) and some insects have evolved
elaborate mechanisms to transfer bacteria to their oocytes or
embryos (Braendle et al. 2003; Mira and Moran 2002).
Secondary endosymbionts are transmitted less efficiently
than mutualistic ones but nevertheless have evolved
mechanisms for the strict allocation of bacteria to oocytes
and embryos. In Drosophila, a cytological examination of
Wolbachia infected egg chambers showed that this endo-
symbiont engages with host microtubules and dynein to
anchor themselves to the anterior half of the developing
oocyte (Ferree et al. 2005a; Serbus and Sullivan 2007).
Systematic studies also show a higher level of horizontal
transmission (Ahrens and Shoemaker 2005; Baldo et al.
2002; Thao and Baumann 2004; Vavre et al. 1999) for
secondary endosymbionts compared to the strictly mutual-
istic primary endosymbionts. A thorough study of eight
Wolbachia infected spider species in the genus Agelenopsis
provided evidence of three separate Wolbachia invasions,
each one followed by extensive horizontal transfer (Baldo et
al. 2008). As a result of horizontal transfer, a lack of
complete concordance between host and bacterial evolution
is seen (Baldo et al. 2006; Batista et al. 2009; Raychoudhury
et al. 2008; Werren et al. 1995). Some species of insects,
such as the fire ant Solenopsis invicta have been infected
with different Wolbachia strains several times in their
evolutionary history and have also lost infections in certain
lineages, making it difficult to estimate the rate of horizontal
transmission (Ahrens and Shoemaker 2005).

Spiroplasmas, like Wolbachia, are predominantly mater-
nally transmitted, and show a correspondingly high degree
of incongruence between the phylogenies of host and
symbiont, indicating that horizontal transmission is com-
mon. S. poulsonii is transmitted horizontally between
neotropical species of Drosophila by mites (Jaenike et al.
2007) and S. apis is found on the surfaces of flowers
growing in the vicinity of affected beehives, suggesting that
they are deposited there by contaminated insects and
horizontally transferred to new hosts.

3.4 Manipulation of host reproduction

3.4.1 Cytoplasmic incompatibility

CI is a post-zygotic reproductive lethality which occurs
when infected males and uninfected females are mated
(Dobson 2003; Yen and Barr 1971, 1973). CI was initially
described by Laven as a potential mechanism for control of
the mosquito Culex pipiens (Laven 1951). It is the most
common reproductive modification induced by Wolbachia
and can also be induced by Cardinium infection. Sperm
from infected males is rescued in eggs from females
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infected with the same strain of Wolbachia. Bidirectional
incompatibility occurs when males and females carrying
different strains of Wolbachia are mated. The developmen-
tal defect of CI is caused by a Wolbachia-induced
modification of the sperm nucleus. In spite of much interest
and some recent advances, investigators have yet to identify
the molecular or genetic basis for the modification and
rescue factors (Bourtzis et al. 1998; Harris and Braig 2003).
Studies have shown that the level of expression of the CI
phenotype can be modified by host nuclear genes in
mosquitoes (Hoffmann 2005; Sinkins et al. 2005) and flies
(Hurst et al. 2000) and is dependent on bacterial density
and colonization of developing sperm cysts during sper-
matogenesis (Veneti et al. 2003).

3.4.2 Male-killing

Maternally inherited male-killing bacteria distort the sex
ratio of the host population. Infected males die before
reaching maturity, resulting in a female biased sex ratio
(Dyson and Hurst 2004), altered mate competition (Jiggins
et al. 2000b) and increased survival of female siblings
(Hurst and Majerus 1993). Male killers have evolved in
at least five different bacterial taxa: Wolbachia, (Hurst et
al. 1999b), Spiroplasma (Williamson et al. 1999),
γ-proteobacteria (Werren et al. 1986), Rickettsia (Lawson
et al. 2000; Perlman et al. 2006; Werren et al. 1994) and
Flavobacteria (Hurst et al. 1999a; Hurst et al. 1997).
Roberts described a male-killing Rickettsia, R. tsutsuga-
mushi in infected populations of Leptotrombidium (Acari:
Trombiculidae) (Roberts et al. 1977). The Flavobacterium
of Coleomegilla maculate (Coleoptera: Coccinellidae) is a
male killer (Hurst et al. 1997); however, there has been no
case of male killing induced by Cardinium reported to date
(reviewed in Hunter and Zchori-Fein 2006). Wolbachia is a
male killer in some hosts, most notably the ladybird beetle
Adalia bipunctata (Coleoptera: Coccinellidae) (Hurst et al.
1999b), Acraea butterflies (Jiggins et al. 2001) and several
Drosophila species, including D. bifasciata (Ikeda 1970),
D. innubila (Dyer and Jaenike 2005) D. nebulosa (Bentley
et al. 2007), and D. borealis (Sheeley and McAllister 2009).
Phylogenetic evidence suggests that male-killing Wolbachia
may have evolved multiple times (Jiggins et al. 2001) and
changes in Wolbachia phenotype from CI to male-killing
can occur frequently through recombination events, muta-
tion or changes in hosts (Jiggens et al. 2002).

