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Abstract The malfunction variables of power stations are 
related to the areas of weather, physical structure, control, 
and load behavior. To predict temporal power failure is dif-
ficult due to their unpredictable characteristics. As high 
accuracy is normally required, the estimation of failures of 
short-term temporal prediction is highly difficult. This study 
presents a method for converting stochastic behavior into a 
stable pattern, which can subsequently be used in a short-
term estimator. For this conversion, K-means clustering is 
employed, followed by long-short-term memory and gated 
recurrent unit algorithms are used to perform the short-term 
estimation. The environment, the operation, and the gen-
erated signal factors are all simulated using mathematical 
models. Weather parameters and load samples have been 
collected as part of a dataset. Monte-Carlo simulation using 
MATLAB programming has been used to conduct experi-
mental estimation of failures. The estimated failures of the 
experiment are then compared with the actual system tem-
poral failures and found to be in good match. Therefore, 
to address the gap in knowledge for any future power grid 
estimated failures, the achieved results in this paper form 
good basis for a testbed to estimate any grid future failures.

Keywords Smart home · Short-term prediction · 
Stochastic behavior · K-means clustering algorithm · 
LSTM · GRU 

1 Introduction

A smart grid is an electricity network enabling a two-way 
flow of electricity and data with digital communications 
technology. This gives the ability of monitoring, managing, 
and automatic decision-making. Besides, smart grid uses a 
wide range of resources based on information technology 
techniques to enable new and existing guidelines in 
minimizing energy costs and reducing electricity wastes. 
The motivation for proposing the Long Short-Term 
Memory (LSTM) model are the Power station failures are 
characterized by unpredictable behavior due to various 
factors such as weather conditions, physical structure, 
control systems, and load behavior and achieving high 
accuracy in predicting power failures is essential for efficient 
grid management and preventing potential disruptions. 
However, due to the unpredictable nature of the failures, 
traditional methods may struggle to provide accurate short-
term predictions in addition to LSTM model is integrated 
into a larger framework that includes K-means clustering for 
pattern recognition and Monte Carlo simulation for accurate 
temporal prediction.

According to Ali et al. (2013), the smart grid is one of 
the most complicated and largest systems considering the 
design and building processes, although it is one of the 
easiest to use. It uses all kinds of power plants (including 
hydro, solar, coal, nuclear, wind turbine, and natural gas, 
among others), substations, transformers, and high-voltage 
transmission lines (Hasan et al. 2019), therefore, there is 
the need for a demand-responsive electrical grid with high 
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efficiency of energy use. The traditional grid uses a one-way 
limited interaction, in which power flows to the consumers 
from the power plant. In contrast, the smart grid introduces 
a two-way interchange which involves the exchange of both 
information and electricity, in both directions (between 
consumer and power utilities). The growing network of 
computers, automation, control, and communications are 
instrumental in making the grid “greener”, more reliable, 
more secure, and more efficient (Hasan et al. 2019). The 
major issues in the existing methods are unpredictable 
characteristics, complexity of data, temporal dependencies, 
high accuracy requirement, data preprocessing challenges 
and model selection and tuning.

This data could be useful when being set to work with 
different aspects or dimensions of smart grid such as 
integration with renewable energy sources, management 
of intermittent power supplies, real-time data responses as 
well as the energy pricing strategies among others (Jakkula 
and Cook 2007). As such, it becomes a necessity that we 
would develop the right tools and methods which could 
help in conserving the energy by gathering the data from 
the smart grid using sensors which could then be used to 
recognize patterns from previous data and forecast or predict 
to conserve energy in the smart grids.

Some of the algorithms that could be used for prediction 
are related to deep learning algorithms like Long-short term 
memory (LSTM), Recurrent Neural Network (RNN), Gated 
Recurrent Unit (GRU). In this work, the used predictor is the 
most efficient one of them, in terms of accuracy and delay.

LSTM is an RNN variant that is meant specifically for 
time series data. The LSTM is used in addressing this 
problem in addition to empowering RNNs algorithms using 
internal memory cells (Li et al. 2020; Bui et. al. 2020).

RNNs are a form of neural networks that adopt the 
feedback connections in various nodes in remembering 
the previous time steps values. As such, they can capture 
the time series data’s temporal behaviour (Tealab, Ahmed, 
2018).

GRU is a kind of gated RNN which is largely used in 
mitigating the gradient vanishing problem of RNNs using 
gating mechanism in addition to making the structure 
simpler without interfering with the effect of LSTM neural 
network (Luo et al. 2021).

However, since these prediction methods are based on 
regression techniques, which tries to find a common pattern 
for the historical samples to use to predict future values. 
Considering our application, the historical samples from the 
energy generators and the load of the smart city may not 
have a constant pattern. This is due to the stochastic behavior 
of the environment. Therefore, to convert this dynamicity to 
a static pattern, in this work, K-Means clustering algorithm 
is used.

K-means clustering algorithm refers to a simple 
unsupervised learning algorithm used in solving clustering 
problems which is useful in clustering analysis. According 
to (Xu et al. 2020), the algorithm is applied using certain 
procedures that classify a certain set of data into clusters 
defined by the letter “K”.

