
Vol:.(1234567890)

Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635
https://doi.org/10.1007/s13198-024-02479-5

ORIGINAL ARTICLE

Effective fault localization using probabilistic and grouping
approach

Saksham Sahai Srivastava1 · Arpita Dutta2 · Rajib Mall3

Received: 8 August 2023 / Revised: 7 August 2024 / Accepted: 9 August 2024 / Published online: 18 August 2024
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024

1 Introduction

Software development comprises two immensely important
as well as labor-intensive components of software testing
and debugging. With the advancement in software develop-
ment, software are growing in scale as well as in complexity,
due to which execution failure can be considered inevitable.
During software maintenance (Wong et al. 2016), software
debugging turns out to be the most arduous task. Software
debugging comprises two major activities: localization of
fault and the rectification of the fault. Fault localization
(FL) is the process of uncovering faults present in different
regions of the program which have been responsible for exe-
cution failures. There have been multiple attempts to design
automated techniques which can achieve the objective of
fault localization. Any improvement to these pre-existing
automated techniques would significantly reduce total soft-
ware maintenance cost and also debugging time (Mall 2018).

In the past two-to-three decades, several automated FL
techniques have been reported for effective localization of
faults with reduced human intervention. These proposed
approaches aimed at localizing the faults by examining a
small fraction of the code because the lesser the code would
be examined, the better would be the effectiveness of the
technique. The fault localization techniques can be broadly
classified into these categories: slicing-based (Weiser 1984;
Korel and Laski 1988), spectrum-based (SBFL) (Wong et al.
2008; Jones et al. 2002; Wong et al. 2010, 2013), machine
learning-based (Ascari et al. 2009; Dutta et al. 2019; Wong
and Qi 2009; Wong et al. 2011), and mutation-based tech-
niques (Papadakis and Le Traon 2015; Moon et al. 2014;
Dutta and Godboley 2021; Dutta et al. 2021). There are
three types of slicing based techniques: static (Weiser 1984),
dynamic (Korel and Laski 1988), and execution slice-based
methods (Agrawal et al. 1995). Slicing-based techniques

Abstract Fault localization (FL) is the key activity while
debugging a program. Any improvement to this activity
leads to significant improvement in total software develop-
ment cost. In the paper, we present a conditional probability
statistics based fault localization technique that derives the
association between statement coverage information and
test case execution result. This association with the failed
test case result shows the fault containing probability of that
specific statement. Subsequently, we use a grouping method
to refine the obtained statement ranking sequence for better
fault localization. We named our proposed FL technique as
CGFL, it is an abbreviation of Conditional probability and
Grouping based Fault Localization. We evaluated the effec-
tiveness of the proposed method over eleven open-source
data sets from Defects4j and SIR repositories. Our obtained
results show that on average, the proposed CGFL method
is 24.56% more effective than contemporary FL techniques
namely D ∗ , Tarantula, Ochiai, Crosstab, BPNN, RBFNN,
DNN, and CNN.

Keywords Fault localization · Program analysis ·
Debugging · Conditional probability · Grouping

 * Saksham Sahai Srivastava
 saksham.srivastava@colorado.edu

 Arpita Dutta
 arpita@comp.nus.edu.sg

 Rajib Mall
 rajib@cse.iitkgp.ac.in
1 Department of Computer Science, University of Colorado

Boulder, Boulder, CO 80302, USA
2 School of Computing, National University of Singapore,

Computing Dr, Singapore 117417, Singapore
3 Department of Computer Science and Engineering, Indian

Institute of Technology Kharagpur, Kharagpur 721302, India

http://orcid.org/0000-0001-7628-9849
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-024-02479-5&domain=pdf

4617Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

worked predominantly on the principle of deleting irrelevant
segments of the program, thereby making the remainder of
the program behave in a similar fashion as previously (with-
out deletion) with respect to certain specifications. Spectrum
Based Fault Localization (SBFL) techniques (Wong et al.
2013; Jones and Harrold 2005) by and large require pro-
gram spectra information to give quantitative knowledge for
localizing faults in a program. The program spectra include
program element (such as statement, block, etc.) coverage
information (executed/not executed) and test case execution
results (pass/fail) which are supplied as input to the fault
localizer. The fault localizer is expected to generate a ranked
list of statements based on their suspicious scores of contain-
ing a bug. Machine learning which helps formulate math-
ematical models for complex problems also finds its applica-
tion in solving the problem of fault localization. Therefore,
there are machine learning based techniques such as SVM
(Ascari et al. 2009), ensemble classifier (Dutta et al. 2019),
decision trees (Briand et al. 2007) and neural network mod-
els (Wong and Qi 2009; Wong et al. 2011; Xiao et al. 2021;
Li et al. 2021; Lou et al. 2021) which manifested promising
results for FL. The mutation based techniques such Metal-
laxis (Papadakis and Le Traon 2015), MUSE (Moon et al.
2014), MSFL (Dutta and Godboley 2021) and Combi-FL
(Dutta et al. 2021) have also presented substantial improve-
ment in localizing faults effectively.

But these antecedent approaches hold certain drawbacks.
Slicing-based techniques (Weiser 1984; Korel and Laski
1988) possess the disadvantage of not assigning ranks to the
program statements while the SBFL techniques (Jones and
Harrold 2005; Naish et al. 2011) generate a ranked list with
many statements having tie in ranks. The machine learn-
ing-based techniques (Ascari et al. 2009; Dutta et al. 2019;
Wong and Qi 2009; Wong et al. 2011; Xiao et al. 2021;
Li et al. 2021; Lou et al. 2021) although being effective,
require a plenty amount of time to complete the computa-
tion and therefore have low efficiency. The mutation-based
techniques (Papadakis and Le Traon 2015; Moon et al. 2014;
Dutta and Godboley 2021; Dutta et al. 2021) in addition to
having low efficiency, entail a considerable amount of space
which sometimes makes it practically infeasible for large-
sized programs. By looking at the limitations of the existing
techniques, the key objective of this work is to come up with
a fault localization scheme which would be both effective
and efficient. Effective in terms of number of statements
required to be inspected and efficient as per the amount of
the time required by the localization algorithm to generate
the ranked list of statements.

Statistical models have been immensely manipulated
in the past for accomplishing the objective of better fault
localization. Crosstab proposed by Wong et al. (2008) and
FTFL proposed by Dutta et al. (2021) have highlighted the
dominance of statistical models in producing effective fault

localizers. Unlike existing (Jones et al. 2002; Wong et al.
2010) intuitive guesswork or heuristics-based FL techniques,
we use the idea of conditional probability table and com-
pute the suspiciousness for each statement. Conditional
probability table (Dekking et al. 2006) represents the local
probability distribution for a statement in a given program
and test case execution results. Therefore, in this article,
we extensively employ conditional probability statistics to
evaluate the suspicious score of the program statements.
Conditional Probability statistic (Yang et al. 2019) portrays
it’s significance by highlighting the internal linkage between
the program spectrum and test execution results. Further,
we make use of the grouping method to refine the rank of
the buggy statement. It is also a relatively simpler statisti-
cal model as compared to Crosstab (Wong et al. 2008) and
FTFL (Dutta et al. 2021). Hence, we name our proposed
method as Conditional Probability and Grouping based
Fault Localization technique(hereafter referred as CGFL).
The main novelty of this work is the usage of a lightweight
statistical method accompanied with grouping methodology.
Our CGFL method efficiently generates ranked list of suspi-
cious program statements and attains the aim of effective
fault localization.

Rest of the paper is organized as follows. In Sect. 2, we
present a survey of related literature. We discuss our pro-
posed approach in Sect. 3. In Sect. 4, we elaborate upon
the experimental result followed by the comparison of our
proposed technique with related work in Sect. 5. Finally, we
conclude in Sect. 6.

2 Related work

Weiser introduced the concept of static slicing (Weiser
1984). Static slicing (Weiser 1984) was based on the design
that if a test case fails in response to a variable attaining
the wrong value at a statement, then the slice associated
with the variable-statement pair would be held account-
able for the resulting defect. Later, Korel and Laski (1988),
proposed dynamic slicing which eliminated the drawback
of static slicing where all the executable statements which
could potentially be affected by the value of a variable at a
statement were included. Hence, in dynamic slicing (Korel
and Laski 1988) only those statements were included which
actually influenced the value of a variable at a statement. But
in some cases it may so happen that the slice returned is very
large(sometimes even the size of the entire program) which
defeats the overall purpose of using this technique.

Next, Spectrum Based Fault Localization(SBFL) methods
were proposed which gradually became popular. The SBFL
techniques have low computation costs as these methods
generally require a mathematical expression for the com-
putation of suspicious score for each executable program

4618 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

statement. They also utilize various statistics to produce a
mathematical model which could determine the suspicious
score of program statements. Tarantula is one of the most
prominent SBFL techniques proposed by Jones and Har-
rold (2005). It outperformed set union (Renieris and Reiss
2003), set intersection (Renieris and Reiss 2003), nearest
neighbour (Renieris and Reiss 2003), and cause transition
(Cleve and Zeller 2005) which were some of the pre-exist-
ing effective FL techniques at that time. But eventually,
it was realized that Tarantula was incapable of perfectly
exploiting the relevant information carried by the success-
ful and failed test case execution results. To overcome the
shortcomings of Tarantula (Jones and Harrold 2005), sev-
eral other SBFL approaches have been proposed. These
included Ample (Wong et al. 2016), Jaccard (Wong et al.
2010), Ochiai (Naish et al. 2011), Barinel and DStar(D∗)
(Wong et al. 2013), etc. Ample (Wong et al. 2016) and Jac-
card (Wong et al. 2010) use failed as well as passed test
cases into consideration while calculating the suspicious
score of statements. Ochiai (Naish et al. 2011), which is
basically obtained from the domain of molecular biology,
puts a greater emphasis on the failed test cases which were
responsible for not executing the statement. Wong et al.
(2013) developed DStar(D∗) which showed better perfor-
mance as compared to all the pre-existing techniques and
thus became the state-of-the-art technique. The value of ‘*’
in D ∗ was chosen as 2 as it exhibited the best results. But
since the DStar technique took a small number of parameters
into consideration while calculating the suspicious score,
many program statements were assigned the same rank.

