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1  Introduction

The implementation of classical probability models is 
hugely convenient in many practical study disciplines, along 
with reliability, economics, health sciences, and perhaps 
other cutting-edge domains. For analyzing life-time data, 
the exponential and gamma distributions are ubiquitously 
used throughout probability distributions. New flexible dis-
tribution families have been created as a consequence of 
the limitations that traditional distributions face when inter-
acting with a diverse variety of real-world data [see Tyagi 
et al. (2022), Agiwal et al. (2023)]. Subsequently, numerous 
methodologies for converting traditional univariate distribu-
tions into bivariate distributions have been shown to work. 
For the analysis of bivariate data, a variety of distributions 
were put forward that extend numerous well-known univari-
ate distributions, such as the exponential, Weibull, Pareto, 
gamma, and log-normal distributions. (see for example, 
Gumbel (1960), Marshall and Olkin (1967), Sankaran and 
Nair (1993), Kundu and Gupta (2009), Sarhan et al. (2011)). 
The incredible accomplishments of constructing bivariate 
distributions using conditional and marginal distributions 
have garnered a lot of attention in latest years. Following 
that, other outstanding approaches for building bivariate 
distributions using order statistics have been put forth and 
researched; these methods include both absolutely continu-
ous and singular components and may be helpful when there 
are ties in the data. You may look at Dolati et al. (2014), 
Mirhosseini et al. (2015), and Kundu and Gupta (2017) for 
certain recent references. In addition to conventional meth-
ods, copula models have recently been utilized to character-
ize the dependence between random variables. The copula 
function, which links the marginals to the joint distribu-
tion, is frequently used in economics, biology, engineering, 
hydrology, and geophysics to illustrate the interdependence 
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of random variables. A copula is a multivariate distribu-
tion function with uniform one-dimensional margins on the 
unit interval [0, 1]. In this paper, I focus only on a bivariate 
copula for our analysis. A formal definition of the bivariate 
copula is as follows:

A function ℭ ∶ [0, 1] × [0, 1] ⟶ [0, 1] is a bivariate 
copula if it satisfies the following properties: 

	 (i)	 For every y1, y2 ∈ [0, 1]

 and 

	 (ii)	 For every y11, y12, y21, y22 ∈ [0, 1] such that y11 ≤ y12 
and y21 ≤ y22

Let (Z1, Z2) be random vector (RV) with joint DF �(.) , 
and marginals �1 and �2 , respectively, then Sklar 
(1959) says that there exists a copula function ℭ which 
connects marginals to the joint DF via the relation 
𝔉(z1, z2) = P(Z1 ∈ (0, z1), Z2 ∈ (0, z2)) = ℭ(𝔉1(z1),𝔉2(z2)) . 
If Z1 and Z2 are continuous, then the copula ℭ is 
unique; otherwise it is uniquely determined on 
Domain(�1) × Domain(�2) . The associated joint density 
is �(z1, z2) = �(�1(z1),�2(z2))�1(z1)�2(z2) , where � is copula 
density. A potent method of assessing a broad class of 
multivariate distributions based on marginals from several 
families is the copula approach. A copula with a sepa-
rately stated dependence structure and marginals can be 
employed to depict any joint DF. For a good source on 
copulas, one may refer Nelsen (2006) and Joe (2014). 
Copula methodologies may offer a versatile strategy for 
creating a broad class of bivariate lifetime distributions 
that can handle various types of data and recognize the 
two lifetimes of a single patient. For instance, the study 
of human organs related to kidneys or eyes, as well as the 
intervals between the first and second hospitalization for 
a certain ailment, may be of interest (see Rinne (2008), 
Bhattacharjee and Misra (2016)).

Numerous scholars in the statistical literature have con-
structed a vast amount of bivariate distributions to evalu-
ate lifetime data employing copula mechanisms. Bivariate 
generalized exponential distributions constructed from FGM 
and Plackett copula functions were taken into considera-
tion, and their uses were illustrated using actual data sets 
in the study Abd Elaal and Jarwan (2017). A FGM copula 
is used to embed a bivariate modified Weibull distribution 
in Peres et al. (2018). Using copula, Popović et al. (2018) 
studied the statistical characteristics of a bivariate Dagum 
distribution. Nair et al. (2018) illustrated a bivariate model 

ℭ(y1, 0) = 0 = ℭ(0, y2)

ℭ(y1, 1) = 1 and ℭ(1, y2) = y2

ℭ(y12, y22) − ℭ(y12, y21) − ℭ(y11, y22) + ℭ(y11, y21) ≥ 0.

through copula methodology for analyzing different lifetime 
data sets. Samanthi and Sepanski (2019) proposed a new 
bivariate extension of the beta-generated distributions using 
Archimedean copulas and discussed its applications in finan-
cial risk management. de Oliveira Peres et al. (2020) pro-
posed bivariate standard Weibull lifetime distributions using 
different copula functions and utilized them in real appli-
cations. Several other bivariate distributions using copula 
were put forward. Promiscuous crucial literatures includes 
(Saraiva et al. 2018; Taheri et al. 2018; Najarzadegan et al. 
2019; Almetwally et al. 2021; Abulebda et al. 2022, 2023; 
Tyagi 2022).