Our methodology in this work is to convert the stochastic 
behavior of the attributes into an accurate pattern using a 
clustering algorithm (i.e., K-means). This allows us to 
be able to identify their fitting curve and use a suitable 
regression-based algorithm (i.e., LSTM and GRU) for an 
accurate short-term prediction.

The main objective of this work is to propose a method 
that allows enhancing the accuracy of the short-term 
generated power prediction for the smart grid environment.

Although several works have tackled the problem of the 
prediction in the SmartGrid context, most of these works 
focus only on the long-term prediction. The advantage of 
long-term prediction is in bringing long-term strategy and 
planning, however, the methods that are currently used for 
this task provide accurate predictions.

The methodology focuses on modelling of the 
environment.

The main objective of this work is to propose a method 
that allows enhancing the accuracy of the short-term 
generated power prediction for the SmartGrid environment.

While the proposed techniques for predicting power 
station failures in the Smart Grid offer several advantages, 
they also come with certain limitations are data dependency, 
computational complexity, overfitting, interpretability and 
limited explainability.

The main contributions to the existing body of knowledge 
that this study will make include:

1. Identify the most useful factors that affect the accuracy 
of the Smart Grid short term prediction process.

2. Implement a model (or a combination of already existing 
models) for recognizing patterns of failure in the Smart 
Grid.

3. Identification of the best deep learning algorithm to 
mine data from a synthetic testbed.

4. Providing a solution that enhances the protection level 
for smart grid dynamic environment against failures.

Our knowledge gap contribution in this work is to convert 
the stochastic behavior of the attributes into an accurate 
pattern using a clustering algorithm (i.e., K-means). This 
allows us to be able to identify their fitting curve and use a 
suitable regression-based algorithm (i.e., LSTM and GRU) 
for an accurate short-term prediction.

The paper is organized as follows: First, we provide 
an introduction to the topic and its significance. Next, we 
review the relevant literature to establish the context and 
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background for our study. We then outline the methodology 
used in our research, followed by a description of the 
experiments conducted. The results of these experiments are 
presented and analyzed. Finally, we discuss our conclusions 
and suggest potential directions for further research. The 
paper concludes with a list of references.

2  Related works

Efficient delivery of energy resources to the smart 
grid requires a balanced energy demand and supply by 
developing energy resource management strategies. 
However, the significant fluctuations in energy demand and 
supply enhance the challenges in the development of these 
energy resource management schemes. This problem has 
been tackled using different approaches in follows:

For instance, this work (Yu et. al. 2015) developed several 
approaches to predict energy supply and demand effectively. 
The study then develops machine learning-based methods 
for accurate energy consumption and generation forecasts. 
Lastly, the study used the prediction results to establish 
energy consumption upper and lower bounds realizing 
optimal demand and anomaly detections.

The problem is the smart meters acquire large amounts of 
data through sophisticated signal processing algorithms. The 
methodology will be applied in the study for it will the first 
develops a new classification scheme that categorizes users 
based on their consumption patterns. The study will then 
test the proposed and benchmarked models. Additionally, 
this research uses semi-Markov models to generate more 
extensive and more realistic test data due to insufficient 
power consumption data (Tornai et. al. 2016).

The problem in electrical load prediction is a fundamental 
factor in the planning, operations, and resource management 
within the grid system. The numerous restructurings of the 
grid and the integration of new devices to the grid heighten 
the need for forecasting to better plan for energy supply 
and demand. The study assesses the prediction model’s 
performance and effectiveness against several metrics 
(Chemetova et. al.2017).

The problem in harvesting various renewable energy 
forms led to the use of the smart grids integrated with 
photovoltaic (PV) power. However, various atmospheric 
conditions, for instance, rain, affect solar irradiance 
occurrence. This solution proposes the adoption of wavelet 
transform and Elman Neural Network (WT- ENN) for short-
term solar energy production and irradiance forecasting. 
Also, the study reconstructed solar irradiance using the 
prediction model and the new coefficients. The prediction 
model’s performance was then assessed using two real-world 
data solar irradiance datasets (Huang et. al. 2019).

The problem of Smart grid systems allowing consumers 
to use more energy from the grid or vend it back to the 
grid for other consumers. Smart homes with photovoltaic 
systems can establish the daily energy yield. This solution 
recommends the use of multi-layer perceptron based on 
photovoltaic forecasting on rooftop PV systems. The study 
then trains its historical data, conducts cross-validation, 
and tests the model using real-world PV data (Parvez et. 
al. 2020).

Smart grids offer better integration of power systems 
between energy producers and consumers. The bidirectional 
nature of these smart grids calls energy consumption 
optimization measures to maintain the grid’s reliability 
and supply-demand balance. The solution evaluates the 
available short-term energy consumption prediction models 
to determine next-day energy consumption forecasts at 
one-hour intervals, realizing a 24-point forecast. This 
methodology conducted a thorough assessment of various 
high-level machine algorithms adopted to forecast and 
evaluate the various model instances (Petrican et. al. 2018).

The problem is Efficient energy delivery in the smart grid 
requires adopting energy resource management strategies 
that balance energy supply and demand. This solution 
proposes several techniques that accurately model and 
predict energy production and demand over time. Similarly, 
the study recommends modeling analyses that statistical 
output models of energy consumption and machine learning 
approaches improve prediction accuracy (Yu et. al. 2014).