Machine Learning (ML) played a key role in the further
advancement of FL techniques. The highly adaptive nature
of machine learning algorithms helped produce robust mod-
els which were found to be very effective. ML techniques
generally, learn the program spectra and execution results
and generate suspiciousness scores for program elements
based on their learning. Back Propagation Neural Network
(BPNN) technique proposed by Wong and Qi (2009) is one
of the most prevalent machine learning-based FL techniques.
It has easy implementation due to its very fundamental
structure. But it was noticed that BPNN (Wong and Qi 2009)
suffered from problems of local minima (Tan et al. 2013)
and paralysis (Wasserman 1993). Hence to resolve this issue,
Wong et al. (2011) proposed the Radial Basis Function
Neural Network(RBFNN) technique which had radial basis
function instead of sigmoid function as its transfer function.
However, BPNN (Wong and Qi 2009) and RBFNN (Wong
et al. 2011) were not found effective in handling large com-
plex functions because of their shallow architecture. Hence,
Zheng et al. (2016) develop Deep Neural Network(DNN)
(Zheng et al. 2016) model which made working with com-
plex functions relatively simpler. Later, Dutta et al. (2019)
further refined the technique by proposing a hierarchical

approach of FL using DNN where they initially investigated
the functions for containing a fault and then the statements.
But these neural network-based approaches desired training
of large number of parameters which demonstrated a very
complex model for solving the fault localization problem.

In last four to five years, several deep learning-based FL
techniques such as DeepFL (Li et al. 2019) and DeepRL4FL
(Li et al. 2021) have been proposed. These FL techniques
incorporates several information obtained from different tra-
ditional FL methods, for example the suspiciousness scores
calculated from the SBFL and MBFL techniques, text simi-
larity, static code metrics etc. These techniques utilizes the
learning capability of neural networks to train the classifica-
tion models for accurately localizing the faulty program enti-
ties. DeepFL (Li et al. 2019) make use of the synthetically
designed features resulting in underutilization of program
spectra, rather than considering the contextual information
between program entities. Also, this technique uses several
complex features e.g. spectrum-based suspiciousness and
complexity-based fault proneness which results in higher
overhead for obtaining the required information.

In the recent past, researchers have laid emphasis on the
usage of mutation analysis for the purpose of fault localiza-
tion. Papadakis and Le Traon (2015) introduced the muta-
tion-based FL technique known as Metallaxis-FL (Papada-
kis and Le Traon 2015), where they generated mutants of
the program in such a manner that if a generated mutant
was killed by the failed test case then that particular mutant
would provide an excellent indication of the faulty location
in the program. Later, Moon et al. (2014) developed a tech-
nique called MUSE (Moon et al. 2014), which primarily
identified faulty statements by making use of the different
characteristics in two broad groups of mutants. The first
group consisted of mutants which were generated by mutat-
ing the faulty statement and the second group comprised of
mutants generated by mutating the non-faulty statements of
the program. Also, Dutta et al. proposed MBFL techniques
such as MSFL (Dutta and Godboley 2021) and Combi-FL
(Dutta et al. 2021) which suggested significant improvement
to the pre-existing mutation-based techniques. Although
these mutation-based fault localization techniques proved
to be effective, they required a huge computation cost due to
the large number of mutants generated for large programs.
Not only that, these heavy computations also lowered the
efficiency of the technique.

3 Proposed work: CGFL

The necessity of fault localization arises as soon as a test
case execution failure is reported by the program. It sig-
nals that the program is faulty. The very first step towards
addressing the problem of fault localization is to execute a

4619Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

large number of test cases on the faulty program. Subse-
quently, the program spectra information is extracted. The
“program spectra" or “program spectrum” is an execution
profile that indicates which parts of a program are active
during a run (Harrold et al. 1998). In our proposed CGFL
technique, we used statement coverage information as the
program spectra to gather the execution profile of statements
present in the program during a test case run. Program spec-
tra helps to determine the linkage of program element with
the test case execution result. Program spectra along with
the test case execution results are input to a fault localization
technique to calculate the suspiciousness of program ele-
ments. The fault localization technique utilizes the program
spectra information to generate a ranked list of program ele-
ments based on their suspicious scores. For simplicity, we
have chosen executable statements as the program entity. In
this section, we first describe our proposed technique CGFL.
Subsequently, we present an illustration of our proposed
approach using an example program. Table 1 characterizes
the notations used in this paper. We denote the executable
program statement with the symbol �.

3.1 Overview

The internal linkage between the test case execution result
and program spectrum is the fundamental basis for con-
structing any statement suspiciousness calculating formula.
It is always important as well as essential to capture all pos-
sible correlations between statement coverage (covered/
uncovered) and test result (pass/fail). Conditional probability
in statistics effectively captures the likelihood of the occur-
rence of an event based on the the occurrence of a previ-
ous outcome or event. The conditional probabilities provide
extremely useful information, even when limited informa-
tion is provided. In this paper, we design four conditional
probability models to capture the association between the
program spectrum and test execution results. Using these
four models and the concepts of the occurrence of low-prob-
ability events in the information theory, we define a new
probability based fault localization technique.

We construct a probabilistic model to depict the associa-
tion of test case execution result(i.e., pass or fail) with the
execution of program statements by that particular test case
and vice versa as well. A statistic(denoted by �) is designed
for each dependency relationship. We define 4-� statistics
which are capable enough to consider all relevant depend-
ency scenarios. In the definition of 4-� statistics, C denotes
that the statement was executed, U denotes that the statement
was not executed, F denotes that the test case was failed and
S denotes that the test case was successful. When the actual
test case output is different from the expected output then
the test case is considered as fail (unsuccessful) otherwise
pass (successful).

1. Statistic-1 (�fc): This statistic computes the probability
of the test case failure when it is known that the state-
ment has been executed by the test case. Mathematically,
it can be represented as:

 where �cf (�) + �cs(�) ≠ 0 . If �cf (�) + �cs(�) = 0 , it
exhibits that the statement � was not covered by any of
the test cases and this situation is likely to provide no
information for fault localization.

2. Statistic-2 (�cf): This model determines the probability
of a test case to execute the statement � when it is noted
that the execution of the test case resulted in a failure.
Mathematically, it can be represented as:

 where �cf (�) + �uf (�) ≠ 0 . If �cf (�) + �uf (�) = 0 , it indi-
cates that all of the test cases have led to execution fail-
ure and such a state of condition is meaningless from
that fault localization point of view.

3. Statistic-3 (�cs): This statistic is responsible for evalu-
ating the probability of a test case to execute the state-
ment � when it is well known that the execution of the
test case resulted in a success. Mathematically, it can be
represented as:

 where �cs(�) + �us(�) ≠ 0 . If �cs(�) + �us(�) = 0 , it
manifests that all of the test cases have lead to execu-
tion success and such a situation does not contribute any
relevant information to the fault localization technique.

4. Statistic-4 (�su): This model quantifies the probability
of a test case having a successful execution result when
it has already been recognized that the test case did not

�fc(�) = P(F|C) =

�cf (�)

�cf (�) + �cs(�)

�cf (�) = P(C|F) =

�cf (�)

�cf (�) + �uf (�)

�cs(�) = P(C|S) =

�cs(�)

�cs(�) + �us(�)

Table 1 Notations used in this paper

� Total number of test cases
�f Total number of failed test cases
�s Total number of successful test cases
�c(�) Number of test cases covering �
�cf (�) Number of failed test cases covering �
�cs(�) Number of successful test cases covering �
�u(�) Number of test cases not covering �
�uf (�) Number of failed test cases not covering �
�us(�) Number of successful test cases not covering �

4620 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

execute the statement � . Mathematically, it can be rep-
resented as:

 where �uf (�) + �us(�) ≠ 0 . If �uf (�) + �us(�) = 0 , it
reveals that the statement � was covered by all the test
cases, thereby leaving little scope for the fault localiza-
tion technique to extract some useful information.

These 4-� statistic models would be supportive in con-
structing the fault localizer (denoted by CPFL) which
stands for Conditional Probability based Fault Localiza-
tion. The fault localizer CPFL would generate the suspi-
cious score for each of the program statements. The fault
localizer CPFL is defined as follows:

The suspicious score of the program statements with �fc or
�su values as zero is considered to be −∞ . This is because
�fc = 0 points to a situation where the probability of a test
case to fail is always zero given that it has executed a par-
ticular statement. Then, such a statement is least likely to be
faulty and hence is assigned with the least priority. Similarly,
when �su = 0 , it represents a situation where the probability
of a test case to pass is always zero given that it does not
execute a particular statement. Similarly, in this situation
also, that particular statement holds the least probability
of being faulty, and therefore, its suspicious score value is
assigned as −∞ . The fault localizer CPFL generates a list
of suspicious scores of program statements. The statements
can be ranked from higher to lower based on their degree of
suspiciousness. However, we have further extended the FL
technique CPFL by incorporating the grouping strategy and
then termed it as CGFL which represents the combination
of Conditional probability and Grouping strategy for Fault
Localization. The grouping strategy improves the ranking
strategy of the CPFL. We demonstrate the improvement
obtained in CGFL over CPFL in the experimental Sect. 4.