This research presents a bivariate Teissier (BT) model, 
and its different statistical features are investigated with an 
application to real data. The structure of this article is as fol-
lows: In Sect. 2, the fundamentals of the univariate Teissier 
model are explored. Utilizing the FGM copula with support 
from the univariate Teissier model, a family of the BT model 
is formulated. Expressions for the joint survival function 
(SF), joint hazard function (HF), and joint reversed hazard 
function (RHF) for the proposed BT model are provided in 
Sect. 3. Section 4 introduces concepts of dependence meas-
ures such as orthant dependence, hazard gradient function, 
Clayton-Oakes association measure, conditional probability 
measure, Spearman’s � , and Kendall’s � , along with their 
pertinent properties for the BT model. The estimation of 
BT model parameters is conducted in Sects. 5 and 6 using 
maximum likelihood estimation and Bayesian estimation 
paradigms. Confidence intervals for parameters are con-
structed under the respective estimation methods. Section 7 
encompasses data generation and several numerical experi-
ments, while Sect. 8 presents an application to real data. A 
comprehensive overview and reflection on the entire study 
are presented in Sect. 9.

2 � Bivariate Teissier model

The Teissier model was postulated to visualize the frequency 
of mortality owing to ageing mainly by Teissier (1934). 
Laurent (1975) reviewed the model and its classification 
based on life expectancy and looked at how it may be used 
in demographic research. Muth (1977) used this model to 
conduct a reliability analysis. Jodrá Esteban et al. (2015), 
who referred to it as the Muth model, determined the statisti-
cal characteristics of the Teissier model. In order to apply the 
Teissier model to reliability data, Jodrá Esteban et al. (2017) 
proposed the power Muth, a two-parameter extension. The 
Teissier model can be characterized by the DF, PDF, and 
SF shown below:

(2.1)�Z(z) =1 − e(�z−e
�z+1);z ∈ IR+, � ∈ IR+,
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respectively. Due to its convenient form, the FGM copula is 
one of the most well-known parametric families of copulas 
and has been extensively utilized in the literature. Morgen-
stern (1956) proposed the FGM family and was later stud-
ied by Gumbel (1958, 1960) using normal and exponential 
marginals, respectively. The FGM family of distributions 
was named after Farlie (1960), which expanded this family 
and established its correlation structure. The bivariate FGM 
copula is provided by

In order to achieve the wider implementations of the FGM 
copula in real applications, there have been several gener-
alized FGM copulas constructed and explored in the litera-
ture. Some of the recent references includes Amblard and 
Girard (2009) and Pathak and Vellaisamy (2016).

The bivariate distribution determined by FGM copula is

A new family of BT model via FGM copula is given by

A RV (Z1, Z2) is said to have a BT model with parameters �1 , 
�2 , and � if, its distribution function is given by (2.5), and is 
denoted by BT(�1, �2, �).

The joint density of the BT model �(z1, z2) defined in (2.5) is

The PDF depicted in Fig. 1 exemplifies a combination of 
parameters, displaying positive skewness and alternating 
between heavy-tailed and light-tailed characteristics. The 
PDF effectively captures skewed, heavy-tailed distributions 
common in real-world phenomena such as financial returns, 
extreme weather events, and rare diseases.

3 � Reliability properties

In determining if such a bivariate distribution can be 
employed to analyze a particular data format, statistical 

(2.2)�Z(z) =�
(
e�z − 1

)
e(�z−e

�z+1);z ∈ IR+, � ∈ IR+

(2.3)�Z(z) =e
(�z−e�z+1);z ∈ IR+, � ∈ IR+,

(2.4)ℭ(y1, y2) = y1y2[1 + �(1 − y1)(1 − y2)], � ∈ [−1, 1].

(2.5)

�(z1, z2) = �1(z1)�2(z2)

[1 + �(1 −�1(z1))(1 −�2(z2))]; � ∈ [−1, 1].

(2.6)
�(Z1,Z2)

(z1, z2) =
(
1 − e�1z1−e

�1z1+1
)(

1 − e�2z2−e
�2z2+1

)

(1 + �(e�1z1−e
�1z1−e�2z2+�2z2+2))

(2.7)

�(Z1,Z2)(z1, z1)

= �1�2
(
e�1z1 − 1

)(
e�2z2 − 1

)
e�1z1−e

�1z1−e�2z2+�2z2+2

(
�

(
2e�1z1−e

�1z1+1 − 1
)(

2e�2z2−e
�2z2+1 − 1

)
+ 1

)

features are absolutely critical. The BT model developed 
in this study is important because it can be used to inves-
tigate how reliable a system is when its two components 
work together. It is important to formulate a variety of 
reliability functions, including the SF, HF and RHF. The 
next subsections determine the aforementioned reliability 
anatomical features for the bivariate distribution.

3.1 � Survival function

There are numerous approaches to building the reliability 
function for the bivariate distribution, but I prefer to utilize 
the copula technique to describe the reliability function 
for the BT model by utilizing the marginal SF �(z1) and 
�(z2) where Z1 and Z2 the random variable and selection 
dependence structure.

Theorem 3.1  The joint SF for the copula is as following

where the marginal SF y1 = �(z1) and y2 = �(z2).

The reliability function of FGM-BT based on Eq. (3.1)

In Fig. 2, the structure of the SF is displayed for diverse 
parameter combinations. Notably, the SF shows a sharp 
decline in relation to the scrutinized variables z1 and z2 , 
indicating a prominent heavy-tailed distribution.

(3.1)�(z1, z2) = ℭ(�(z1),�(z2))

(3.2)

�(z1, z2) = e�1z1−e
�1z1−e�2z2+�2z2+2

(
1 + �

(
1 − e�1z1−e

�1z1+1
)(

1 − e�2z2−e
�2z2+1

))
.