Like CI, male-killing in Drosophila requires an appro-
priate bacterial density in maternal tissues (Dyer and
Jaenike 2005) but mechanisms for the recognition of
males by male killers and virulence factors causing male
death have not yet been described. Male-killing may result
from diverse interactions between bacteria and hosts and
this strategy has arisen in various distantly related

bacterial lineages (Hurst et al. 2003b). Investigations of
the genetic basis for male-killing are possible in D.
melanogaster where male-killing spiroplasmas target the
sex determination pathway (Veneti et al. 2005). Sex
determination in dipterans occurs in response to the
expression of the Sex-lethal gene, Sxl, in females and the
absence of expression in males (Penalva and Sanchez
2003). Drosophila tra mutants bearing two X chromo-
somes express Sxl but develop into somatic males. These
males are not killed by S. poulsonii (Sakaguchi and
Poulson 1963). The cascade of sex determining factors
in male flies leads to the formation of the dosage
compensation complex (DCC), a heteromultimeric com-
plex of the male-specific lethal MSL-2 protein with
constitutively expressed MSL-1; MSL-3; maleless, MLE;
and males absent on the first, MOF proteins. In D.
melanogaster infected with S. poulsonii, loss-of-function
mutations in the genes encoding these proteins can rescue
the male-killing phenotype (Veneti et al. 2005) indicating
that the formation of a functional DCC is a pre-requisite
for virulence. Death of males occurs in two steps during
embryogenesis (Counce and Poulson 1962). Compared to
female embryos, early development in male embryos
becomes arrested around stage 6 and males die prior to
segmentation at stage 12. Their death is associated with
widespread apoptosis induced by an unknown mechanism
(Bentley et al. 2007). A stable male-killing Wolbachia in
D. borealis might be used to unravel the exact mechanism
of male-killing if it can successfully be transinfected into
D. melanogaster (Sheeley and McAllister 2009).

Genes which lower transmission of the bacteria or
increase the size of egg clutches are likely to be favored
(Hurst and Jiggins 2000) if there is selection on hosts of
male-killing bacteria to develop resistance. Genetic resis-
tance to male killers has arisen in the butterfly Hypolimnas
bolina infected with wBol1, a male-killing Wolbachia
(Hornett et al. 2006), and D. willistoni infected with a
spiroplasma. In neither case is the mechanism of resistance
known. In contrast, Dyer and Jaenike (2005) were unable to
find any evidence of suppression of male-killing in eight
geographically isolated populations of D. innubila infected
with the same Wolbachia strain. In a recent study
suppression of the male killing phenotype uncovered CI
in Wolbachia-infected H. bolina (Hornett et al. 2008).