There is a popular intuition in fault localization that if
a program statement has been covered by a large number
of failed test cases then there is a high possibility that
the statement may be buggy. Whereas, if the statement
has been covered by a small number of failed test cases,
the chance of the statement being buggy turns out to be
low. Therefore, we prioritize the statements which have
been executed by a large number of failed test cases for
examination using the grouping strategy (Debroy et al.
2010). The program statements are grouped subsequently,
such that each group consists of all the statements that
are executed by a particular number of failed test cases.

�su(�) = P(S|U) =

�us(�)

�uf (�) + �us(�)

CPFL(�) =

{
−∞, if �fc = 0 or �su = 0

�fc + �cf + �su, if �fc ≠ 0 and �su ≠ 0

For example, if a program has n number of failed test
cases. Then, at most n + 1 groups g0 , g1 , g2,…, gn would
be formed.

The groups are created in such a manner that group g0
contains all the statements that have not been executed by
any of the failed test cases, group g1 is a collection of all the
statements that have been executed by only one failed test
case and similarly group gn consists of all the statements
that have been executed by all (i.e. n) failed test cases. Also,
the grouping of statements is purely based on the cardinal-
ity of the failed test cases which have executed the particu-
lar statement. Let us say, we have two statements �1 and �2
such that they were executed by failed test cases { t1 , t3 , t7 }
and { t1 , t2 , t9 } respectively. Even though both the statements
are executed by different sets of failed test cases yet they
both would be assigned to the same group g3(as they were
executed by three failed test cases). The statements residing
in the same group are then arranged in descending order of
their suspicious score. The suspicious score was computed
by the fault localizer CGFL.

Figure 1 represents the block diagram of proposed CGFL
technique. The walkthrough of this diagram and the work-
flow of the complete CGFL approach is explained through
the following set of steps.

Step 1: (Computation of Program Spectra and Test Results)
 We first supply the input program and run it on the

given test suite to generate the statement coverage infor-
mation and test execution results.

Step 2: (Calculation of suspicious score)
 Subsequently, statement coverage data and test results

are supplied to the fault localizer CPFL. Using the con-
structed 4-� statistics, CPFL evaluates the suspicious
score CPFL(�) for each executable program statement �.

Step 3: (Assignment of statements to groups)
 further, each statement � is assigned to the group,

which is responsible for holding all the statements that
have been covered by a particular number of failed test
cases.

Step 4: (Sorting of Groups)
 The groups are sorted in such a manner that the one

which is a collection of statements executed by larger
number of failed test cases get a higher priority in com-
parison to one which holds statements executed by
smaller number of failed test cases. For example, g7 will
have more preference for fault localization than g5 or g6.

Step 5: (Sorting of statements within each group)
 The statements within each group are sorted in

descending order of their suspicious score.

This completes the description of the proposed CGFL
technique.

4621Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

3.2 Example

In this section, we illustrate the working of our proposed
CGFL technique using an example program. Table 2 pre-
sents a simple code snippet along with the complete state-
ment coverage and test case execution result for the exam-
ple program. Each row (starting from 4th row) of Table 2

represents an executable program statement and its cor-
responding coverage information for all test cases. In the
Table, ‘1’ denotes that the test case executed the statement
while ‘0’ denotes that the test case did not execute the state-
ment. The last row of Table 2 manifests the execution result
for each test case. Here, F and P denote that the correspond-
ing test case has failed and passed respectively.

Fig. 1 Block diagram of proposed CGFL technique

Table 2 Program illustrating
CGFL technique

Program Test cases

1 2 2 1 2 1 2 2 3 3 2
2 2 1 3 3 2 1 1 1 2 2

int find_mid(int p,
int q, int r){

3 2 3 2 1 1 2 1 2 1 1

int mid 1 1 1 1 1 1 1 1 1 1 1
mid=r 1 1 1 1 1 1 1 1 1 1 1
if (q < r) 1 1 1 1 1 1 1 1 1 1 1
if (p > q) //bug 1 0 1 0 0 0 1 0 1 0 0
mid = q 0 0 1 0 0 0 1 0 1 0 0
else if (p < r) 1 0 0 0 0 0 0 0 0 0 0
mid = p 1 0 0 0 0 0 0 0 0 0 0
else if (p > q) 0 1 0 1 1 1 0 1 0 1 1
mid = q 0 0 0 0 0 0 0 1 0 1 0
else if (p > r) 0 1 0 1 1 1 0 0 0 0 1
mid = p 0 0 0 0 1 0 0 0 0 0 1
return mid 1 1 1 1 1 1 1 1 1 1 1
} 1 1 1 1 1 1 1 1 1 1 1
Fail/Pass F P F P P P F P F P P

4622 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

After obtaining the complete statement coverage informa-
tion, the subsequent step is to determine the values of each
statistic for each program statement � . Values of the different
parameters required to compute the suspicious score of each
statement are shown in Table 3.

Subsequently, the suspicious score for each executable
program statement is calculated with the aid of fault local-
izer CPFL. Table 4 shows the computed suspicious scores
for the program statements.

Now, the grouping approach is implemented for refin-
ing the rank of the buggy statement. There are 4 failed test
cases and 7 successful test cases in the example program.
So, there would be 5 groups formed(g0 , g1 , g2 , g3 , g4). The
statements assigned to each group are represented in Table 5.
In the table, ‘ = ’ and ‘>’ symbols show the statements �i and
�j belonging to same group have ‘equal’ and ‘greater’ CPFL
score respectively.

According to obtained results for the example, it is found
that the statement �4 receives the highest priority for being
examined for a bug. This is in resemblance to the veracity
that statement �4 was faulty. Therefore, this example explains
the complete methodology adopted to implement the CGFL
technique.

4 Experimental results

In this section, we first present the experimental setup and
the data set used for experimentation. We then listed the
evaluation metrics used to determine the performance of
the proposed CGFL approach. Subsequently, the experimen-
tal results are discussed. Finally, we complete this section
by highlighting the threats to the validity of the obtained
results.

4.1 Setup

A 64-bit Ubuntu machine having specifications of 15.8 GB
RAM and Intel (R) Core(TM)-i7 processor is employed for
carrying out all the experiments. One set of input programs
i.e., Siemens suite (SIR 2005) are written in ANSI-C for-
mat. On the other hand, Defects4J (2014), the other pro-
gram suite contains Java programs. The statement coverage
matrix and test case execution results are generated for each
faulty program using GCOV (2002) tool for the C-format
programs. GCOV is a utility tool that comes as a product
of the GNU Compiler Collection suite. It is primarily used
for code coverage analysis and statement-by-statement pro-
filing of C-programs. For Defects4J (2014), we have used
open-source available coverage results and other required
resources in our experiment from Defects4J (2016). We
have used Python language (Python 3.9.7) for scripting the
developed modules. Linux powershell version-21 scripts
were used to connect different components and to realize the
user interface. Important libraries used for implementing the
existing neural network based fault localization techniques
implementation are Pandas, NumPy, SciPy, and Tensorflow.2

Table 3 Parameter values for
the example program

Parameters �
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

�
9

�
10

�
11

�
12

�
13

�cf (�) 4 4 4 4 3 1 1 0 0 0 0 4 4
�cs(�) 7 7 7 0 0 0 0 7 2 5 2 7 7
�uf (�) 0 0 0 0 1 3 3 4 4 4 4 0 0
�us(�) 0 0 0 7 7 7 7 0 5 2 5 0 0
�fc(�) 0.36 0.36 0.36 1 1 1 1 0 0 0 0 0.36 0.36
�cf (�) 1 1 1 1 0.75 0.25 0.25 0 0 0 0 1 1
�cs(�) 1 1 1 0 0 0 0 1 0.29 0.71 0.29 1 1
�su(�) not def not def not def 1 0.88 0.7 0.7 0 0.56 0.33 0.56 not def not def

Table 4 Suspicious score of
program statements

Statements �
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

�
9

�
10

�
11

�
12

�
13

CPFL(�) −∞ −∞ −∞ 3.0 2.625 1.95 1.95 −∞ −∞ −∞ −∞ −∞ −∞

Table 5 Statements assigned to each group

Group no Statements arranged in descending order of CPFL(�)
value

g
4

CPFL(�
4
) > CPFL(�

1
) = CPFL(�

2
) = CPFL(�

3
) =

CPFL(�
12

) = CPFL(�
13

)
g
3

CPFL(�
5
)

g
2

None
g
1

CPFL(�
6
) = CPFL(�

7
)

g
0

CPFL(�
8
) = CPFL(�

9
) = CPFL(�

10
) = CPFL(�

11
)

1 https://github.com/PowerShell/PowerShell.
2 https://docs.python.org/3/

4623Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

The activation functions, number of layers and neurons and
the optimizers are kept as same as mentioned in the pub-
lished works (Wong and Qi 2009; Wong et al. 2011; Zheng
et al. 2016; Zhang et al. 2019).

4.2 Used data set

In order to analyze the effectiveness of our proposed method
CGFL, we considered two different program suites for
experimentation. The first program suite is Siemens suite
which comprises of total seven programs. The Siemens suite
programs are extracted from SIR repository (SIR 2005). The
second program suite is Defects4J (2014). We took four
programs from Defects4j repository into consideration. The
test suites and buggy versions are already present in these
benchmark suites.

Table 6 presents a tabular representation of program char-
acteristics. Columns 3–6 indicate the total number of lines
(LOC) present in the program, total executable lines of code
present, number of faulty versions available, and number of
test cases present in the test suite of that program.