Fig. 1   PDF BT model
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3.2 � Hazard function

Theorem 3.2  Let (Z1, Z2) having joint PDF �(z1, z2) and 
SF 𝜙(z1, z2) = P(Z1 ∈ (z1,+∞),Z2 >∈ (z2,+∞)) . Then the 
bivariate HF is defined as

respective conditional HF will be,

3.3 � Reversed hazard rate function

Theorem 3.3  Let (Z1, Z2) having joint PDF �(z1, z2) and the 
DF �(z1, z2) = P(Z1 ∈ (0, z1), Z2 ∈ (0, z2)) . Then the bivari-
ate RHF is defined as

(3.3)
H(z1, z2) =

�(z1, z2)

�(z1, z2)
.

H(z1, z2) =
�1�2

(
e�1z1 − 1

)(
e�2z2 − 1

)(
�
(
2e�1z1−e

�1z1+1 − 1
)(
2e�2z2−e

�2z2+1 − 1
)
+ 1

)

�
(
1 − e�1z1−e

�1z1+1
)(
1 − e�2z2−e

�2z2+1
)
+ 1

(3.4)

H(z1|Z2 = z2)

=

�1
(
e�1z1 − 1

) (2�e�1z1+e�2z2+1 + 2�ee
�1z1+�2z2+1.

−4�e�1z1+�2z2+2 − (� + 1)ee
�1z1+e�2z2

)

�e�1z1+e
�2z2+1 + 2�ee

�1z1+�2z2+1 − 2�e�1z1+�2z2+2 − (� + 1)ee
�1z1+e�2z2

(3.5)

H(z2|Z1 = z1)

=

�2
(
e�2z2 − 1

) (2�e�1z1+e�2z2+1 + 2�ee
�1z1+�2z2+1

−4�e�1z1+�2z2+2 − (� + 1)ee
�1z1+e�2z2

)

2�e�1z1+e
�2z2+1 + �ee

�1z1+�2z2+1 − 2�e�1z1+�2z2+2 − (� + 1)ee
�1z1+e�2z2

(3.6)

m(z1, z2) =
�(z1, z2)

�(z1, z2)
.

m(z1, z2) =

(�1 + �1z1(z1 + 1))(�2 + �2z2(z2 + 1))

(
�

(
(z1 + 1)�1e

�1z
2
1

2 − 2

)

(
(z2 + 1)�2e

�2z
2
2

2 − 2

)
+ (z1 + 1)�1(z2 + 1)�2e

1

2
(�1z21+�2z

2
2)
)

(
(z1 + 1)�1e

�1z
2
1

2 − 1

)(
(z2 + 1)�2e

�2z
2
2

2 − 1

)(
(z1 + 1)�1 (z2 + 1)�2e

1

2
(�1z21+�2z

2
2) + �

)

4 � Constructive dependence measure

4.1 � Orthant dependence

In the existing research, there are already several formulations 
of positive and negative dependency for multivariate distribu-
tions of wide variations degrees of intensity; for instance, see, 

Joe (2014). Positive upper orthant dependent (PUOD) is a term 
used to describe a RV (Z1, Z2) , iff,

and negative upper orthant dependent (NUOD) iff,

Similar to the first, the second states that a RV (Z1, Z2) is 
positive lower orthant dependent (PLOD) iff,

and negative upper orthant dependent (NLOD) iff,

(4.1)

P(Z1 ∈ (z1,+∞),Z2 ∈ (z2,+∞))

≥ P(Z1 ∈ (z1,+∞))P(Z2 ∈ (z2,+∞));∀z1, z2 ∈ IR+,

(4.2)

P(Z1 ∈ (z1,+∞),Z2 ∈ (z2,+∞))

≤ P(Z1 ∈ (z1,+∞))P(Z2 ∈ (z2,+∞));∀z1, z2 ∈ IR+.

(4.3)
P(Z1 ∈ (0, z1), Z2 ∈ (0, z2))

≥ P(Z1 ∈ (0, z1))P(Z2 ∈ (0, z2));∀z1, z2 ∈ IR+,
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The joint SF of the BT model, provided in Eq. (3.2), and 
the marginal SF given in Eq. (2.3) are already available. 
These equations facilitate the straightforward verification 
that (Z1, Z2) complies with (4.1). Additionally, with the joint 
DF of the BT model from Eq. (2.6) and the marginal DFs of 
Z1 and Z2 , it can be easily confirmed that (Z1, Z2) adheres to 
(4.3). Consequently, the RV (Z1, Z2) exhibits the PUOD as 
well as the PLOD when � ∈ (0, 1) . Therefore, the RV (Z1, Z2) 
with the BT model is POD in the case where � ∈ (0, 1) . Sim-
ilarly, if � ∈ (−1, 0) , the RV (Z1, Z2) is NUOD as well as 
NLOD. Thus, the BT model fulfills both NUOD and NLOD 
conditions, establishing that the BT model is NOD.

(4.4)
P(Z1 ∈ (0, z1), Z2 ∈ (0, z2))

≤ P(Z2 ∈ (0, z2))P(Z2 ∈ (0, z2));∀z1, z2 ∈ IR+.

4.2 � Hazard gradient function

Examining a bivariate RV (Z1, Z2) with a joint PDF �(z1, z2) 
and SF �(z1, z2) , the characteristics of the hazard aspects can 
be delineated, as expounded in Johnson and Kotz (1975).

and

The hazard gradient of (Z1, Z2) is expressed by the vector 
(�1(z1, z2), �2(z1, z2)) . Be circumspective that the failure rate 
of Z1 with the provided acquaintance Z2 > z2 is described 
by the expression �1(z1, z2) . The failure rate of Z2 provided 
that Z1 > z1 is �2(z1, z2) . Consequently, the hazard gradient 
for the BT model is

Proposition 4.1 

The next section examines the monotonic aspects of the 
conditional hazard rate functions and the hazard component 
functions for the BTM distribution using the totally positive 
order 2 (TP2).