4 Bacteriophages

Bacteriophages are present in Wolbachia and spiroplasmas.
The presence of bacteriophage in Wolbachia was first
described in Culex pipiens by Wright et al (1978) and later
in D. melanogaster, (Gavotte et al. 2004), Nasonia
vitripennis (Bordenstein et al. 2006), Ephestia kuehniella,
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(Fujii et al. 2004) E. cautella, Corcyra cepharonica and
Teliogryllus taiwanemma (Kamoda et al. 2000; Masui et al.
2001). Wolbachia carry a variable number of temperate
bacteriophage, prophage-like elements, and transposons in
their genomes (Wu et al. 2004). Of these, at least the WO-B
temperate phage appears to be capable of replication and
lytic infection. The density of the resulting virions has been
shown to correlate inversely with the level of CI in
Wolbachia-infected Nasonia vitropennis. In testes of
infected males of the parasitoid wasp, N. vitripennis, lytic
phage rupture Wolbachia cells and release virions into the
extracellular space (Bordenstein et al. 2006). WO-B viruses
are present in the 0.22 micron filtrates of Wolbachia-
infected mosquitos and D. simulans early embryonic
cytoplasm (Sanogo and Dobson 2006). Bacteriophages
have also been found in S. poulsonii and S. citri (Cohen
et al. 1987; Jansson et al. 1982). These are dsDNA viruses
ranging in size from 17 to 30 kb.

The mobile genetic elements of intracellular symbiotic
bacteria are vehicles for genetic exchange and lateral gene
transfer. The WO-B phage undergoes lateral exchange
between Wolbachia strains colonizing the same host
(Bordenstein and Wernegreen 2004) which has led
Bordenstein and Reznikoff (2005) to propose an “intracel-
lular arena hypothesis” whereby genetic information is
traded through the exchange of mobile genetic elements
between communities of bacteria living in the same
intracellular environment. Evidence in support of this
concept will come from hosts carrying multiple endo-
symbionts, such as two or more Wolbachia strains or two or
more symbionts from separate bacterial lineages, such as
Wolbachia and Spiroplasma or Wolbachia, Cardinium and
Rickettsia.

5 Avoiding death from host immune systems

Although insects lack the adaptive immunity that is present
in vertebrates, their innate immune defense is remarkably
efficient and provides a rapid response to invasion by fungi,
bacteria and parasitic organisms. Insect cellular immune
responses include phagocytosis and encapsulation and
inducible humoral responses involving the secretion of
antimicrobial peptides into the hemolymph. Drosophila has
been used as a model to study the immune response to
infection by mammalian pathogens such as L. monocyto-
genes (Mansfield et al. 2003), S. typhimurium (Brandt et al.
2004) and Vibrio cholera (Park et al. 2005). Whole flies as
well as cells in tissue culture (Ayres and Schneider 2006)
respond to infection, leading to the conclusion that innate
immune pathways are highly conserved (Hoffmann and
Reichhart 2002). However, bacterial symbionts appear to be
silent with respect to detection by host innate immune

systems. How do they manage to circumvent immune
responses?

5.1 Cellular immune mechanisms

Insect cellular immune defense operates against infection
by microbes (Lanot et al. 2001) and invasion by parasitoid
wasps (Sorrentino et al. 2002). During embryogenesis
hematopoiesis initially occurs in the anterior mesoderm of
the head and, following migration, hemocytes differentiate
into phagocytic cells which subsequently colonize the
entire embryo (Tepass et al. 1994). These cells are
responsible for phagocytosing apoptotic cells produced by
normal developmental pathways (Abrams et al. 1993). By
the end of embryogenesis, hematopoetic tissue, composed
of four to six paired lobes and containing prohemocyte
stem cells, develop along the posterior portion of the dorsal
vessel (Rugendorff et al. 1994). This tissue differentiates
circulating hemocytes in larval and later stages, but
disappears during metamorphosis and is not found in adult
flies (Lanot et al. 2001). Prohemocytes give rise to cells of
the hemolymph; phagocytic plasmatocytes, and granulo-
cytes responsible for the melanization cascade. Plasmato-
cytes peak in number during metamorphosis and are
involved in encapsulation of foreign particles too large to
phagocytose, such as eggs oviposited by parasitoids (Lanot
et al. 2001).