Siemens suite has been widely used in the past as a
benchmark for evaluating the effectiveness of various fault
localization techniques (Wong et al. 2008; Jones et al. 2002;
Wong et al. 2013). Print_Tokens and Print_Tokens2 pro-
grams are prominent lexical analyzers. Siemens programs
Schedule2 and Schedule perform the task of priority sched-
uling. The Replace program is popularly used for pattern
matching and substitution. Tot_info finds its application in
computing several statistics of input data. Tcas stands for
Traffic Collision Avoidance system and these programs are
designed for minimizing the chances of mid-air collision
between aircrafts.

The remaining four different Java programs have been
taken from Defects4J (2014) repository. Lang is a Java utility
class that helps to design and model the Java language. Math
is a lightweight and self-contained library of mathematics
and statistics components. Mockito is used to test the unit

Java classes. Time (aka Joda-Time) is the de facto standard
time and date library for Java programs.

The Siemens suite consists of a total of 132 faulty ver-
sions from seven different programs. However, we have con-
sidered only 116 faulty versions and omitted 16 versions,
due to one or more of the following scenarios:

• A modification was made in a non-executable patch of
the program.

• No semantic difference exists between the original and
faulty programs except the header files.

• A test case execution resulted in a segmentation fault.
• None of the test cases failed for the version.

Now, for determining if a test case is successful or it has
failed, the following steps were implemented.

1. All the test cases present in the test suite were executed
with the faultless program(i.e. original program) and the
output generated for each test case was stored in separate
files.

2. The same test cases were executed using a faulty version
of the program and the generated output was saved in a
similar fashion.

3. Finally, a comparison was made to find out if the outputs
generated for the fault-free and buggy version of the
program are exactly the same or not. If the outputs were
exactly identical then it is considered that the test case
is successful; else, the test case is deemed to be failed
for that particular faulty version.

4.3 Evaluation metric

We make use of four different metrics for analyzing the
effectiveness of our proposed CGFL method. The follow-
ing are the metrics:

EXAM_Score: This metric is popularly used for determin-
ing the effectiveness of a fault localization technique (Dutta

Table 6 Program
characteristics

S. no Program name LOC No. of exec. lines No. of flty vers No. of test cases

1.1 Print_Tokens 565 195 7 4130
1.2 Print_Tokens2 510 200 10 4115
1.3 Schedule 412 152 9 2650
1.4 Schedule2 307 128 10 2710
1.5 Replace 521 244 32 5542
1.6 Tcas 173 65 41 1608
1.7 Tot_info 406 122 23 1052
2.1 Lang 39.8K 30.2K 64 2245
2.2 Math 45K 19K 104 3602
2.3 Mockito 27.8K 19.8K 38 5205
2.4 Time 56.2K 40.1K 26 4130

4624 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

et al. 2021; Renieris and Reiss 2003). Equation (1) presents
the formula for computing EXAM_Score.

where |Sexamined| shows the number of statements examined
to localize the fault and |Stotal| denotes the total statements
present in the program. Let us assume, on a program P, we
used two fault localization techniques, say, Ta and Tb , and
obtained EXAM_Scores are ESa and ESb respectively. If ESa
is less than ESb , then technique Ta is more effective than Tb.

Top-N%: This metric shows the percentage of faulty ver-
sions which are correctly localized by examining at most
N% of executable program statements (Li et al. 2019). For
this study, we consider the N values as 1 and 5. It helps to
discover the FL technique that localizes more faulty versions
by analyzing up to 1% or 5% of program statements.

Relative Improvement (RImp): It shows the comparative
improvement obtained using CGFL technology over existing
FL methods. It is calculated using Eq. (2).

In this equation, Techniquea represents our proposed CGFL
method and Techniqueb can be any of the existing FL tech-
nique such as DStar (Wong et al. 2013), Tarantula (Jones
and Harrold 2005) etc. with which proposed CGFL is com-
pared. If the number of statements examined by Techniquea
is lesser than Techniqueb then the value of RImpa,b is lesser
than 100% otherwise it is more than 100%.

Average Improvement: This metric indicates the aver-
age improvement realized on using an FL technique over
another FL technique (Dutta et al. 2021). It is computed
using Eq. (3).

Where, IAa,b exhibits the improvement achieved using
Ta over Tb . Avg.ESa and Avg.ESb indicate the average ES
obtained by Ta and Tb respectively. Hence, the lesser the
average EXAM_Score better the technique is.

4.4 Results

In this section, we discuss the obtained comparative results
for the proposed method CGFL with eight existing FL tech-
niques. We consider four techniques from spectrum based
family viz., Tarantula (Jones et al. 2002), DStar (Wong et al.
2013), Ochiai (Naish et al. 2011), and Crosstab (Wong et al.
2008) and remaining four methods from neural network
models which includes BPNN (Wong and Qi 2009), DNN

(1)EXAM_Score =
|Sexamined|
|Stotal|

∗ 100

(2)RImpa,b =
statements examined by Techniquea

statements examined by Techniqueb
∗ 100

(3)IAa,b =
Avg.ESb − Avg.ESa

Avg.ESa
∗ 100

(Zheng et al. 2016), RBFNN (Wong et al. 2011) and CNN
(Zhang et al. 2019). Tarantula (Jones et al. 2002) is a classic
SBFL technique. Crosstab (Wong et al. 2008) is a statistics-
based SBFL method that uses the Chi-square test to decide
the dependency of test case result (success/failure) on the
invocation of a specific program statement. Ochiai (Naish
et al. 2011) is another prominent SBFL technique. DStar
(Wong et al. 2013) is known as one of the state-of-the-art
SBFL methods. Among the neural network-based FL mod-
els, BPNN (Wong and Qi 2009) is the most simple and easi-
est to implement. It was the first neural network-based model
used for FL. RBFNN (Wong et al. 2011) deals with the prob-
lems of paralysis (Wasserman 1993) and local minima (Tan
et al. 2013). DNN (Zheng et al. 2016) and CNN (Zhang et al.
2019) are the two most robust and effective models for fault
localization.

Some of the FL techniques may assign identical suspi-
cious scores to multiple program elements. This leads to
two different types of effectiveness for that FL method viz.,
the best effectiveness and the worst effectiveness. When the
fault localizer points to the buggy line first for examination,
among all the statements holding the same suspiciousness
values then it is termed as its best effectiveness. On the other
hand, when the fault localizer points to the buggy line at
last for examination, among all the statements holding the
same suspiciousness values then it is termed as its worst
effectiveness.

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 show the effective-
ness comparison of CGFL and existing FL techniques. In
these line graphs, the x-axis is used to denote the percentage
of executable program statements examined and the y-axis
is used to depict the percentage of buggy versions localized
successfully. A point (x,y) in the graph represents that the
y% of faulty programs are correctly localized by examining
at most x% of statements of the corresponding program. We
represent the best and the worst effectiveness with two dif-
ferent plots in these graphs.

Figure 2 show the comparative results of CGFL with
Tarantula and DStar using the Siemens suite data set. It can
be noted from the graph that by examining only 2% of the
program statements CGFL(Best) localizes bugs in 44.66%
of faulty versions. While, Tarantula(Best), Tarantula(Worst),
DStar(Best), and DStar(Worst) localize bugs in only 19.41,
11.65, 26.21, and 12.62% of faulty versions by examining
the same amount of program code. On average, CGFL(Best)
is 56.15 and 50.31% more effective than Tarantula(Best)
and DStar(Best) respectively. Similarly, CGFL(Worst)
is respectively 38.15 and 34.68% more effective than
Tarantula(Worst) and DStar(Worst).

Figure 3 pictorially represents the comparison of the
effectiveness of CGFL, Ochiai, and Crosstab using the
Siemens suite programs. By examining only 1% of pro-
gram code, CGFL(Best) localizes bugs in 30.09% of faulty

4625Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

versions whereas, Ochiai(Best) and Crosstab(Best) localize
faults in only 18.44 and 3% of programs for the same per-
centage of code examination. In the worst case, CGFL(Best)
is respectively 9.78 and 45.53% better than Ochiai(Best) and
Crosstab(Best). Similarly, CGFL(Worst) is 7.69 and 18.46%
more effective than Ochiai(Worst) and Crosstab(Worst) in
the worst case. On average, CGFL is 31.86 and 49.16% more
effective than Ochiai and Crosstab respectively.

Figure 4 shows the effectiveness comparison of CGFL
with BPNN and RBFNN for the Siemens suite. We can
observe from the line graph in Fig. 4 that by analyzing only
0.5% of program code, CGFL localizes bugs in 11.65%
of faulty versions. On the other hand, by examining the
same amount of code RBFNN(Best) and BPNN localize
bugs in only 5.8 and 2.91% of faulty versions respectively.

In the worst case, CGFL(Best) is respectively 44.27 and
20.55% better than RBFNN(Best) and BPNN. Likewise,
CGFL(Worst) requires 21.54% less code examination than
RBFNN(Worst) in the worst case. Whereas, with respect to
BPNN, CGFL(Worst) checks 18.45% of more statements
than BPNN in the worst-case scenario. On average, to local-
ize bugs in all the faulty versions present in the Siemens
suite, CGFL, RBFNN, and BPNN examine 11.24, 21.63,
and 16.43% of program code respectively.