Several countries continue to record an increase in their 
solar power capacity connections to the distribution grids. 
Adopting the smart grid concept has since contributed to 
this increase. The solution study suggests a new forecasting 
model that uses autoregressive models and gradient boosting 
algorithms. The researchers propose a model that overcomes 
the information and communication technology (ICT) 
limitations to promote solar energy forecasts at secondary 
substation levels. It then combined the values obtained from 
various distributed sensors (Bessa 2014, November).

Various new technology appliances that consumers 
currently use in their households overwhelm the existing 
smart grid infrastructure as they were initially not developed 
to support these devices. This solution proposes the 
implementation of various methods energy providers can 
improve their energy consumption forecasts for households 
despite their variability in electrical appliance usage. The 
authors assess the existing prediction models and their 
significance. Then describes various modeling techniques 
that assess the existing statistical approaches and machine 
learning algorithms (Lauer et. al. 2019).

Internationally, photovoltaic systems already are amongst 
the most extensively employed kinds of renewable energy. 
Still, photovoltaic energy is exceedingly unpredictable as 
it is subject to the elements. This presents challenges for 
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network operators in terms of integrating, controlling, and 
operating this form of energy. Hence, the significance of 
renewable energy forecasting is growing in importance 
as a strategy for effectively managing the integration of 
renewable energy into the electrical grid. The focus of 
this research is a comparison of available algorithms for 
analyzing energy data. The following algorithms and a solar 
production database for smart houses have been proposed for 
this purpose: The Three Neural Networks: LSTM, FFNN, 
and GRU.This study utilized working on Data from 300 
randomly chosen solar customers in the Ausgrid electricity 
grid area were used. From July 1, 2010, through June 30, 
2013, we collected data on consumption. Both normal 
electricity usage for always-supplied electricity and load-
controlled electricity consumption are stored here (Souabi 
et al., 2023).

Eco-friendly generators, and in particular wind 
generators, have emerged as a solution to the electric 
demand problem in light of projections of fossil fuels 
depletion in the coming years and the detrimental impact 
they have due to the exhaust gases they emit. Since the 
output power of wind turbines is reliant upon the variable 
as well as intermittent behavior of wind speed, it is 
problematic to maximize the employment of this renewable 
energy source. Most studies have basically focused on 
the development of novel algorithms, but none of these 
investigations have encompassed a pre-processing phase of 
the data in an effort to get as much beneficial information as 
possible from prevailing datasets. The aim of this research 
endeavor entails exploring the potential for boosting the 
precision of existing wind speed forecasts for a 10-minute 
time frame by integrating time-frequency decomposition 
techniques with varied machine learning approaches. The 
error metrics obtained indicate that the newly developed 
wind speed forecasting model achieved a level of accuracy 
within 0.1% of the validation database approximately 62% 
of the time. In this study, the average wind speed, monthly, 
and hourly numbers from the database were used as input 
to simple models, and the findings were then used. After 
the forecasters have been trained, their true accuracy can 
be measured against a validation dataset (Rodríguez et al. 
2023).

In order to increase customer satisfaction with bike 
sharing programs, it is important for managers to accurately 
predict trip demand in order to better manage the distribution 
and relocation of bikes. In recent years, a plethora of deep 
learning techniques have been put forth with the aim of 
improving the accuracy of bicycle utilization prediction. To 
capture spatial-temporal dependency in past trip demand, 
it is common to combine convolutional CNN-RNN. The 
convolution process in a regular CNN is often carried out 
by a kernel that “walks” over a “matrix-format” city in order 
to extract features over geographically close neighborhoods. 

In this study, Singapore has implemented a single dockless 
bike sharing system alongside four station-based system 
in London, New York, and Washington D.C. are used to 
compare and contrast the concept with a set of benchmark 
models. It compares IrConv+LSTM to other benchmark 
models and finds that it performs better across all five cities 
(Li et al. 2023).

Control centers make extensive use of short-term load 
forecasting to investigate shifting consumer load patterns 
and anticipate the load value at a future time. It is a crucial 
piece of equipment for building a smart grid. There are a 
wide variety of influences on the load parameters. To begin, 
in this research we reconstruct data using several feature 
parameters and feed it into a ResNeT network to extract 
features. Second, LSTM is fed the recovered feature vector 
to make near-term load predictions. Finally, the proposed 
combination technique is compared to other models using 
a real-world example, demonstrating its superiority through 
the verification of the examination of the viability and 
superiority of input parameter feature extraction. This study 
employed the application of short-term load forecasting, 
wherein the model was compared against various methods 
inclusive of MLR, CNN, LSTM, CNN-LSTM, as well as 
ResNet for the aim of short-term load forecasting. Each 
of the models essentially makes predictions for three time 
periods: December 1, 2010; December 1 to December 2, 
2010; as well as December 1 to December 7, 2010 (Chen 
et al. 2023).