Insects, like other arthropods, respond to pathogens in
the hemolymph by extracellular cascades that culminate in
coagulation, melanization (Theopold et al. 2004) or
phagocytosis (Roth and Kurtz 2009) of the invading
particle. Spiroplasmas enter the insect hemolymph by
crossing the gut epithelial barrier; Wolbachia occur in
hemolymph and fat body cells, and yet these bacteria are
not targeted by the cellular immune response. The reason
for this is unknown; they may not be detected by host
immune elicitors or they may simply be tolerated by the
insect because the fitness costs of mounting an immune
response is greater than the cost of maintaining the resident
symbiotic population (reviewed in Schmidt 2009). In
agreement with this, in D. melanogaster, a previously
tolerated Spiroplasma infection became reduced when the
immune response was elevated by septic shock or consti-
tutively expressed by mutation (Hurst et al. 2003a).
Recently it has been reported that Wolbachia infection in
D. simulans reduces the rate of encapsulation of eggs of the
parasitoid wasp Leptopilina heterotoma compared to
uninfected hosts (Fytrou et al. 2006). Reduced fecundity
and smaller body size in infected flies was also reported in
this study but it was not determined if Wolbachia actively
interferes with the host immune system in order to protect
itself, or whether the cost of carrying Wolbachia infections
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results in a reduced expenditure on immune defense,
growth and oocyte production.

5.2 Antimicrobial peptides (AMP)

Antimicrobial activity of the insect hemolymph upon septic
injury has been studied for many years. The first description of
the AMP cecropins and attacins was by Steiner et al. (1981).
Later other AMPs were identified and it is now recognized
that AMPs make an important contribution to host defense
not only in insects, but also in higher animals and plants
(Ganz and Lehrer 1999). In insects, antimicrobial peptides
are primarily secreted from the fat body in response to
systemic infections; local microbial invasions also induce
secretion of AMP from epithelial tissues of the digestive and
genital tracts and the Malphigian tubules (Dow and Davies
2006). Molecular and genetic studies have uncovered the
mechanisms that regulate the expression of genes encoding
immune peptides (Brennan and Anderson 2004; Hetru et al.
2003; Kimbrell and Beutler 2001). Two separate signaling
pathways occur in Drosophila (Hoffmann and Reichhart
2002): the Toll pathway responds primarily to invasion by
fungi and gram positive bacteria (Lemaitre et al. 1996;
Lemaitre et al. 1997; Ligoxygakis et al. 2002); and the IMD
(immune deficiency) pathway, responds primarily to attack
from gram negative bacteria (Govind and Nehm 2004;
Lemaitre et al. 1995). Seventeen AMPs and as many as 43
additional immune-induced molecules have been recognized
following immune challenge in third instar larvae of
Drosophila (Verleyen et al. 2006). AMPs target different
classes of pathogenic microorganisms; for example, dipter-
icins, cecropins, drosocins and attacins are expressed in
response to IMD signaling, while the defensins, metchniko-
wins and drosomycins are transcribed as a result of Toll
signaling (Brennan and Anderson 2004).

Components of the bacterial cell wall have been shown
to be essential elements for eliciting the immune response
in insects (Brennan and Anderson 2004; Hetru et al. 2003;
Hoffmann and Reichhart 2002; Kaneko and Silverman
2005), as they are in vertebrates. Invertebrate hemocytes
recognize and bind to conserved pathogen-associated
molecular patterns (PAMPs) produced by lipopolysacchar-
ides (LPS) or peptidoglycans (PGN) of the cell walls of
invading bacteria (Kang et al. 1998; Yoshida et al. 1996).
The receptors for PAMPs are the peptidoglycan recognition
proteins (PGRPs) (Dziarski 2004); Drosophila have thirteen
genes encoding PGRPs, including six long forms (PGRP-
LA, -LB, -LC, -LD, -LE, and –LF) and seven short forms
(PGRP-SA, -SB1, -SB2, -SC1A, -SC1B, -SC2 and –SD)
(Werner et al. 2000).

Gram negative bacteria possess a tripartite outer wall
comprising a thin peptidoglycan layer located in the
periplasmic space between the outer membrane and an

inner cytoplasmic membrane. Virtually all gram negative
intracellular bacteria studied to date have lost genes
necessary for the synthesis of cell wall lipopolysaccharide
(LPS), including Wolbachia (Foster et al. 2005). However
Wolbachia (wMel) possess a gene encoding one of the
peptidoglycan-associated lipoprotein (Pal) (Parsons et al.
2006) family of proteins, OmpA-MotB. OmpA in the gram
negative cell wall forms a linkage between the peptidogly-
can layer and the outer membrane protein. In spite of this,
existing components of the Wolbachia cell wall are
insufficient to trigger an immune response in their hosts
via the IMD pathway since Wolbachia infection does not
induce diptericin or cecropin expression in D. simulans or
A. albopictus (Bourtzis et al. 2000). Similarly, infection of
D. melanogaster by S. poulsonii fails to induce the
expression of genes encoding immune peptides (Charlat et
al. 2003) even though these bacteria are widespread in
hemolymph.