4.3 � Local depandence

To understand how well the random variables Z1 and Z2 asso-
ciate with one another, a local dependence function called 
�(Z1, Z2) is established.

The characteristics of TP2 may be determined using 
�(Z1, Z2) . One might see Holland and Wang (1987) and 
Balakrishnan and Lai (2009) for a further understanding of 
�(Z1, Z2).

(4.5)�1(z1, z2) = −
�

�z1
ln�(z1, z2)

(4.6)�2(z1, z2) = −
�

�z2
ln�(z1, z2)

(4.7)�1(z1, z2) =
�1
(
e�1z1 − 1

)(
2�e�1z1+e

�2z2+1 + �ee
�1z1+�2z2+1 − 2�e�1z1+�2z1+2 − (� + 1)ee

�1z1+e�2z2
)

�e�1z1+e
�2z2+1 + �ee

�1z1+�2z2+1 − �e�1z1+�2z2+2 − (� + 1)ee
�1z1+e�2z2

(4.8)�2(z1, z2) =
�2
(
e�2z2 − 1

)(
�e�1z1+e

�2z2+1 + 2�ee
�1z1+�2z2+1 − 2�e�1z1+�2z2+2 − (� + 1)ee

�1z2+e�2z2
)

�e�1z1+e
�2z2+1 + �ee

�1z1+�2z2+1 − �e�1z1+�2z2+2 − (� + 1)ee
�1z1+e�2z2

(4.9)�(z1, z2) =
�2

�z1�z2
ln �(z1, z2)

Fig. 2   Survival BT model
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Proposition 4.2  Let (Z1, Z2) ∼ BTM(�1, �2, �) . Then

It is noteworthy to highlight that in the case of � = 0 , 
the function �(z1, z2) evaluates to zero. This implies that 
there is no statistically significant positive relationship 
between Z1 and Z2 . As elucidated by Holland and Wang 
(1987), a bivariate joint probability density function (PDF) 
f (z1, z2) is classified as TP2 if and only if 𝛾(z1, z2) > 0.

The TP2 characteristic of the BT model is addressed in 
the findings that follow.

Proposition 4.3  Let (Z1, Z2) ∼ BT(�1, �2, �) with the PDF 
f (z1, z2) as mentioned in (2.7). Then f (z1, z2) is TP2. Also, 
I have,

•	 With increasing z2 , H(z1|Z2 = z) is diminishing,
•	 �1(z1, z2) In z2 , is declining.

Remark 4.1  TP2 is a broader idea of dependence, as is 
widely recognized. TP2, right-tail increasing (RTI), asso-
ciation, PQD, covariance, and right corner set increasing 
(RCSI) have unintended consequence (see Nelsen (2006) 
and Balakrishnan and Lai (2009)).

Also,

The BT model so possesses each of these qualities.

4.4 � Clayton‑Oakes association measure

A local dependence method through survival function was 
mentioned in Oakes (1989) and is described as:

where �1(z1, z2) =
�

�z1
�(z1, z2) and �2(z1, z2) =

�

�z2
�(z1, z2) . 

The Clayton-Oakes association measure is valuable in bivar-
iate data analysis by quantifying the strength and direction 
of dependence between two variables. It aids in assessing 
event associations, handling censoring in survival data, com-
paring survival processes, identifying dependencies, and 

(4.10)�(z1, z2) =
4�1��2

(
e�1x − 1

)(
e�2z2 − 1

)
e�1z1+e

�1z1+e�2z2+�2z2+2

(
−2�e�1z1+e

�2z2+1 − 2�ee
�1z1+�2z2+1 + 4�e�1z1+�2z2+2 + (� + 1)ee

�1z1+e�2z2
)2

TP2 ⇒ SI ⇒ RTI ⇒ Association

⇒ PQD ⇒ Cov(Z1, Z2) ∈ (0,∞)

TP2 ⇒ RCSI

(4.11)l(z1, z2) =
�(z1, z2)�(z1, z2)

�1(z1, z2)�2(z1, z2)
,

evaluating model fit. Especially useful in survival analysis 
and epidemiology, this measure informs decision-making, 

risk assessment, and understanding correlations in various 
fields.

Proposition 4.4 

where A = ee
�1z1+�2z2+1 ; B = ee

�1z1+e�2z2

R e m a r k  4 . 2   B y  u s i n g  t h e  f o r m u l a 
H(z1|Z2 = z2) = l(z1, z2)�1(z1, z2), i t  i s  poss ib le  to 
determine the conditional HF. To put it another way, 
H(z2|Z1 = z1) = l(z1, z2)�2(z1, z2).

4.5 � Conditional probability measure

Anderson et al. (1992) used conditional probability to 
establish the following measure of association:

Z1 and Z2 are considered to be independent iff �(z1, z2) = 1 
and PQD if 𝜓(z1, z2) > 1 ∀ (z1, z2) . The outcome for the BT 
model is as follows.

Proposition 4.5 

Remark 4.3  Derived from (4.14), it is evident that 
when � = 0 , the function �(z1, z2) yields a value of 1. 

(4.12)

l(z1, z2)

=

(
�(−A) + �e�1z1+�2z2+2 − �e�1z1+e

�2z2+1 + (� + 1)B
)

(
−2�e�1z1+e

�2z2+1 − 2�A + 4�e�1z1+�2z2+2 + (� + 1)B
)

(
−2�A + 2�e�1z1+�2z2+2 − �e�1z1+e

�2z2+1 + (� + 1)B
)

(
−2�e�1z1+e

�2z2+1 − �A + 2�e�1z1+�2z2+2 + (� + 1)B
)

(4.13)
�(z1, z2) =

P(Z1 ∈ (z1,+∞)|Z2 ∈ (z2,+∞))

P(Z1 ∈ (z1,+∞))

=
�(z1, z2)

�(z1, 0)�(0, z2)
.