The precise and effective prediction of load is highly 
important for ensuring the stable operation and scheduling 
of contemporary power systems. Nevertheless, the nature of 
load data typically exhibits nonlinearity and non-stationarity, 
posing challenges for achieving precise forecasting. 
While certain serial hybrid models have demonstrated 
effectiveness in extracting spatiotemporal features from 
load data, the sequential extraction of features is found to 
be inefficient as it results in the loss of significant features. 
The primary objective of this study is to investigate a novel 
ensemble framework that can be utilized for short-term load 
forecasting. The proposed framework utilizes parallel CNN 
and GRU, incorporating an enhanced variant of the iResNet. 
Primarily, the raw data is subjected to preprocessing 
techniques purposed for reconstructing the electrical 
characteristics. Besides, (CNN) is responsible for extracting 
spatial features, whereas the (GRU) is employed for 
extracting temporal features. Subsequently, the integration of 
the two features extracted is achieved through the utilization 
of an attention mechanism that operates dynamically. The 
iResNet model is utilized to accurately forecast power 
consumption. This research employed the use of working. 
This paper introduces an innovative ensemble framework 
for predicting short-term load. The framework combines 
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parallel CNN and LSTM models, while integrating the 
iResNet architecture (Hua et al. 2023).

3  Materials and methods

To realize our proposed solution, we need first to identify 
the environment model, which in this case includes a 
photovoltaic grid. Then the process of generating the 
energy depending on the physical structure and the weather 
conditions in addition to the generated signal needs to be 
modelled and then simulated. After this, the generated 
data are clustered using the K-means clustering algorithm. 
Finally, (Long-Short-Term Memory) LSTM and (Gated 
Recurrent Unit) GRU are used to provide the short-term 
predictions.

3.1  Environment and PV Model

The earth rotates around the sun approximately 8766 h about 
365.242 days. Earth is closest to the Sun (147million km) on 
January 2, and this point is called perihelion.

Specific points on earth aligned with sun position. It’s 
determined by two angels; they are altitude angle (α) and 
azimuth angle �s

The altitude angle is the angular height of the sun is 
measured from the horizontal. The altitude angle can be 
given by: (Duffie et al. 2013).

where, L : attitude of the location, ξ: Angle of declination, 
ω: Hour angle.

The declination angle is between Earth sun vector and 
equatorial plane its calculated degree, arguments to trig 
function noted in radian mode (Duffie et al. 2013).

(Iqbal 1983), noted hour angel ω is the angular displace-
ment of the sun local point is given by:

AST the true daily motion of solar time is given by a 
daily apparent solar motion of true observed sun. AST is 
constructed on the actual solar day. The two intervals fall 
between two consecutive returns of local meridian and the 
sun. Solar time is illustrious as, (Duffie et al. 2013).

(1)sin � = sin L sin � + cosL cos � cos�

(2)

(3)� = 15◦(AST − 12h)

(4)AST = LMT + E0T ±
40

(LSMT − LOD)

LMT  : Local meridian time, LOD : Longitude, LSMT  : 
Local standard meridian time, E0T  : Equation of time, AST  : 
Apparent solar time, h: Hour.

(Iqbal 1983), the LSMT  is a reference meridian used for a 
particular time zone, used for Greenwich Mean Time.

LSMT is given by:

(Duffie et al. 2013), The E0T  is the difference between 
apparent and mean solar times, both taken at a given 
longitude at the same real instant of time.

E0T  is given by:

where, B can be given by;

where, N: Day number defined as the number of days 
elapsed each year up to a particular date (Iqbal 1983).

Angular displacement of the Sun reference line from 
the source axis, (Duffie et al. 2013). The azimuth angle 
can be given by:

The solar source model is to estimate the emitted 
radiation from the Sun. The function of the temperature is 
described as radiant energy of emitting objects.

We associate radiating energy with the blackbody. A 
blackbody is defined as a perfect absorber and emitter. A 
perfect absorber can absorb all the received energy with 
any reflections, (Planck 1914).

Planck’s law describes the wavelengths emitted by a 
blackbody at a specific temperature as follows:

E� : Total emissive per unit area of blackbody emission 
rate (W/m2 µm), T: Absolute temperature of the blackbody 
(K), λ: Wavelength (µm).

Solar radiation value outside the atmosphere varies as 
the Earth orbits the Sun. Therefore, the distance between 
the Sun and the Earth must be considered in modeling 
extraterrestrial solar radiation. (Duffie et al. 2013). Thus, 
the ( Gex ) is given by:

(5)LMST = 15◦TGMT

(6)EoT = 9.87 sin (2B) − 7.53 cosB − 1.5 sinB

(7)B =
2�

365
(N − 81)

(8)sin � =
cos � sin�

cos �

(9)E� =
3.74 × 108

�5
[
exp

14,40

�T

]
− 1

(10)Gex = G0

[
Rav

R

]2
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where, Gex : Extraterrestrial solar radiation. G0 : Solar con-
stant. Rav : Mean distance between the Sun and the Earth. 
R : Instantaneous distance between the Sun and the Earth 
depends on the day of the year or day number.

There are different approximations for the factor 
( Rav∕R) in the literature (Iqbal 1983). A recommended 
approximation can be given by:

By substituting Equations (11, 10)
The extraterrestrial solar radiation unit of time falling at a 

right on square meter of a surface can be given by:

Once the surface faces the Sun (normal to a central ray), 
the solar irradiance falling on, is Gex , utilizes maximum solar 
radiation at that distance. If the surface is not normal to the 
Sun, the solar radiation drops on it will be decreased by 
cosine of the angle between the surface normal and a central 
ray from the Sun (Duffie et al. 2013).