Symbiotic bacteria may protect themselves from host
immunity in one of two ways: preventing the activation
of immune signaling by hiding within a host vacuolar
membrane or inhibiting immune signalling by some
unknown mechanism. Some pathogenic bacteria of
mammalian macrophages avoid activating anti-
microbial signaling cascades; for example, A. phagocy-
tophilum and E. chaffeensis are able to infect mammalian
granulocytes and monocytes/macrophages in vivo without
eliciting anti-microbial signaling. The strategies that
enable them to do this have been reviewed by Rikihisa
(2006). Similarly, cultured cells from D. melanogaster
infected with L. monocytogenes do not show up-
regulation of genes involved in immune signaling when
studied using RNA interference screens (Ayres and
Schneider 2006).

The effectors of the Toll pathway (Dorsal-related
Immunity Factor, DIF) and the IMD pathway (Relish) are
inactivated by the binding of ankyrin repeat sequences. In
the case of the Toll pathway, the protein Cactus inactivates
DIF and Relish is auto-inhibited in the IMD pathway.
Wolbachia genomes so far sequenced encode multiple
ankyrin repeat proteins; four in the case of wBm, twenty-
three in the genome of wMel (Wu et al. 2004), thirty five in
wRi (Klasson et al. 2009b) and sixty in wPip (Klasson et al.
2008). It has been suggested that ankyrin repeat-containing
proteins play an important role in host-endosymbiont
interactions (Iturbe-Ormaetxe et al. 2005), perhaps as
components of the host-derived outer vacuolar membrane
surrounding the endosymbiont, or otherwise modulating the
host response. In wRi, one ankyrin repeat protein
(WD0550) bears a significant sequence homology to the
ankyrin repeat domain of Relish. This protein is a candidate
for an endosymbiont-derived inhibitory factor which could
modulate the host response. Experimental evidence in
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support of a function for ankyrin repeat proteins of
Wolbachia is lacking, although the presence of at least
one ankyrin repeat protein in Wolbachia harboured by
Culex pipiens (wPip) shows strain and sex-specific expres-
sion in this host (Sinkins et al. 2005).

5.3 Reactive oxygen and antioxidant enzymes

Reactive oxygen species (ROS) arise during mitochondrial
respiration and contribute to oxidative stress experienced by
aerobic organisms. Oxidative damage due to cumulative
levels of ROS contributes to ageing and disease in animals
(reviewed in Dalle-Donne et al. 2006; Junqueira et al.
2004). The byproducts of respiration are partially reduced
forms of O2 and include superoxide ions (O2

.-), hydrogen
peroxide (H2O2) and hydroxyl radicals (OH.). ROS causes
unregulated oxidation of cellular components leading to
damaged membrane lipids, nucleic acids and proteins, and,
ultimately, to the destruction of the cell (reviewed in Imlay
2003). In addition, ROS have been identified as important
components of cell signaling pathways (reviewed in Hoidal
2001; McCord 2000; Rhee et al. 2003) and other
physiological responses including early immune response
to invasion by pathogens (reviewed in Kohchi et al. 2009)

In vertebrates, following phagocytosis of bacteria,
superoxide is produced by the reduction of molecular
oxygen by the NADPH oxidase complex, a multi-
component enzyme system that assembles at the phagoso-
mal membrane in a reaction called an oxidative burst
(reviewed in Roos et al. 2003). From superoxide a number
of additional ROS are formed, either directly or indirectly,
which are also bactericidal (reviewed in Babior et al. 1973;
Hampton et al. 1998; Kobayashi et al. 2005). ROS have
been detected in the larval hemolymph of several lepidop-
teran species (Arakawa 1994, 1995a, b; Slepneva et al.
1999) and during encapsulation of parasitoids in immune-
reactive D. melanogaster (Nappi and Vass 1998; Nappi et
al. 1995). Recent work in insects has provided support for
immune responsive reactions resembling the oxidative burst
seen in vertebrates (Bergin et al. 2005; Ha et al. 2005;
Whitten and Ratcliffe 1999).