(4.14)
�(z1, z2) = �

(
1 − e�1z1−e

�1z1+1
)

(
1 − e�2z2−e

�2z2+1
)
+ 1

Table 1   Spearman’s � and Kendall’s � measure of dependence

Parameters (�1, �2, �) �
s
 value �

k
 value

(2.5, 8,−0.1) −0.0333 −0.0222
(0.5, 1.5,−0.9) −0.3000 −0.2000
(2, 5, 0.8) 0.2667 0.1778
(5, 2, 0.06) 0.0200 0.0133
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Consequently, Z1 and Z2 exhibit independence. Similarly, in 
the range � ∈ (−1, 0) , Z1 and Z2 demonstrate PQD.

4.6 � Spearman’s � and Kendall’s � measure 
of dependence

Spearman’s � and Kendall’s � measures of dependence 
are defined as

Although Spearman’s � and Kendall’s � dependency 
approaches for the BT model cannot be determined in closed 
form, certain numerical techniques can be utilized to find 
them. Table 1 displays Spearman’s � and Kendall’s � val-
ues for numerous BT model parameter pairings. It can be 
observed from the table that the sign of Spearman’s � and 
Kendall’s � measures of dependence values are depend on 
the value of � . If the value of � is negative, the values of 
Spearman’s � and Kendall’s � measures of dependence will 
be negative. vice-versa is also true.

5 � Estimation strategies

5.1 � Maximum likelihood estimation

The estimate of the BT model’s unobserved parameters using 
the maximum likelihood technique is described in this sec-
tion. Estimators are produced using MLE by maximising the 
log-likelihood function with respect to each parameter inde-
pendently. Let consider (z11, z21), (z12, z22) , … , (z1n, z2n) be a 
bivariate random sample of size n from the BT model. Then, 
the likelihood function is given as

where � ∈ (�1, �2).

(4.15)
�s = 12∫z1∈IR

+ ∫z2∈IR
+

�(z1)�(z2)�(z1, z2)dz1dz2 − 3,

(4.16)
�k =4∫z1∈IR

+ ∫z2∈IR
+

�(z1, z2)�(z1, z2)dz1dz2 − 1

(5.1)

L(�, �) = �n
1
�n
2

n∏
i=1

(
e�1z1i − 1

) n∏
i=1

(
e�2z2i − 1

) n∏
i=1

(
e�1z1i−e

�1z1i−e�2z2i+�2z2i+2
)

n∏
i=1

(
�

(
2e�1z1i−e

�1z1i+1 − 1
)

(
2e�2z2i−e

�2z2i+1 − 1
)
+ 1

)

The MLE ( ̂𝜉1, 𝜉2, 𝛿 ) can be obtained by solving simultane-
ously the likelihood equations

Due to the non-standard form of estimators derived from 
likelihood equations, parameter estimation is conducted 
using a non-linear optimization algorithm implemented in 
R-software.

5.2 � Bayesian estimation strategies via MCMC 
techniques

5.2.1 � Methodology

In this exploration, the Bayesian framework is employed 
to address the unknown parameters of the proposed model, 
considering both informative and vague priors. The squared 
error loss function (SELF), modified (quadratic) squared 
error loss function (MQSELF), and precautionary loss func-
tion (PLF) are three distinct loss functions that are taken 
into consideration. These loss functions, priors, and credible 
intervals are briefly described as follows:

5.2.2 � Squared error loss function

The symmetric loss function L(𝜍, 𝜍̂) = (𝜍̂ − 𝜍)2 is 
called SELF. The Bayes estimator of � under SELF is 
𝜍̂SELF = E(𝜍|Z1, Z2) , with risk Var(�|Z1, Z2) where the 
posterior PDF is taken into account while computing the 
expectation and variance. When an unbiased estimator of 
� is being taken into consideration, it was initially used to 
estimation issues. The success of SELF is also attributed to 
its associations with the conventional least squares method-
ology. SELF is neither concave nor bound. Due to the sig-
nificant penalties for major mistakes, the convexity is very 
upsetting. Due to its symmetrical character, the SELF gives 
equal weight to overestimation and underestimation, which 

(5.2)

log L(�, �) = n
(
log �1 + log �2

)

+

n∑
i=1

log
(
e�1z1i − 1

)
+

n∑
i=1

log
(
e�2z2i − 1

)

+

n∑
i=1

(
e�1z1i−e

�1z1i−e�2z2i+�2z2i+2
)

+

n∑
i=1

(
�

(
2e�1z1i−e

�1z1i+1 − 1
)

(
2e�2z2i−e

�2z2i+1 − 1
)
+ 1

)

(5.3)

𝜕 ln L(𝜍, 𝛿)

𝜕𝛿
|𝛿=𝛿 = 0,

𝜕 ln L(𝜍, 𝛿)

𝜕𝜉1
|𝜉1=𝜉1 = 0,

𝜕 ln L(𝜍, 𝛿)

𝜕𝜉2
|𝜉2=𝜉2 = 0.
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is rarely appropriate. As a consequence, I take into account 
MQSELF and PLF, two asymmetric loss functions.

5.2.3 � Modified quadratic squared error loss function

The MQSELF is a alternative loss function of SELF. with 
form,

The Bayes estimator of � under MQSELF is �

with risk

where the expectation is evaluated with respect to the pos-
terior PDF.