Thus, the extraterrestrial solar radiation on a horizontal 
surface located in a specific location ( GexH ) can be calculated 
by: (Iqbal 1983).

where, φ: Solar zenith angle.
(Duffie et al. 2013). The solar zenith angle value is equal 

to the altitude value, and thus Equation (13) can be rewritten 
as follows:

Finally, the total extraterrestrial solar energy Eex (Wh/m2) 
is calculated as follows: (Duffie et al. 2013).

There are several components of a solar radiation on a 
tilted surface are in addition to the direct (GB,�) and diffuse 
(GD,�) solar radiation, reflected solar radiation ( GR) is added 
to form the global solar radiation incident on a tilted surface 
(Duffie et al. 2013).

(Iqbal 1983). The solar energy components on a 
horizontal surface as follows:

(11)
[
Rav

R

]

= 1 + 0.0333 cos
[
2�N

365

]

(12)Gex = G0

(
1 + 0.0333 cos

[
2�N

365

])

(13)GexH = Gex cos�

(14)
GexH = G0

[
1 + 0.0333 cos

[
360N

365

]]
sinL sin � + cos L cos � cos�

(15)Eex =
Tss

∫
Tsr

GexHdt

(16)GT ,� = GB,� + GD,� + GR

(17)GT ,� = GBRB + GDRD + GT�RR

where, RB , RD , and RR:are coefficients. � : Ground Aledo. 
RB : Ratio between global solar energy on a horizontal 
surface and global solar energy on a tilted surface. RD : 
Ratio between diffuse solar energy on a horizontal surface 
and diffuse solar energy on a tilted surface, RR : Factor of 
reflected solar energy on a tilted surface.

The finding of solar energy components on a tilted 
surface is to estimate the coefficients RB , RD , and RR . Used 
model for calculating RB is the Liu and Jordan model (Liu 
and Jordan 1963).

The surfaces in the southern hemisphere, the slope 
toward the equator RB is given as:

The most recommended formula RR is:

RD Have been classified into isotropic and anisotropic 
models.

Four statistic errors are used, which are:

1. (MAPE ): Mean absolute percentage error.
2. (MBE ): Mean bias error.
3. (MAE ): Mean absolute error.
4. (RMSE ): Root mean square error.

(Hyndman et  al. 2006), The general accuracy of a 
neural network can be highlighted by MAPE . MAPE can 
be defined as follows:

where, M : Measured data. P : Predicted data.
(Willmott et al. 2005), The information of long‐term 

performance of the neural network model can also be 
evaluated by MBE . MBE can be calculated as follows:

(Willmott et al. 2005), The mean absolute error MAE : 
is a measure of errors between paired observations 
expressing the same phenomenon. Examples of Y ver-
sus X include comparisons of predicted versus observed, 
subsequent time versus initial time, and one technique of 

(18)RB =
cos (L − �) cos � sin�ss + �ss sin (L − �) sin �

cos L cos � sin�ss + �ss sinL sin �

(19)RB =
cos (L + �) cos � sin�ss + �ss sin (L + �) sin �

cos L cos � sin�ss + �ss sinL sin �

(20)RR =
1 − cos �

2

(21)MAPE =
1

n

n∑

t=1

|
|
||

M − P

M

|
|
||

(22)MBE =
1

n

n∑

i=1

(Pi −Mi)
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measurement versus an alternative technique of measure-
ment. MAE is calculated as:

where, yi : Prediction, xi : True value, n: Total number of 
data points.

The final statistic error is RMSE ; it represents the 
measurement of the variation of the predicted data around 
the measured data. (Chai et al. 2014).

The short‐term performance information of the model can 
be evaluated by RMSE:

3.2  Problem definition and proposed Model

Having identified the models for the environment, the 
operation, and the generated signals, now the problem of 
the accurate generated power prediction can be formulated 
as below.

The above definition is a min-max-optimization problem,
where, P : PV power output, η : Is conversion efficiency of 

PV module. QS : Respects the thermal energy losses through 
radiation and convection heat transfer from modules.

While the optimization variables can be defined as:

However, a problem with all these variables can be 
defined as an NP-Hard problem. And cannot be solved using 
traditional optimization techniques. Therefore, to solve this 
problem we will follow the below methodology.

After having modelled the environment, the operation, 
and the signals to generate the patterns that are like the real 

(23)MAE =

n∑

i=1

(|
|yi − xi

|
|

n

)

(24)RMSE =

√√√
√1

n

n∑

i=1

(Pi −Mi)
2

F(A∗) =

(

max
0≤�≤1

P, �, min
0≤QS≤1

QS

)

patterns of the physical instruments, this pattern is clustered 
using k-mean clustering algorithm.

After that, we implement a Monte-Carlo simulation with 
the identification of all the bounds of the remained stochastic 
variables, and the optimization outputs, as mentioned in 
the above table. Inside the iterations of this simulation, 
Particle Swarm Optimization (PSO) algorithm, which is 
a metaheuristic stochastic-based algorithm, is applied to 
identify the optimal values of the selected optimization 
variables.

After finding the optimal values of the parameters, these 
parameters as well as the output values, will be used in addi-
tion to the current and previous loads to produce the short-
term prediction, for example, LSTM or GRU algorithms will 
be used in this phase. The below Fig. 1 shows the block 
diagram of our proposed solution. The below figure sum-
marizes this proposed method.