Figure 5 shows the effectiveness comparison between
CGFL, DNN, and CNN using the Siemens suite data set.
We can observe from this line graph that to localize bugs
in 20% of faulty versions CGFL(Best) and CGFL(Worst)
examines 0.81 and 1.5% of program code. On the other hand,
to locate the buggy statements in the same amount of faulty

Fig. 2 Effectiveness compari-
son of CGFL with DStar and
Tarantula for Siemens suite

Fig. 3 Effectiveness compari-
son of CGFL with Crosstab and
Ochiai for Siemens suite

4626 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

statements, DNN and CNN respectively require to exam-
ine 1.6 and 2.04% of executable program statements. In the
worst case, CGFL(Best) is 22.85 and 13.50% better than
DNN and CNN. On average, CGFL is 39.28 and 23.36%
better than DNN and CNN respectively.

Figures 6, 7, 8 and 9 show the comparison of results
obtained using Defects4j data set for CGFL with the existing
FL methods. Figure 6 shows the effectiveness comparison
among Tarantula, DStar, and CGFL using a line graph. We
can observe from this graph that by examining 35% of pro-
gram code, CGFL(Best) locates bugs in almost all the faulty
versions. However, only 96% of faulty versions are correctly
localized by Tarantula(Best) on examining the same per-
centage of program code. On the other hand, while compar-
ing with DStar, we observe that by checking only 2% of

program code, CGFL(Best) locates bugs in 68.12% of faulty
versions and DStar(Best) localizes only in 58% of buggy
programs from the same set. In the worst case, CGFL(Best)
requires 35.62 and 44.79% of less code examination than
Tarantula(Best) and DStar(Best) respectively. On average,
CGFL is 7.38 and 51.1% more effective than Tarantula and
DStar respectively for the Defects4j suite.

Figure 7 represents the effectiveness of CGFL, Ochiai,
and Crosstab. It can be noticed from Fig. 7 that CGFL has a
better performance as compared to both Ochiai and Cross-
tab for most of the program points. By examining only 1%
of program code, CGFL(Best) and CGFL(Worst) localize
bugs in 55.56 and 37.20% of faulty versions. On the con-
trary, when the same patch of program code is inspected,
Crosstab(Best), Crosstab(Worst), and Ochiai(Worst) locate

Fig. 4 Effectiveness compari-
son of CGFL with RBFNN and
BPNN for Siemens suite

Fig. 5 Effectiveness com-
parison of CGFL with DNN and
CNN for Siemens suite

4627Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

faults in 28.99, 28.29, and 36.71% of faulty versions respec-
tively. In the worst case, CGFL(Best) requires 35.62 and
44.79% of less code examination than Ochiai(Best) and
Crosstab(Best) respectively. On average, CGFL is 61% more
effective than Crosstab. However, Ochiai requires 17% less
code examination than CGFL for the Defects4j program
suite.

Figure 8 presents the effectiveness comparison of
CGFL, BPNN, and RBFNN with plotted EXAM_Score
points in the range of 1 to 100%. On examining 5% of pro-
gram code, CGFL(Best) and CGFL(worst) localize bugs
in 77.78 and 67.63% of faulty versions. Whereas, BPNN
and RBFNN(Worst) are able to locate bugs in only 12 and
71% of faulty versions. In the worst case, CGFL(Best)
requires 44 and 44.79% of less code examination than

BPNN and RBFNN(Best). On an average, EXAM_Score
of BPNN, RBFNN(Best), RBFNN(Worst), CGFL(best) and
CGFL(Worst) are 30.87, 8.54, 10.90, 4.40, and 12.03% for
Defects4j data set respectively.

Figure 9 shows the comparison of CGFL, CNN, and
DNN based on their effectiveness in locating program
bugs. We can observe from the figure that for most of the
EXAM_Score points, CGFL(Best) performs better than
both DNN and CNN. However, there are some faulty ver-
sions present for which DNN localizes the faults more effec-
tively compared with the remaining two techniques. For the
Defects4j program suite, in the worst case, CNN and DNN
require 15.83 and 35.62% of more code examination than
CGFL(Best) respectively. On average, CNN is 24% more
effective than CGFL.

Fig. 6 Effectiveness compari-
son of CGFL with DStar and
Tarantula for Defects4j suite

Fig. 7 Effectiveness compari-
son of CGFL with Crosstab and
Ochiai for Defects4j suite

4628 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

Figures 10 and 11 show the effectiveness comparison
of CGFL and CPFL over the Siemens suite and Defects4j
programs respectively. CPFL is our proposed conditional
probability-based fault localization approach without using
the grouping method. From both figures, we can observe
that for almost every program point, CGFL(Best) performs
more effectively than CPFL(Best). However, there are few
program points present on which CGFL(Worst) is lesser
effective than CPFL(worst). But the count of such program
points is comparatively low.

It can be observed from the Fig. 10 that in the worst
case CPFL(Best) requires 35.93% Exam_Score whereas
CGFL(Best) examines only 28.68% of program code. On
average, CPFL(Best), CPFL(Worst), CGFL(Best), and
CGFL(Worst) require 8.40, 17.73, 6.74, and 15.74% of code

examination for Siemens suite respectively. Using the group-
ing method, we have obtained an improvement of 14.05%,
on average, over CPFL for the Siemens suite.

For the Defects4j program suite, we have obtained, on
average, 4.97% of improvement over CPFL(Best) by using
CGFL(Best). Also, for the complete data set, we require 3%
less statements examination than the non-grouping method
while localizing the faults with the CGFL method.

Table 7 presents the pairwise comparison between CGFL
and other fault localization techniques viz., Tarantula (Jones
et al. 2002), DStar (Wong et al. 2013), Crosstab (Wong
et al. 2008), Ochiai (Naish et al. 2011), BPNN (Wong and
Qi 2009), RBFNN (Wong et al. 2011), CNN (Zhang et al.
2019), DNN (Zheng et al. 2016) and our proposed CPFL. In
the sub-column titles (Best v/s Best), (Worst v/s Worst), and

Fig. 8 Effectiveness compari-
son of CGFL with RBFNN and
BPNN for Defects4j suite

Fig. 9 Effectiveness com-
parison of CGFL with DNN and
CNN for Defects4j suite

4629Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

(Worst v/s Best), the second tag (either Best or Worst) repre-
sents the effectiveness of the existing technique. The first tag
stands for the effectiveness of our proposed CGFL method.
For example, the sub-column (Worst v/s Best) contains the
percentage of faulty versions for which the proposed CGFL
technique’s worst-case behavior is more effective than the
respective existing technique’s best-case results. Table 7
shows the percentage of buggy programs on which CGFL
performs more effective, equally effective, and less effective
than the existing fault localization techniques.

It is discovered from the table that CGFL(Best) is more
effective in at least 58% of the faulty versions than the exist-
ing fault localization techniques’ best-case effectiveness.
Also, for less than 50% of buggy versions, the worst-case
effectiveness of CGFL is less effective than the existing

techniques’ effectiveness in the worst case. Similarly, for
Defects4j programs, CGFL(Best) is at least as effective or
more effective than 50% of the faulty versions. Program on
which the number of resultant tied statements (statements
with the same suspiciousness score) are large with respect
to an FL technique may lead to a bad performance by the
CGFL method.

Table 8 presents the relative improvement(RImp) obtained
using CGFL over the existing FL techniques as well as for
the proposed CPFL method. It is calculated using Eq. (2).
RImp value shows the percentage of statements examined
by CGFL with respect to any other FL technique. It can
be observed from the table that for almost all the Siemens
suite programs, the obtained RImp value is lesser than 100%.
Only for programs Schedule2 and Tcas, the effectiveness of

Fig. 10 Effectiveness com-
parison of CGFL and CPFL for
Siemens suite

Fig. 11 Effectiveness com-
parison of CGFL and CPFL for
Defects4j suite

4630 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

CGFL is lesser than BPNN and CNN respectively. For a few
programs, CGFL requires more amount of code examination
than existing techniques. The reason behind this is probably

the assignment of the same suspiciousness scores to mul-
tiple statements. On average, there is a reduction of 37.22,
47.32, 53.73, 22.75, 53.08, 32.48, 10.72, and 26.59% against

Table 7 Pairwise comparison of CGFL with other fault localization techniques

Technique Effectiveness Siemens Defects4j

Best v/s Best Worst v/s Worst Worst v/s Best Best v/s Best Worst v/s Worst Worst v/s Best

Tarantula More effective 69.09 64.55 52.73 39.61 46.86 28.02
Equally effective 15.45 13.64 4.55 15.94 2.42 4.35
Less effective 15.45 21.82 42.73 44.44 50.72 67.63

Dstar More effective 60.91 56.36 40.00 44.93 51.21 32.85
Equally effective 20.00 17.27 5.45 12.56 3.38 4.83
Less effective 19.09 26.36 54.55 42.51 45.41 62.32

Crosstab More effective 76.36 75.45 54.55 60.87 63.29 50.72
Equally effective 2.73 0.91 5.45 8.70 2.42 1.93
Less effective 20.91 23.64 40.00 30.43 34.30 47.34

Ochiai More effective 58.18 57.27 41.82 38.16 45.41 27.05
Equally effective 20.00 17.27 3.64 15.94 2.90 4.35
Less effective 21.82 25.45 54.55 45.89 51.69 68.60

BPNN More effective 71.82 50.91 50.91 88.41 80.19 80.19
Equally effective 3.64 2.73 2.73 1.45 0.97 0.97
Less effective 24.55 46.36 46.36 10.14 18.84 18.84

RBFNN More effective 64.55 60.91 42.73 45.41 47.83 33.33
Equally effective 8.18 8.18 9.09 12.08 1.45 2.90
Less effective 27.27 30.91 48.18 42.51 50.72 63.77

DNN More effective 68.18 43.64 43.64 39.13 27.54 27.54
Equally effective 5.45 4.55 4.55 14.98 3.86 3.86
Less effective 26.36 51.82 51.82 45.89 68.60 68.60