5.2.4 � Precautionary loss function

An alternate, asymmetric PLF was presented by Norstrom 
(1996), with a particular instance of the quadratic loss func-
tion. To avoid underestimation, this loss function approaches 
infinity close to the origin, providing a cautious estimate. 
When underestimating might have major repercussions, it 
is tremendously helpful. PLF is described as

The Bayes estimator of � under MQSELF is �

with risk

where the expectation is taken with respect to posterior PDF.

5.2.5 � Flat prior

The preceding information available and the prior distri-
bution selected often exhibit correlation. Utilizing a flat 
prior becomes necessary when the knowledge about the 
parameter is limited or unknown. Flat priors have been 
extensively employed by practitioners historically (Ibra-
him et al. (2001) and Santos and Achcar (2010)). For the 

L(𝜍, 𝜍̂) =

(
(𝜍̂ − 𝜍)

𝜍̂

)2

.

𝜍̂MQSELF =
E(𝜍−1|Z1, Z2)
E(𝜍−2|Z1, Z2)

,

R(𝜍, 𝜍̂MQSELF) = 1 −
(E(𝜍−1|Z1, Z2))2
E(𝜍−2|Z1, Z2)

,

L(𝜍, 𝜍̂) =
(𝜍̂ − 𝜍)2

𝜍̂
.

𝜍̂PLF =

√
E(𝜍2|Z1, Z2),

R(𝜍, 𝜍̂PLF) = 2

[√
E(𝜍2|Z1, Z2) − E(𝜍|Z1, Z2)

]
,

baseline parameters 𝜍̂ and � , and a uniform distribution 
for � , the gamma distribution serves as the choice for flat 
priors. In essence, the PDFs under evaluation remain con-
sistent with previous assessments,

Here, �1 = �2 = 0.0001 , b = 1 , and a = −1.

5.2.6 � Informative prior

According to informative priors, the hyperparameters are 
determined so that the expectation of the prior distribution 
for each unenlightened parameter is identical to the actual 
value. Several scholars have employed this technique, 
Chacko and Mohan (2018) as one example.

The section covers Bayesian estimation for the BT 
model parameters. The significance of the maximum like-
lihood estimates (MLEs) becomes apparent, particularly in 
scenarios involving high-dimensional optimization. Bayes-
ian estimates tend to offer greater accuracy than MLEs 
when dealing with such parameters. A three-dimensional 
optimization challenge arises within the BT model, mak-
ing it infeasible to compute a closed-form posterior distri-
bution. Consideration of parameter independence is piv-
otal in employing the Bayesian technique (Ibrahim et al. 
(2001) and Santos and Achcar (2010)). This presumption 
leads to the following calculation of the joint posterior 
density function of parameters for the supplied variables 
Z1 and Z2:

In Eq. (5.1), L denotes the likelihood function, and gi(.) 
denotes the prior PDF with known hyperparameters for the 
relevant parameters. Considering improved results, both flat 
and informative priors are taken into account.

Integration becomes challenging due to the high-dimen-
sional nature of joint posterior distributions. Hence, opting 
for the widely used MCMC paradigm is crucial. MCMC 
involves the utilization of Gibbs samplers and the Metrop-
olis-Hastings algorithm. The Heidelberger-Welch test has 
been employed to identify the Markov chain’s convergence 
to a stationary distribution. In order to do so, it has been 
thought that complete conditional distributions, which are 
proportional to the joint distribution of the model parameter, 
may be generated. For parameter xi1 , the complete condi-
tional distribution is,

The same is applicable to different parameters, for which 
comprehensive conditional distributions may be derived.

g(�) =
1

�
�2
1
Γ(�2)

e
−

�

�1 ��2−1, g(�) =
1

b − a
.

�(�|Z1, Z2) ∝ L(�|Z1, Z2) × g1(�1)g2(�2)g3(�)

(5.4)�1(�1|Z1, Z2, � − �1) ∝ L(�1|Z1, Z2, � − �1) ⋅ g1(�1)
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6 � Confidence intervals

6.1 � Asymptotic confidence intervals

Despite the lack of compact structures in the MLEs of � , 
obtaining accurate confidence intervals for � poses a chal-
lenge. Consequently, relying on the asymptotic behaviors 
of the maximum likelihood estimator becomes necessary 
to determine asymptotic confidence intervals (CIs) for the 
model parameters. Large sample theory is employed to 
construct asymptotic confidence intervals for the model 
parameters due to the inability to distinctly calculate the 
specific sampling distributions of the MLEs. The asymp-
totic distribution of (𝜍, 𝜍̂) is N3(0, �

−1) , according to the 
general theory of MLEs. �(�) is Fisher’s information 
matrix, which contains the following components:

It is computable numerically. The approximate value of the 
Fisher information matrix �(Ξ) is

(6.1)�
(
�i,j

)
= E

[
−
�2 ln L

��i��j

]
;∀i, j = 1, 2, 3.