The main parameters which are tried to improve by the 
author are achieving high accuracy in predicting power fail-
ures is a primary objective. The author seeks to improve 
the accuracy of short-term predictions by addressing the 
challenges posed by the unpredictable nature of power fail-
ures and the complex interaction of various factors such as 
weather conditions and load behavior, Exact optimal values 
for the future predicted of the P, QS , and efficiency for using 
LSTM, GRU algorithms. And statistic errors. In the predic-
tion phase, initially LSTM, see Fig. 2a, has been selected 
with training input is the output of the clustering phase with 
size of 1400 × 34and then this and 300 hidden layers with 
three output signals, representing the next or the future tem-
poral values of n, p and the Qs in the LSTM we have used 
look up in order to use only the most useful or the most 

related samples in building that pattern. Moreover, GRU, 
see Fig. 2b, followed the same structure to compare both 
algorithms using the same benchmark to be able to figure 
out which one provides us with the most accurate future 
temporal value, and which one provides us with a most with 
the fastest processing time.

Fig. 1  Methodology block 
diagram
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3.3  Datasets 

Regarding the load, we have acquired it from a with short-
term slots of a frequency of 5min which is very useful 
for our application in short-term prediction. This dataset 
(Dataset employed by this research can be retrieved from UK 
Smart Grid Industry 2021-2024) contains 371 samples each 
sample is 5min separated from the other sample from the 
period of the first of January to the second of January in the 
year in the previous year 2020.This dataset was generated 
from a real site located in London city in the UK. The exact 
coordinates are 51.5074°N, 0.1278°W.

3.4  Results

Modelling the sun’s position for a specific location like 
London involves predicting where the sun will be in the sky 
at different times of the day and year. This process considers 
factors like the latitude and longitude of London, the date 

and time, and the Earth’s tilt and orbit. By understanding the 
sun’s position, we can better analyze how sunlight interacts 
with the area, impacting variables such as temperature and 
solar radiation. This modelling helps in various applications, 
from urban planning to renewable energy development.

In Fig. 3, two plots depict aspects of the sun’s position 
in London throughout the year. The first plot illustrates the 
alpha angle, which represents the sun’s position from day 0 
to day 350. This angle helps visualize how the sun’s posi-
tion changes over the course of the year relative to London’s 
coordinates. The second plot shows Theta, another angle that 
describes the sun’s position over time at the same location. 
Both plots provide valuable insights into the sun’s move-
ments and can aid in understanding factors like daylight 
duration and solar energy availability in London through-
out the year.

Figure 4, below chooses the hourly extraterrestrial solar 
radiation profile for 16 days of January, each plots of this 

Fig. 2  GRU and LSTM Structures

0 50 100 150 200 250 300 350 400

20

30

40

50

60
Alpha

0 50 100 150 200 250 300 350 400
40

60

80

100
Theta

Fig. 3  The alpha angle of the sun position

450 500 550 600 650 700 750 800 850 900 950
LMT

-50

0

50

100

150

200

250

300

350

400

450

G
ex

tH

Hourly extraterrestrial solar radiation profile for 16 days

Fig. 4  The hourly extraterrestrial solar radiation



Int J  Syst  Assur  Eng  Manag 

16 plots for a specific date is shown that the plots almost 
similar to each other but the related plot for corresponding 
days increase with the increase of that day which means the 
peak value of each day as increasing according to the day 
number for example day 1 we have the value around 350 for 
day 2 its around 360 and so on the big value .the x-axis here 
is (LMT) and y -axis the (GextH).While Fig. 5 shows five 
minutes step for only one day.

Figure 6a displays the solar radiation data recorded at 
five-minute intervals for a single day in January. This data 
provides insights into the intensity of sunlight received at 
the specified location in London during that time period. 
On the other hand, Fig. 6b showcases the diffuse solar radi-
ation specifically for the same day in January and at the 

same five-minute intervals. Diffuse solar radiation refers 
to sunlight scattered by the atmosphere before reaching the 
Earth’s surface, and its measurement aids in understanding 
the distribution of sunlight in the area. These plots offer 
detailed information on solar radiation patterns, crucial for 
various applications such as solar energy planning and build-
ing design.

Figure 7 presents samples of global solar radiation and 
diffuse solar radiation for specific days, including the first 
day, day 50, day 100, day 180, day 250, and day 360. Each 
sample day provides insight into the variation of solar 
radiation throughout that particular day. The data is based 
on 60-minute intervals of solar radiation measurements 
for each day. By observing these variations, we can gain a 
better understanding of how solar radiation fluctuates over 
the course of a day and how it may change from one day to 
another. This information is valuable for predicting future 
solar radiation patterns and can aid in various applications 
such as energy production forecasting and solar panel effi-
ciency optimization.

The analysis of Figs. 1, 2, 3, 4, 5, 6, 7 reveals a notable 
observation: the position of the sun for the same day var-
ies across different years. This variability is a fundamental 
characteristic of natural phenomena, including wind pat-
terns, dust levels, shading effects, and more. As depicted 
in the figures, these natural factors exhibit stochastic 
behavior, meaning they follow random and unpredict-
able patterns. Since electricity generation from renewable 
resources is heavily influenced by these factors, predict-
ing the amount of energy generated becomes a complex 
challenge. Recognizing this challenge, this study contrib-
utes by developing a methodology aimed at addressing 
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the issue of short-term prediction for energy generation 
reliant on renewable resources and their associated factors. 
By devising techniques to forecast the short-term future 
energy output under the influence of these stochastic natu-
ral elements, this research aims to enhance our ability to 
effectively utilize renewable energy sources despite their 
inherent unpredictability. This contribution is crucial for 
improving energy planning and management in the context 
of renewable energy systems.