Enzymatic and non-enzymatic systems including super-
oxide dismutases, catalases, peroxidases, glutathione, thio-
redoxin and other vitamins and metabolites (Sies 1993;
Winyard et al. 2005) have evolved in response to ROS.
Numerous repair pathways have also evolved in order to
prevent permanent cellular damage. DNA damage in the
form of lesions are often restored via base excision repair
(BER), nucleotide excision repair (NER), mismatch repair
(MMR), and translesion synthesis (TLS); double-strand
breaks are repaired by homologous recombination (HR),
and non-homologous end joining (NHEJ) (reviewed by
Cline and Hanawalt 2003; Slupphaug et al. 2003). While

oxidized proteins are often completely degraded by
proteases and replaced by newly synthesized versions,
oxidized sulfur-containing amino acids are eligible for
repair (Friguet 2006). Oxidized membrane lipids may be
repaired by reacylation following excision from the
membrane by hydrolysis (van Kuijk et al. 1987), or within
the membrane itself (Thomas et al. 1990).

Elevated levels of ROS production and an increase in
both bacterial and host antioxidant proteins are a response
to the presence of symbionts in A. albopictus cells naturally
infected with Wolbachia (Brennan et al. 2008). Whether the
excess ROS within this system is the result of the insect
innate immune response to Wolbachia, or generated by
additive aerobic respiration of the Wolbachia themselves, is
currently under investigation. Regardless of the cause, the
generation of antioxidants in response to oxidative stress
appears to be an adaptation to bacterial life within
eukaryotic cells and may be a key factor permitting
symbiotic relationships to develop and persist over a long
evolutionary timeframe.

Rickettsia rickettsii are obligate intracellular vertebrate
pathogens vectored by arthropods, and closely related to
Wolbachia. In vertebrate cells, R. rickettsii induce superox-
ide formation and the generation of superoxide dismutase,
an antioxidant which converts superoxide into hydrogen
peroxide (Santucci et al. 1992). At the same time,
expression of antioxidants that neutralize intracellular
peroxides is inhibited, leading to lipid peroxidation of
membranes (Devamanoharan et al. 1994; Eremeeva and
Silverman 1998). Tissue-specific antioxidant enzyme activ-
ities in mice infected with R. conorii have been reported
(Rydkina et al. 2004). Such evidence lends support to the
premise that intracellular bacteria other than Wolbachia
interact with a host antioxidant system in a manner that is
beneficial to their survival.

While generation of ROS and expression of antioxidants
in Spiroplasma has not been well studied, other Mollicutes,
particularly vertebrate pathogens belonging to the genera
Mycoplasma have been more thoroughly researched.
Hydrogen peroxide is an important virulence factor in
several species of Mycoplasma (Cole et al. 1968; Hames et
al. 2009; Somerson et al. 1965); and superoxide released by
M. pneumoniae inhibits the activity of host-generated
catalase, which functions to degrade H2O2, resulting in
intracellular accumulation of H2O2 and increased cell injury
(Almagor et al. 1984). ROS associated with Ureaplasma
urealyticum, a close relative of Mycoplasma, is linked to
lipid peroxidation of sperm cell membranes and human
infertility (Potts et al. 2000) and ROS generated by M.
pneumonia within human lung carcinoma cells results in
DNA damage (Sun et al. 2008). Recent work on antiox-
idants has shown that M. pneumoniae and M. penetrans
have an antioxidant function which permits their survival
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under conditions of oxidative stress within HeLa cells
(Tarshis et al. 2004; Yavlovich et al. 2006). A peroxir-
edoxin believed to function primarily in the neutralization
of hydrogen peroxide has recently been identified in M.
hyponeumoniae (Machado et al. 2009). The Mollicutes are
capable of complex interactions with their host through
ROS and antioxidant pathways and research pertaining to
insect hosts carrying symbiotic Spiroplasma is needed.