6.2 � Construction of highest posterior density credible 
interval

In Bayesian inference, a credible interval is a domain of 
values that falls inside the bounds of a posterior prob-
ability distribution. The suitable posterior distribution’s 
credible interval for the 100 × (1 − �) equal tail may be 
calculated as Eberly and Casella (2003)

where (L, U) are the lower and upper limits of the credible 
interval and �(�1|Z1, Z2) is the posterior density of �1 . The 

(6.2)
𝜁 =

⎡
⎢⎢⎢⎢⎣

𝜕2 ln L

𝜕𝜉2
1

𝜕2 ln L

𝜕𝜉1𝜉2

𝜕2 ln L

𝜕𝜉1𝛿

𝜕2 ln L

𝜕𝜉2𝜉1

𝜕2 ln L

𝜕𝜉2
2

𝜕2 ln L

𝜕𝜉2𝛿

𝜕2 ln L

𝜕𝛿𝜉1

𝜕2 ln L

𝜕𝛿𝜉2

𝜕2 ln L

𝜕𝛿2

⎤
⎥⎥⎥⎥⎦

𝜁(𝜍̂) ≈

�
−
𝜕2 ln L

𝜕𝜍i𝜕𝜍j
�𝜍=𝜍̂

�

P(𝜉1 < L) = ∫x∈(−∞,L)

𝜋(𝜉1|Z1, Z2)d𝜉1 = 𝜂

2
;

P(𝜉1 > U) = ∫x∈(U,∞)

𝜋(𝜉1|Z1, Z2)d𝜉1 = 𝜂

2
;

Fig. 3   Simulation for param-
eter �1
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Fig. 4   Simulation for param-
eter �2

Fig. 5   Simulation for param-
eter �
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parameters �2 and � may then be found together with cred-
ible intervals.

7 � Simulation analysis

7.1 � Classical simulation

In this section, a numerical simulation study for the BT 
model created using the FGM copula is discussed. Initially, 
description revolves around the random sample generation 
from the BT model. The conditional procedure for random 
sample generation, as reported in Nelsen (2006), is 
employed. Let Z1, Z2 be a random sample having BT model 
determined by FGM copula ℭ . The copula ℭ is a joint dis-
tribution of a bivariate vector (Y1, Y2) with uniform U(0, 1) 
marginals. The conditional distribution of the vector (Y1, Y2) 
i s  g i v e n  a s  P(Y2 ≤ y2|Y1 = y1) =

�

�y1
ℭ1(y1, y2)

= y2[1 + �(1 − y2)(1 − 2y1)] . Using the conditional distribu-
tion approach, random numbers (z1, z2) from the BT can be 
generated using the following algorithm: 

1)	 From uniform U(0, 1) generate two independent sample 
y1 and t.

2)	 Set t = �

�y1
ℭ(y1, y2) and solved for y2.

3)	 Find z1 = �−1(y1;�1) and z2 = �−1(y2;�2) ; where �−1 is 
the inverse of Teissier distribution.

4)	 Finally, the desired random sample is (z1, z2).

In the process of parameter estimation, both maximum 
likelihood and Bayesian paradigm methods are employed. 
Based on the data below that were produced by the BT 
model, a simulation study was conducted. The value of 
the parameters �1 and �2 is chosen with different value 
of the copula parameter � and different sizes of sample 
(n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) , as shown for the 
following scenarios for the randomly generated variables 
produced by the BT model: 

Case 1:	 (�1 = 0.5, �2 = 1.5, � = −0.1)
Case 2:	 (�1 = 1.5, �2 = 0.5, � = 0.1)
Case 3:	 (�1 = 2, �2 = 5, � = −0.6)
Case 4:	 (�1 = 5, �2 = 2, � = 0.6).

The simulations in this study is repeated 1,00,000 times. 
Figures 3, 4 and 5 showcase the behaviour of the Mean 
Squared Error (MSE) in a simulation study. MSE, a pivotal 
metric in statistical analysis, reflects the average squared 
difference between estimated values and their true counter-
parts. The figures consistently illustrate that as the sample 

Fig. 6   Confidence interval for 
parameter �1
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Fig. 7   Confidence interval for 
parameter �2

Fig. 8   Confidence interval for 
parameter �
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size increases, the MSE steadily decreases. This trend 
underscores a fundamental statistical principle: larger sam-
ple sizes lead to enhanced estimation accuracy. With more 
data points, the estimation process becomes more robust, 
resulting in smaller errors between estimated and actual 
values. These findings emphasize the importance of sam-
ple size in statistical analysis, highlighting the advantages 
of working with larger datasets when striving for precise 
and reliable parameter estimation. Figures 6, 7 and 8 delve 
into the behaviour of the CIs in the same simulation study. 
CIs quantify the uncertainty surrounding parameter esti-
mates. The striking pattern observed in these figures is that 
as the sample size grows, the length of the CIs diminishes. 
This reduction in CI length signifies increased precision in 
parameter estimation with larger samples. This suggests 
that as the dataset becomes more extensive, confidence in 
determining the likely range within which the true parameter 
value lies also increases. These figures underscore the criti-
cal role of sample size in gauging the precision of statistical 
estimates and making informed decisions based on them. In 

general, the effect of marginal parameters has a little effect 
on estimating the copula parameters as shown in the table. 
The R programming language (R 3.5.3) was used to conduct 
the simulation analysis.

7.2 � Bayesian simualtion

Assessing the effectiveness of the Bayesian estimation tech-
nique stands as the primary goal of the simulation study. 
Data (Z1, Z2) is generated from the BT using the technique 
described in Sect. 7.1 for the simulation. Due to the lack of 
information about the parameters in the model, prior distri-
butions are selected. Samples of various sizes are taken, and 
the chain of the Metropolis-Hasting algorithm and Gibbs 
sampling is iterated 1,00,000 times, disregarding the initial 
10,000 iterations to eliminate initial value effects and pre-
vent autocorrelation issues. Figures 3, 4 and 5 display the 
risk associated with (�, �) under various error loss functions, 
including SELF, MQSELF, and PLF. These assessments are 
carried out with the inclusion of both informative and vague 

Fig. 9   Posterior Plots for the BT model Under Vague Priors for Burr data
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priors, providing a comprehensive view of the risk analysis. 
In parallel, Figs. 6, 7 and 8 present the HPD intervals for a 
range of parameter combinations. This allows for a detailed 
exploration of the uncertainty associated with different 
parameter settings, further enhancing the understanding of 
the studied phenomena.