4  Discussion

Figure 8 displays the generated signals comprising 1000 
normal and 1000 faulty signals, with each signal charac-
terized by 34 features. These signals have been produced 
utilizing the stochastic features of Monte Carlo simulation, 
adding a layer of randomness and variability to the dataset. 
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This dataset serves as a testing ground for evaluating the 
performance of the prediction model. By incorporating 
stochastic elements into the signal generation process, the 
dataset reflects real-world scenarios where various factors 
contribute to signal behavior unpredictability. Testing the 
prediction model with such a diverse and realistic dataset 
enables researchers to assess its robustness and effective-
ness in accurately predicting outcomes despite inherent 
stochasticity.

In Fig. 9, we need to know the status of the pattern. 
Whether this signal is normal or a fault signal. The behav-
ior of the normal traffic and that the behavior faulty traffic in 
the real life is a little bit of stochastic that does not follow a 
stable pattern. Therefore, we will not be able to identify the 
exact features of the input pattern and the target for them. 
Therefore, our problem can be defined as a clustering prob-
lem, to solve this clustering problem, we have used k-mean 
clustering algorithm. The previously generated sample traffic 
has been sent to k-mean clustering algorithm then trained 
on it after that the clustering algorithm showed as a very 
clear recognition for the statues of traffic as shown in Fig. 9. 
The given pattern is found in the first column of the table 
and therefore the predicted pattern has been produced by 
the k-mean clustering algorithm and as we see here both 
are identical with no missing values. Therefore, when we 
calculated the loss, we found the loss low close to 0 which 
means that the accuracy is almost 100%.

4.1  Prediction final results (for LSTM)

Figure 10 depicts the plots of input training and target train-
ing, as well as input testing and target testing for the predic-
tion process, specifically using LSTM (Long Short-Term 
Memory) models. Additionally, it showcases the output 
of the prediction process. Remarkably, the output closely 
resembles the target testing data, indicating the effectiveness 
of the LSTM model in accurately predicting outcomes based 
on the input data. This alignment underscores the model’s 
capability to capture and learn from patterns in the training 
data, allowing it to make accurate predictions for unseen 
testing data. Such performance validates the utility of LSTM 
models in forecasting tasks, particularly in scenarios where 
temporal dependencies and long-range dependencies are 
prevalent Table 1.

Figure 11 illustrates the prediction process for forecasting 
future traffic based on recognized patterns. To achieve this, 
the identified parameters are fed into a prediction algorithm, 
specifically utilizing Long Short-Term Memory (LSTM), 
which has been determined to be the most effective recog-
nition technique through trial and error, as indicated in the 
accompanying table. The training, validation, and testing 
phases of the prediction process are visualized in Fig. 11. 
This process involves training the LSTM model on histori-
cal traffic data, validating its performance, and testing its 
predictive capabilities on unseen data. LSTM models are 

Fig. 10  The input training and target training input testing and targeted testing for the prediction process (LSTM)
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Table 1  While the definitions of the used notations and their ranges, are illustrated in the below table

Notation 
(Variable)

Definition Range Refs.

S Is the temperature surface area of PV module  − 55 to  + 150 Saloux et al. (2011) ; Sun et al. (2017)
β Is temperature coefficients of PV module 25–65 Sun et al. (2017)
γ Is solar irradiance coefficient of PV module 200–1000 W/m2 Mills and Schleich, (2012)
hr Heat transfer coefficient of radiation 0–1 Cao (2010)
hc Heat transfer coefficient of convection 2.5–5 W/(m2×K) Patil and Vijay (2012)
l Board length 150–165 cm Sun et al. (2017)
GT Is surface solar radiance flux on module plane 200–1000 W/m2 Mills and Schleich (2012)
VWS Wind speed 25–40 mph Sun et al. (2017)
φ Maximum power point 0.78–0.92 Sarvi et al. (2015)
θ Life cycle impact assessment 2742–2857 kW h/kW p Lamnatou et al. (2015)
f Life cycle inventory 10–25 Sun et al. (2017)
λ Auxiliary electricity demand 1 kM–160 kW Sun et al. (2017)
£ Cleaning of the panels 0.2–0.325 Al-Housani et al. (2019)
Б Maintenance $13–$25/kW/yr Al-Housani et al. (2019)
α Decommissioning, dismantling 20–30 years Mahani et al. (2019)
μ Waste processing 20–30 years Mahani et al. (2019)
� Front electrode deposition 20–30years Mahani et al. (2019)
� Electron transport layer deposition 20–30 years Mahani et al. (2019)
� Active layer deposition 20–30 years Mahani et al. (2019)

Back electrode deposition 20–30 years Mahani et al. (2019)

Hole transport layer deposition 20–30 years Mahani et al. (2019)

Fig. 11  Prediction (LSTM model and parameters)
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well-suited for this task due to their ability to capture long-
term dependencies in sequential data, making them a valu-
able tool for traffic prediction and forecasting applications.