CNN More effective 63.64 45.45 45.45 55.07 39.61 39.61
Equally effective 11.82 3.64 3.64 6.28 2.90 2.90
Less effective 24.55 50.91 50.91 38.65 57.49 57.49

CPFL More effective 30.91 30.00 13.64 43.48 49.76 30.92
Equally effective 49.09 48.18 13.64 14.49 1.93 3.86
Less effective 20.00 21.82 72.73 42.03 48.31 65.22

Table 8 Relative improvement for CGFL w.r.t. existing FL techniques

Tarantula
(Best)

Tarantula
(Worst)

DStar
(Best)

DStar
(Worst)

Crosstab
(Best)

Crosstab
(Worst)

Ochiai
(Best)

Ochiai
(Worst)

BPNN RBFNN
(Best)

RBFNN
(Worst)

DNN CNN

Print_Token 21.15 31.67 9.40 15.20 9.36 15.14 51.16 64.41 29.70 11.46 18.91 28.17 32.49
Print_Token2 13.27 19.74 5.49 8.54 15.82 22.73 21.88 31.03 22.12 51.85 72.58 25.89 17.16
Schedule 17.86 33.82 4.72 10.13 34.48 56.10 52.63 74.19 22.92 6.90 14.74 9.24 14.29
Schedule2 59.59 63.65 69.52 72.80 47.46 51.77 81.70 85.01 119.35 89.30 88.37 85.94 82.58
Replace 40.48 67.38 57.92 87.94 32.95 61.57 57.72 98.38 40.13 40.57 75.00 75.02 90.90
Tcas 64.55 72.85 70.97 76.61 56.21 68.83 77.55 79.55 95.00 44.85 61.41 91.96 124.00
Tot_Info 26.73 60.49 54.37 96.89 26.42 59.76 27.12 60.92 74.84 26.48 63.28 72.34 73.51
Lang 67.33 88.15 19.62 32.76 16.00 34.99 78.04 96.06 14.62 71.26 127.07 124.94 53.18
Math 101.04 135.25 22.51 40.26 15.62 31.12 111.24 141.75 15.85 130.78 156.81 181.89 65.96
Mockito 83.14 142.76 74.66 91.93 37.11 111.02 87.06 146.38 64.68 36.29 110.73 179.62 103.14
Time 63.82 106.36 126.55 110.07 84.28 129.17 66.33 109.27 16.93 71.40 115.38 107.08 150.28

4631Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

Tarantula, DStar, Crosstab, Ochiai, BPNN, RBFNN, DNN,
and CNN respectively.

Tables 9 and 10 show the percentage of faulty versions
localized by examining only Top-1% and Top-5% of pro-
gram code respectively. The fault localization technique is
considered to be better if more buggy versions are localized
by just examining a smaller portion of the code. It can be
observed from both Table 9 and 10 that there are differ-
ent programs for which various FL techniques are unable to
localize the bugs in any of the faulty versions by examining
only Top-1% of program code. CGFL(Best) is able to locate
bugs in a minimum of 37.50% of faulty versions for all the
programs except Tcas and Schedule2. On the other hand,
by examining 5% of program code, CGFL(Best) is able to
locate bugs in at least 12.50% of faulty versions for all the
considered sets of programs. Moreover, for the Schedule
program, CGFL(Best) is able to locate bugs in all the faulty
versions by examining only Top-5% of the code.

Table 11 presents a run time analysis of different fault
localization techniques along with our proposed CGFL
method. Considered FL techniques are Tarantula, DStar,
Crosstab, Ochiai, BPNN, RBFNN, DNN, and CNN. In this
table, ‘min’ ‘sec’, and ‘ms’ represent minute, second, and
millisecond, respectively. We have not considered the test
case result generation time and statement coverage compu-
tation time because these two times were similar for all the
methods. We can observe from the table that SBFL meth-
ods (Tarantula, DStar, Crosstab, Ochiai, and CGFL) are in
the order of seconds, whereas machine learning-based FL
methods (CNN, DNN, BPNN, and RBFNN) require more
time which is in order of minutes. NN-based methods hold
the drawback of consuming extra time due to time spent
on training of the model for each faulty program. Based on
the observation of results as depicted in Table 11 it can be
concluded that the CGFL method takes comparable time
with SBFL techniques and shows greater efficiency than the
NN-based methods.

4.5 Threats to the validity

In this section, we discuss some important threats to the
validity of our proposed approach.

• Construct Validity

• There can be a scenario where all the test cases may
fail or all the test cases may pass, in that situation,
CGFL would fail to localize the faulty statement.
Therefore, the effectiveness of CGFL has a depend-
ence on both failed and passed test cases.

• While computing the suspiciousness score of state-
ments, we have considered the same contribution of
each test case. In reality, individual test cases have Ta
bl

e
9

 Pe
rc

en
ta

ge
 o

f f
au

lty
 v

er
si

on
s a

re
 su

cc
es

sf
ul

ly
 lo

ca
liz

ed
 b

y
ex

am
in

in
g

To
p-

1%
 o

f e
xe

cu
ta

bl
e

pr
og

ra
m

 c
od

e

Ta
ra

nt
ul

a
(B

es
t)

Ta
ra

nt
ul

a
(W

or
st)

D
st

ar
(B

es
t)

D
st

ar
(W

or
st)

C
ro

ss
ta

b
(B

es
t)

C
ro

ss
ta

b
(w

or
st)

O
ch

ia
i

(B
es

t)
O

ch
ia

i
(W

or
st)

B
PN

N
R

B
FN

N
(B

es
t)

R
B

FN
N

(W
or

st)
D

N
N

C
N

N
C

G
FL

(B
es

t)
C

G
FL

(W
or

st)

Pr
in

t_
To

ke
n

40
.0

0
20

.0
0

40
.0

0
0.

00
0.

00
0.

00
60

.0
0

20
.0

0
0.

00
20

.0
0

20
.0

0
20

.0
0

40
.0

0
60

.0
0

20
.0

0
Pr

in
t_

To
ke

n2
37

.5
0

12
.5

0
12

.5
0

0.
00

25
.0

0
0.

00
37

.5
0

12
.5

0
0.

00
12

.5
0

0.
00

37
.5

0
37

.5
0

37
.5

0
12

.5
0

Sc
he

du
le

0.
00

0.
00

20
.0

0
0.

00
0.

00
0.

00
20

.0
0

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

40
.0

0
0.

00
Sc

he
du

le
2

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

Re
pl

ac
e

24
.1

4
13

.7
9

31
.0

3
13

.7
9

0.
00

0.
00

24
.1

4
13

.7
9

10
.3

4
31

.0
3

17
.2

4
17

.2
4

13
.7

9
44

.8
3

20
.6

9
Tc

as
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
To

t_
In

fo
10

.5
3

0.
00

21
.0

5
0.

00
5.

26
0.

00
15

.7
9

0.
00

15
.7

9
15

.7
9

0.
00

15
.7

9
5.

26
42

.1
1

0.
00

La
ng

47
.1

7
26

.4
2

41
.5

1
24

.5
3

28
.3

0
20

.7
5

45
.2

8
28

.3
0

5.
66

56
.6

0
37

.7
4

47
.1

7
39

.6
2

47
.1

7
28

.3
0

M
at

h
62

.7
7

37
.2

3
47

.8
7

25
.5

3
24

.4
7

11
.7

0
61

.7
0

36
.1

7
4.

26
67

.0
2

44
.6

8
62

.7
7

47
.8

7
58

.5
1

32
.9

8
M

oc
ki

to
51

.3
5

40
.5

4
48

.6
5

40
.5

4
24

.3
2

18
.9

2
51

.3
5

43
.2

4
0.

00
48

.6
5

45
.9

5
51

.3
5

37
.8

4
48

.6
5

40
.5

4
Ti

m
e

69
.5

7
65

.2
2

78
.2

6
73

.9
1

56
.5

2
56

.5
2

73
.9

1
69

.5
7

4.
35

60
.8

7
56

.5
2

69
.5

7
69

.5
7

69
.5

7
65

.2
2

4632 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

different contributions to deciding the suspiciousness
score.

• External Validity
• Used operating systems, coverage measurement

tools, compilers, and hardware platforms also have
an impact on the generated results. But, to eliminate
the discrepancies, we have generated results for all the
existing techniques along with our proposed method
on the same platform.

• Internal Validity
• We assess the performance of our proposed CGFL

technique on limited empirical data. There is a pos-
sibility that the technique may not work in a similar
fashion with a different set of programs. But to lower
the possibility of such risk, programs with varying
features and from different domains are taken into
consideration.

5 Comparison with related work

In this section, we compare the proposed CGFL technique
with a few related works.

Different slicing based techniques were reported in the
literature (Weiser 1984; Korel and Laski 1988) to handle
the problem of fault localization. However, these techniques
are not effective enough. A number of times, slicing-based
approaches return the whole program as a slice and some-
times a null set of statements too. Furthermore, the state-
ments do not receive any rank by using these techniques.
While our technique CGFL generates a ranked list of execut-
able statements. The ranks are assigned based on the suspi-
ciousness of program statements to contain a bug.

Jones and Harrold (2005) developed an automated fault
localization technique called Tarantula. In this method, the
test execution result and statement coverage information are
utilized for computing the suspicious scores of statements
based on their probability of containing a bug. Their experi-
mental result showed that Tarantula is more effective than
cause-transition (Cleve and Zeller 2005), nearest neighbour
(Renieris and Reiss 2003), set union (Jones and Harrold
2005), and set intersection (Jones and Harrold 2005) based
fault localization methods. Our empirical evaluation shows
that CGFL performs 32.81% more effectively in locating the
bugs as compared to Tarantula.