5.4 Antiviral defense

Insect antiviral defense mechanisms have not been well
characterized. Drosophila is host to a number of pathogenic
ssRNA viruses including members of the family Rhabdo-
viridae and Discoviridae and ds RNA viruses from the
families Reoviridae, Birnaviridae, and Errantiviridae
(Huszar and Imler 2008). Drosophila protects itself from
attack by RNA viruses through two pathways, one
involving RNAi (Galiana-Arnoux et al. 2006; Kemp and
Imler 2009) and the other the JAK/STAT-dependent
immune pathway (Dostert et al. 2005). Naturally occurring
pathogenic DNA viruses have not been reported in
Drosophila although they do occur in other insects,
including other dipterans (Friesen and Miller 2001).
Baculoviruses are the best studied insect viral pathogens
due to their widespread use in insect pest management. The
baculovirus genome is a double-stranded, covalently closed
circular DNA of approximately 100–130 kb. They gain
entry to the insect through the midgut after ingestion of
viral particles on contaminated plants. Insect gut juices and
sloughing of midgut epithelia are important viral resistance
mechanisms. In addition, insect DNA viruses have evolved
methods to bypass the defense mechanisms of insect cells
by interfering with apoptosis. Lepidopteran baculoviruses
possess p35 and iap-like genes and monitor their survival
by suppressing apoptosis of host cells (reviewed in Clarke
and Clem 2003). On the other hand, the RNA virus, Flock
House Virus (FHV) induces apoptosis in Drosophila DL-1
cells by depleting endogenous levels of Drosophila DIAP1,
and the ascovirus SfAV which attacks the fat body of larval
lepidopterans encodes a caspase which induces apoptosis of
Sf21 cells (Bideshi et al. 2005). The resulting apoptotic
bodies form large vesicles which become the site of viral
assembly.

Investigation into the immune response to lytic
viruses of endosymbionts is in its infancy. It may be
that Drosophila lacks an immune mechanism for respond-
ing to the bacteriophage of Wolbachia or, possibly,
Wolbachia has an unrecognized means of circumventing
antiviral as well as antibacterial defenses of host insects.
Some of the most exciting recent work on endosymbionts
has been the determination that Wolbachia protects D.
melanogaster from attack by RNA viruses (Teixeira et al.

2008). However the mechanism by which they do so is
unknown. Another question remains: are insect AMPs
expressed in response to Wolbachia peptidoglycan frag-
ments exposed as a result of bacteriophage lytic activity?
This seems unlikely since D. simulans infected with
Wolbachia produce virions (Gavotte et al. 2004) but do
not show elevated expression of AMPs (Bourtzis et al.
2000).

6 Concluding remarks: Tipping the balance toward
insect death

It is likely that bacterial endosymbionts play an important
role in the evolution of insects enabling them to succeed in
restricted niches such as dependence on blood or phloem
for nutrition, and to establish disease-resistant phenotypes.
Teasing apart the apparent genetic crosstalk that allows for
these developments will add to our understanding of
evolution, evolution that works simultaneously on eukary-
otic, prokaryotic and viral genomes in a single organism.
This knowledge will permit the development of novel
strategies to target and manipulate insect species that
currently cause widespread destruction of food production
and spread devastating animal and plant diseases. Despite
an amazing array of novel molecules, insects rather
routinely develop "resistance" to them, often very rapidly,
that is, within a few generations. Short generation times
provide a developmental vehicle for this capacity but it is
the underlying genetics of these animals that is the engine
for this change. For example gene amplification and
duplication allow insects to detoxify novel insecticide
molecules, even on first exposure. The response to
resistance has been to develop molecules with new targets
and new modes of action, with the hope that these would
have more lasting effects. More recently, microbes have
become the source of some of these molecules. For
example, numerous isolates of Bacillus thuringiensis have
provided a diverse array of insect-killing toxin molecules,
and the added advantage of technology has led to the
development of transgenic plants. Toxins are produced in
the plants as insects consume them and this strategy has
proved effective for protection of many diverse crops.

A similar strategy is not currently available for insects
that feed on animals, including humans. Human-insect
interactions result in the spread of diseases such as malaria,
dengue and Chagas’ disease to name a few. The role of
endosymbiont genes in these diseases needs to be explored.
Wolbachia are obligate mutualists in filarial nematodes,
some of which are human pathogens and they are required
for host survival and successful oogenesis. Wolbachia play
an important role in the pathogenesis of filarial disease and
they offer a convenient target for treatment of these
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diseases. It remains to be seen if bacterial endosymbionts
can be engineered to provide effective control strategies for
insects, through genetic transformation or targeted manip-
ulation of pest insect population structure.
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