In Fig. 12, the prediction task is performed using a differ-
ent approach: Gated Recurrent Unit (GRU), while utilizing 
the same input data. This comparison phase is conducted 
to evaluate the performance of GRU against LSTM. It’s 
evident from the results that GRU exhibits slightly faster 
computation compared to LSTM. However, this efficiency 
comes at the cost of a slightly higher error rate, approxi-
mately 1%. Despite the faster processing speed, the GRU 
model sacrifices a small degree of accuracy compared to 
LSTM. This trade-off highlights the importance of consid-
ering both speed and accuracy requirements when selecting 
the appropriate model for a given prediction task. Overall, 

the comparison between LSTM and GRU offers valuable 
insights into their respective strengths and weaknesses, aid-
ing in the selection of the most suitable model for specific 
predictive analytics applications.

In Table 2 conducting short-term predictions, the most 
efficient algorithm between Gated Recurrent Unit (GRU) 
and Long-Short Term Memory (LSTM) was utilized. The 
evaluation was based on several metrics including Root 
Mean Square Error (RMSE), Mean Absolute Percentage 
Error (MAPE), Mean Absolute Error (MAE), Mean Bias 
Error (MBE), and Accuracy. By employing these metrics, the 
goal was to identify the algorithm that provided predictions 
closest to the actual values. The comparison aimed to 
determine the algorithm that offers the most accurate and 
reliable predictions for the given dataset. Evaluating the 
performance of both GRU and LSTM models across these 
metrics allowed for a comprehensive assessment of their 
predictive capabilities. Ultimately, selecting the algorithm 
that minimizes errors while maximizing accuracy is crucial 
for achieving reliable short-term predictions.

After implementing the optimization algorithm, we have 
obtained the optimal below values for using LSTM and GRU 
algorithms. The below tables Illustrate the exact optimal 
values for the future predicted values of the P, QS , and the 
efficiency Table 3.

Fig. 12  Prediction (GRU model and parameters)

Table 2  LSTM and GRU final comparative results

Algorithm LSTM GRU 

Elapsed time (s) 0.157154 0.132256
accuracy 0.9956 0.9930
RMSE 0.0061 0.0099
MAPE 0.0025 0.0065
MAE 0.0048 0.0097
MBE 0.0048 0.0099
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5  Conclusions

Accurately estimating faults in the electric supply, which 
is based on data exhibiting stochastic behavior, poses a 
significant challenge. Two crucial factors in this estimation 
are weather conditions and load behavior. These factors 
require a thorough analysis of active generated power 
(QS, which indicates the quality of the solar resource) and 
the active efficiency of the photovoltaic (PV) grid. Our 
proposed solution leverages K-means clustering to convert 
this stochastic data into a recognizable pattern of faults, 
which can then be used for short-term predictions using 
Long Short-Term Memory (LSTM) and Gated Recurrent 
Unit (GRU) algorithms. These algorithms provide quick and 
accurate results due to their capability to handle sequential 
data and remember important information over long periods.

To further enhance the application of fault estimation, 
we used the results from K-means clustering as inputs for 
Monte Carlo simulations. Monte Carlo simulations are sta-
tistical techniques that utilize repeated random sampling to 
compute the results, enabling accurate temporal predictions. 
This method validates our initial assumption regarding the 
stochastic nature of the data. The outcomes demonstrate the 
high accuracy of short-term predictions based on this sto-
chastic approach. The dataset used for our research, obtained 

from the UK Smart Grid Industry (covering the period from 
2021 to 2024), comprised 371 samples with short-term slots 
at 5-minute intervals. This dataset proved to be highly effec-
tive for our short-term prediction application.

6  Future work

Future work will need to consider dynamic environmental 
changes imposed by emerging non-zero carbon policies. 
These changes will introduce new parameters in weather 
conditions and sunlight availability, which are critical 
for solar power generation. As a result, new factors such 
as temperature, wind speed, and humidity will need to 
be incorporated into the predictive models. Although 
the mathematical models presented in this paper have 
proven to be accurate, these new environmental factors 
will necessitate updates to the LSTM and GRU models 
to ensure continued accuracy in predictions. Specifically, 
future research should focus on refining these models 
to account for the varying impacts of these additional 
environmental parameters on solar power generation and 
fault estimation.

Table 3  Exact optimal values 
for the future predicted of the 
P, QS , and efficiency for using 
LSTM, GRU algorithms

Optimization variables Future predicted values of the P, QS , and the 
efficiency for LSTM

Future predicted values of the 
P, QS , and the efficiency for 
GRU 

S −40.3791 −31.6842
β 52.5599 64.1509
γ 548.9758 689.3164
hr 0.11198 0.060177
hc 3.4146 4.5122
l 158.5407 156.2825
GT 72.5209 367.3079
VWS 34.9638 34.2958
φ 0.78 0.78
θ 2773.0819 2752.9003
f 12.8308 12.5744
λ 176.2378 30.3052
£ 0.2 0.2
Б 16.9878 21.0931
α 28.4468 23.3764
μ 29.7625 26.4615
ξ 25.619 29.7124
� 25.5178 24.1549
� 23.7174 20

25.6212 27.932

29.7412 20.9187
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