Renieris and Reiss (2003) discussed the nearest neighbor
technique for effective fault localization. They have defined
two distance metrics viz., binary distancing and permuta-
tion distancing to calculate the similarity between a failed
and a passed test case. They select an arbitrary failed test
case and compute distance with every passed test case. Sub-
sequently, they select the passed test case with minimum Ta

bl
e

10
 P

er
ce

nt
ag

e
of

 fa
ul

ty
 v

er
si

on
s a

re
 su

cc
es

sf
ul

ly
 lo

ca
liz

ed
 b

y
ex

am
in

in
g

To
p-

5%
 o

f e
xe

cu
ta

bl
e

pr
og

ra
m

 c
od

e

Ta
ra

nt
ul

a
(B

es
t)

Ta
ra

nt
ul

a
(W

or
st)

D
st

ar
(B

es
t)

D
st

ar
(W

or
st)

C
ro

ss
ta

b
(B

es
t)

C
ro

ss
ta

b
(w

or
st)

O
ch

ia
i

(B
es

t)
O

ch
ia

i
(W

or
st)

B
PN

N
R

B
FN

N
(B

es
t)

R
B

FN
N

(W
or

st)
D

N
N

C
N

N
C

G
FL

(B
es

t)
C

G
FL

(W
or

st)

Pr
in

t_
To

ke
n

40
.0

0
40

.0
0

60
.0

0
60

.0
0

60
.0

0
20

.0
0

80
.0

0
80

.0
0

0.
00

80
.0

0
80

.0
0

60
.0

0
60

.0
0

80
.0

0
80

.0
0

Pr
in

t_
To

ke
n2

62
.5

0
62

.5
0

37
.5

0
37

.5
0

62
.5

0
62

.5
0

62
.5

0
62

.5
0

25
.0

0
75

.0
0

75
.0

0
50

.0
0

50
.0

0
87

.5
0

87
.5

0
Sc

he
du

le
40

.0
0

40
.0

0
60

.0
0

60
.0

0
60

.0
0

60
.0

0
80

.0
0

60
.0

0
40

.0
0

60
.0

0
20

.0
0

60
.0

0
60

.0
0

10
0.

00
80

.0
0

Sc
he

du
le

2
0.

00
0.

00
12

.5
0

0.
00

0.
00

0.
00

12
.5

0
12

.5
0

12
.5

0
0.

00
0.

00
0.

00
12

.5
0

12
.5

0
0.

00
Re

pl
ac

e
48

.2
8

44
.8

3
65

.5
2

62
.0

7
51

.7
2

44
.8

3
65

.5
2

58
.6

2
27

.5
9

62
.0

7
62

.0
7

65
.5

2
68

.9
7

82
.7

6
65

.5
2

Tc
as

16
.6

7
13

.8
9

22
.2

2
13

.8
9

5.
56

0.
00

19
.4

4
16

.6
7

8.
33

2.
78

0.
00

19
.4

4
19

.4
4

33
.3

3
5.

56
To

t_
In

fo
26

.3
2

21
.0

5
57

.8
9

31
.5

8
21

.0
5

5.
26

31
.5

8
26

.3
2

47
.3

7
42

.1
1

26
.3

2
42

.1
1

36
.8

4
73

.6
8

26
.3

2
La

ng
71

.7
0

54
.7

2
69

.8
1

49
.0

6
56

.6
0

43
.4

0
75

.4
7

56
.6

0
15

.0
9

77
.3

6
67

.9
2

75
.4

7
69

.8
1

79
.2

5
58

.4
9

M
at

h
80

.8
5

72
.3

4
69

.1
5

59
.5

7
47

.8
7

41
.4

9
82

.9
8

73
.4

0
7.

45
84

.0
4

75
.5

3
81

.9
1

68
.0

9
78

.7
2

71
.2

8
M

oc
ki

to
67

.5
7

62
.1

6
67

.5
7

62
.1

6
51

.3
5

43
.2

4
70

.2
7

64
.8

6
10

.8
1

62
.1

6
62

.1
6

70
.2

7
62

.1
6

64
.8

6
59

.4
6

Ti
m

e
86

.9
6

86
.9

6
86

.9
6

86
.9

6
82

.6
1

78
.2

6
86

.9
6

86
.9

6
21

.7
4

78
.2

6
78

.2
6

86
.9

6
82

.6
1

86
.9

6
86

.9
6

4633Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

distance and remove all the statements executed by that test
case from the set of statements executed by the failed test
case. The major drawback of this technique is the sensitiv-
ity towards the selected test cases. If the correct pair of test
cases are not selected then it would either return a null set
or an irrelevant set of statements. It mainly occurs when
the buggy statement is executed by both the pass and the
failed test cases. Whereas, CGFL always return a ranked
list of executable statements based on their suspiciousness
of containing a bug.

The conditional probability model adopted by Yang et al.
(2019) did not incorporate the impact of an important prob-
ability statistic �fc (probability of program element to be
faulty if it has been executed by the test case) while comput-
ing the suspicious score of an executable program statement.
Moreover, Yang et al. (2019) scaled down the influence of
probability parameter �pu leading to negligence of scenarios
where the bug is present in conditional statements of the pro-
gram. Also, the factor chosen for scaling down is the inverse
of the total number of test cases while the cardinality of test
cases present in the program’s test suite holds no relation to
the fault’s location in the program. Therefore, different num-
bers of test cases considered may lead to significant changes
in suspicious scores calculated for the same program. CGFL
is independent of the cardinality of test cases therefore, it
behaves similarly for different test suites of the same pro-
gram. The proposed method assigns equal weightage to all
the probability statistics involved thus considering different
statement invocation and execution result scenarios equally.
Also, our empirical evaluation shows CGFL is 28.56% more
effective than Yang et al. (2019) proposed approach.

Wong et al. (2008) developed a statistical analysis
approach for fault localization. They used the chi-square

test to determine the association between the invocation of
a statement and the execution outcome of a test case. Their
proposed Crosstab approach is not applicable to different-
sized programs. Whereas, the CGFL technique is easily
applicable to any sized program. Also, we have compared
the effectiveness of CGFL with Crosstab and found it to be
58.90% more effective than Crosstab. Along with Cross-
tab, we have also compared the effectiveness of CGFL with
three other SBFL techniques viz., DStar (Wong et al. 2013),
Tarantula (Jones et al. 2002), and Ochiai (Naish et al. 2011).
Our empirical evaluation shows that CGFL requires to exam-
ine 26.84, 32.81, and 28.11% of less code than DStar, Taran-
tula, and Ochiai respectively.

In the past two decades, different mutation-based tech-
niques have been used for fault localization. Some of the
prominent mutation-based FL techniques are MUSE (Moon
et al. 2014) and Metallaxis (Papadakis and Le Traon 2015).
Mutation-based FL techniques are effective but they are not
easily applicable for large-sized programs. Since these tech-
niques suffer from the problem of scalability. They require
huge computational power to generate a large number of
mutants and thereafter to generate the statement coverage
data and test execution information for each of the gener-
ated mutants. Also, it is challenging to generate all possi-
ble mutants of a program. On the other hand, our proposed
CGFL technique is lightweight and straightforward. It does
not require any additional investment in terms of space and
time.

Wong et al. proposed different neural network-based FL
techniques such as BPNN (Wong and Qi 2009) and RBFNN
(Wong et al. 2011). Zheng et al. (2016) used a deep neural
network for the same. Later, Zhang et al. (2017) extended
the DNN model (Zheng et al. 2016) for FL by appending

Table 11 Time analysis of different fault localization techniques

Program Tarantula Dstar Crosstab Ochiai BPNN RBFNN DNN CNN CGFL

Print_Token 31 ms 30 ms 47 ms 35 ms 1 min 22 sec 6 min 20 sec 3 min 40 sec 5 min 28 sec 31 ms
Pint_

Token2
32 ms 34 ms 50 ms 33 ms 1 min 58 ms 4 min 14 sec 4 min 08 sec 6 min 04 sec 33 ms

Replace 58 ms 56 ms 1 sec 22 ms 52 ms 3 min 21 sec 11 min 02
sec

8 min 44 sec 12 min 08
sec

58 ms

Tcas 6 ms 7 ms 12 ms 8 ms 26 sec 02 ms 52 sec 12 ms 39 sec 41 ms 44 sec 12 ms 7 ms
Tot_info 6 ms 6 ms 10 ms 7 ms 1 min 19 ms 3 min 18 sec 2 min 52 sec 3 min 33 sec 7 ms
Schedule 20 ms 22 ms 38 ms 18 ms 1 min 28 sec 2 min 05 sec 2 min 08 sec 2 min 40 sec 23 ms
Schedule2 13 ms 14 ms 24 ms 14 ms 2 min 12 sec 4 min 27 sec 3 min 06 sec 4 min 10 sec 13 ms
Lang 33 sec 18

ms
31 sec 02

ms
56 sec 16

ms
36 sec 20

ms
58 sec 02 ms 2 min 12 sec 2 min 10 sec 3 min 02 sec 30 sec 12 ms

Math 1 sec 11 ms 1 sec 22 ms 2 sec 26 ms 1 sec 54 ms 2 min 48 sec 4 min 51 sec 5 min 10
sec

8 min 48 sec 1 sec 48 ms

Mockhito 2 sec 28 ms 1 sec 38 ms 3 sec 47 ms 2 sec 18 ms 3 min 12 sec 6 min 52 sec 7 min 17 sec 9 min 10 sec 2 sec 12 ms
Time 11 sec 59

ms
12 sec 18

ms
16 sec 2 ms 14 sec 12

ms
20 min 16

sec
85 min 19

sec
96 min 40

sec
98 min 12

sec
10 sec 58 ms

4634 Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

contextual information into it. Dutta et al. (2019) proposed
a hierarchical approach for FL where they first localized the
bug at the function level and subsequently at the statement
level. Though NN-based techniques are effective they suf-
fer from the problems of non-deterministic feedback loops
and parameter estimations. Also, the recent deep learning-
based FL techniques such as DeepFL (Li et al. 2019) and
DeepRL4FL (Li et al. 2021) require several complex features
(e.g. spectrum-based suspiciousness and complexity-based
fault proneness) leading to a higher overhead for obtaining
the required information. These models also require huge
training time. On the other hand, CGFL is a light-weight and
simple conditional probability-based mathematical approach
with minimal time requirement.

6 Conclusion

Software debugging is a tedious and time-consuming activ-
ity. Any improvement to it leads reduction in total software
development cost. In this work, we proposed a fault localiza-
tion technique that helps to mitigate the debugging cost up
to a large extent. Our proposed CGFL technique is based on
conditional probability-based statistics which captures the
association between the execution of the statement and the
test case outcome. We further appended a test case execu-
tion-based grouping approach to mitigate the ties among the
statements along with more effective rank list generation.
Our empirical evaluation of two popular data sets shows that
on average, CGFL requires 24.56% less code examination
than existing fault localization techniques.

In the future, we intend to provide different weights to all
the test cases as different test cases have different contribu-
tions in computing the suspicious score of a statement. The
contribution value is computed using statement coverage
information and the execution result(pass/fail) of the test
case. In this way, the fault localizer becomes more targeted
toward program faults. We also plan to incorporate statement
frequency information in our CGFL technique. Statement
frequency shows the number of times a statement is executed
by any test case.

Funding This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

Declarations

 Conflict of interest The authors have no Conflict of interest.

Human and animal rights This article does not contain any stud-
ies involving human and animal participants performed by any of the
authors.

Informed consent Informed consent was obtained from all indi-
vidual participants included in the study.

References

Agrawal H, Horgan JR, London S, Wong WE (1995) Fault localiza-
tion using execution slices and dataflow tests. In: Proceedings of
sixth international symposium on software reliability engineer-
ing, ISSRE’95. IEEE, pp 143–151

Ascari LC, Araki LY, Pozo AR, Vergilio SR (2009) Exploring
machine learning techniques for fault localization. In: 2009 10th
Latin American test workshop. IEEE, pp 1–6

Briand LC, Labiche Y, Liu X (2007) Using machine learning to
support debugging with tarantula. In: The 18th IEEE interna-
tional symposium on software reliability (ISSRE’07). IEEE,
pp 137–146

Cleve H, Zeller A (2005) Locating causes of program failures. In: Pro-
ceedings of the 27th international conference on software engi-
neering, pp 342—351

Debroy V, Wong WE, Xu X, Choi B (2010) A grouping-based strategy
to improve the effectiveness of fault localization techniques. In:
2010 10th international conference on quality software. IEEE,
pp 13–22

Defects4J (2014) https:// github. com/ rjust/ defec ts4j
Defects4J (2016) http:// fault- local izati on. cs. washi ngton. edu/ data/
Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE (2006) A mod-

ern introduction to probability and statistics: understanding why
and how. Springer Science & Business Media, Berlin

Dutta A, Manral R, Mitra P, Mall R (2019) Hierarchically localizing
software faults using DNN. IEEE Trans Reliab 69(4):1267–1292

Dutta A, Srivastava SS, Godboley S, Mohapatra D (2021) Combi-FL:
neural network and SBFL based fault localization using mutation
analysis. J Comput Lang 66:101064

Dutta A, Godboley S (2021) MSFL: a model for fault localization using
mutation-spectra technique. In: International conference on lean
and agile software development. Springer, pp 156–173

Dutta A, Kunal K, Srivastava SS, Shankar S, Mall R (2021) FTFL:
a Fisher’s test-based approach for fault localization. Innov Syst
Softw Eng 17(4):381–405

Dutta A, Pant N, Mitra P, Mall R (2019) Effective fault localization
using an ensemble classifier. In: 2019 international conference
on quality, reliability, risk, maintenance, and safety engineering
(QR2MSE). IEEE, pp 847–855

gcov (2002) http:// man7. org/ linux/ man- pages/ man1/ gcov- tool.1. html
Harrold MJ, Rothermel G, Wu R, Yi L (1998) An empirical inves-

tigation of program spectra. In: Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT workshop on program analysis for software
tools and engineering, pp 83–90

Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula
automatic fault-localization technique. In: Proceedings of the 20th
IEEE/ACM international conference on automated software engi-
neering, pp 273–282

Jones JA, Harrold MJ, Stasko J (2002) Visualization of test informa-
tion to assist fault localization. In: Proceedings of the 24th inter-
national conference on software engineering, ICSE 2002. IEEE,
pp 467–477

Korel B, Laski J (1988) Dynamic program slicing. Inf Process Lett
29(3):155–163

Li X, Li W, Zhang Y, Zhang L (2019) DeepFL: integrating multiple
fault diagnosis dimensions for deep fault localization. In: Pro-
ceedings of the 28th ACM SIGSOFT international symposium
on software testing and analysis, pp 169–180

https://github.com/rjust/defects4j
http://fault-localization.cs.washington.edu/data/
http://man7.org/linux/man-pages/man1/gcov-tool.1.html

4635Int J Syst Assur Eng Manag (September 2024) 15(9):4616–4635

Li Y, Wang S, Nguyen T (2021) Fault localization with code coverage
representation learning. In: 2021 IEEE/ACM 43rd international
conference on software engineering (ICSE). IEEE, pp 661–673

Lou Y, Zhu Q, Dong J, Li X, Sun Z, Hao D, Zhang L, Zhang L (2021)
Boosting coverage-based fault localization via graph-based repre-
sentation learning. In: Proceedings of the 29th ACM joint meeting
on european software engineering conference and symposium on
the foundations of software engineering, pp 664–676

Mall R (2018) Fundamentals of software engineering. PHI Learning
Pvt. Ltd., Delhi

Moon S, Kim Y, Kim M, Yoo S (2014) Ask the mutants: mutating
faulty programs for fault localization. In: 2014 IEEE seventh inter-
national conference on software testing, verification and valida-
tion. IEEE, pp 153–162

Naish L, Lee HJ, Ramamohanarao K (2011) A model for spectra-based
software diagnosis. ACM Trans Softw Eng Methodol TOSEM
20(3):1–32

Papadakis M, Le Traon Y (2015) Metallaxis-FL: mutation-based fault
localization. Softw Test Verif Reliab 25(5–7):605–628

Renieris M, Reiss SP (2003) Fault localization with nearest neighbor
queries. In: 18th IEEE international conference on automated soft-
ware engineering, 2003. Proceedings, pp 30–39

SIR (2005) http:// sir. unl. edu/ portal/ index. php
Tan PN, Steinbach M, Kumar V (2013) Data mining cluster analysis:

basic concepts and algorithms. Introduction to data mining, vol
487. Pearson Education India, Bengaluru, p 533

Wasserman PD (1993) Advanced methods in neural computing. John
Wiley & Sons Inc, Hoboken

Weiser M (1984) Program slicing. IEEE Trans Softw Eng 4:352–357
Wong WE, Qi Y (2009) BP neural network-based effective fault locali-

zation. Int J Softw Eng Knowl Eng 19(04):573–597
Wong WE, Debroy V, Choi B (2010) A family of code coverage-

based heuristics for effective fault localization. J Syst Softw
83(2):188–208

Wong WE, Debroy V, Golden R, Xu X, Thuraisingham B (2011) Effec-
tive software fault localization using an RBF neural network.
IEEE Trans Reliab 61(1):149–169

Wong WE, Debroy V, Gao R, Li Y (2013) The DStar method for effec-
tive software fault localization. IEEE Trans Reliab 63(1):290–308

Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on
software fault localization. IEEE Trans Softw Eng 42(8):707–740

Wong E, Wei T, Qi Y, Zhao L (2008) A crosstab-based statistical
method for effective fault localization. In: 2008 1st international
conference on software testing, verification, and validation. IEEE,
pp 42–51

Xiao X, Pan Y, Zhang B, Hu G, Li Q, Lu R (2021) ALBFL: a novel
neural ranking model for software fault localization via combin-
ing static and dynamic features. Inf Softw Technol 139:106653

Yang Y, Deng F, Yan Y, Gao F (2019) A fault localization method
based upon conditional probability. In: Proceedings of the 19th
international conference on software quality, reliability and secu-
rity companion (QRS-C). IEEE

Zhang Z, Lei Y, Tan Q, Mao X, Zeng P, Chang X (2017) Deep learn-
ing-based fault localization with contextual information. IEICE
Trans Inf Syst 100(12):3027–3031

Zhang Z, Lei Y, Mao X, Li P (2019) CNN-FL: an effective approach
for localizing faults using convolutional neural networks. In: 2019
IEEE 26th international conference on software analysis, evolu-
tion and reengineering (SANER). IEEE, pp 445–455

Zheng W, Hu D, Wang J (2016) Fault localization analysis based on
deep neural network. Math Probl Eng 2016:1820454

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://sir.unl.edu/portal/index.php

	Effective fault localization using probabilistic and grouping approach
	Abstract
	1 Introduction
	2 Related work
	3 Proposed work: CGFL
	3.1 Overview
	3.2 Example

	4 Experimental results
	4.1 Setup
	4.2 Used data set
	4.3 Evaluation metric
	4.4 Results
	4.5 Threats to the validity

	5 Comparison with related work
	6 Conclusion
	References