The following information from these tables becomes 
noticeable: 

1.	 In comparison to estimates with vague priors, Bayes 
estimates based on informative priors perform better.

2.	 All Bayes estimates have decreasing risks as n grows.
3.	 The risk component of Bayes estimations under 

MQSELF outperformed.
4.	 The HPD intervals for all Bayes estimates get relatively 

small as n increases.

The Bayesian technique with informative prior under 
MQSELF loss function is discovered to be the best strategy 

Fig. 10   TTT-plot of Burr data

Table 2   MLE and Bayes 
estimates for the parameters 
of the BT model for the Burr 
data set

Estimator �1 �2 �

Classical MLE 5.9549 6.3414 0.4950
SE 0.3206 0.3414 0.3404

NIP SELF (Risk) 5.9305 (0.0917) 6.3404 (0.1188) 0.4242 (0.0101)
MQSELF (Risk) 5.8991 (0.0027) 6.3022 (0.0030) 0.3724 (0.0658)
PLF (Risk) 5.9382 (0.0154) 6.3498 (0.0187) 0.4359 (0.0234)
HPD Interval (5.3639, 6.4906) (5.6866, 6.9988) (0.2569, 0.6153)
Heidelberg test 0.8000 0.1480 0.3600

IP SELF (Risk) 5.9247 (0.0970) 6.3305 (0.1260) 0.4250 (0.0101)
MQSELF (Risk) 5.8917 (0.0028) 6.2904 (0.0032) 0.3721 (0.0676)
PLF (Risk) 5.9329 (0.0164) 6.3404 (0.0199) 0.4367 (0.0234)
HPD Interval (5.3052, 6.5015) (5.6504, 7.0215) (0.2306721, 0.5893)
Heidelberg test 0.9380 0.4610 0.6420

Table 3   Spearman’s � and Kendall’s � measure of dependence for 
the Burr data set Under BT model

Estimator �
s
 value �

k
 value

Classical MLE 0.1650 0.1100
NIP SELF 0.1414 0.0943

MQSELF 0.1241 0.0828
PLF 0.1453 0.0969

IP SELF 0.1417 0.0944
MQSELF 0.1240 0.0827
PLF 0.1456 0.0970
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for point estimation across multifarious combinations of 
(�, �).

8 � Illustration on real‑life data

In this data analysis, there are 50 observations of the burr. 
The first component has a sheet thickness of 3.15 mm and a 
hole diameter of 12 mm. The thickness of the sheet and the 
hole diameter of the second component are both 9 mm. Two 
completely different computers create these two-component 
datasets. This data collection was used by Dasgupta (2011). 
Before even being processed, every data is multiplied by 10. 
These transitions will have no influence on our research and 
are entirely computational.

Figure 9 presents a comprehensive visual representation 
of the Bayesian analysis conducted on the Burr data set. This 
analysis focuses on estimating three crucial parameters—�1 , 
�2 , and �—under the assumption of vague priors, signify-
ing minimal prior influence on the estimation process. The 
figure offers three types of plots for each parameter. Firstly, 
the posterior trace plots depict the evolution of parameter 
values throughout the Bayesian inference process. These 
plots are instrumental in evaluating the convergence of the 
Markov Chain Monte Carlo (MCMC) algorithm, aiming for 
stable and well-mixed traces devoid of discernible trends. 
Secondly, the density plots showcase the posterior probabil-
ity density distributions for each parameter. They visually 
convey the shape and spread of these distributions, enabling 
an understanding of central tendencies and uncertainties. 
Wider distributions indicate greater parameter uncertainty. 
Lastly, the autocorrelation plots assess the degree of auto-
correlation between successive samples drawn from the pos-
terior distribution. High autocorrelation suggests less effi-
cient sampling, while low autocorrelation signifies improved 
mixing and convergence. Figure 9 serves as a critical tool for 
researchers and analysts in the Burr data analysis, offering 
insights into MCMC sampler behaviour, posterior distribu-
tion shapes, and potential sampling issues. These visual cues 
enhance the reliability and accuracy of Bayesian param-
eter estimation for the Burr data set. Certainly, the table 

provides a comprehensive overview of parameter estimation 
for the BT model applied to the Burr data set. It presents 
estimates for the key parameters �1 , �2 , and � using two dis-
tinct approaches: Maximum Likelihood Estimation (MLE) 
and Bayesian methods. Under the Bayesian paradigm, the 
table differentiates between the NIP and the IP settings. 
For each estimation method, it includes various Bayesian 
techniques such as SELF(Risk), MQSELF(Risk) (Table 2), 
and PLF(Risk), accompanied by uncertainty measures and 
Bayesian credibility intervals (HPD Intervals). Addition-
ally, the Heidelberg test results assess the fit of the Bayes-
ian models. This table thus serves as a valuable resource for 
researchers and analysts to choose the most suitable estima-
tion approach and gauge parameter uncertainty. Table 3 also 
computes Spearman’s � and Kendall’s � , serving as indica-
tors of the interdependency present within the Burr data set, 
thus revealing the existence of complex and interconnected 
relationships within the data. Table 4 illustrates the results of 
various model selection criteria for the BT model, including 
AIC, BIC, and AICc. It enables comparison of the BT model 
with other models available in the literature for the Burr data 
set. Notably, concerning AIC, BIC, and AICc, the BT model 
demonstrates superior performance compared to the bivari-
ate generalized exponential (BGE) under FGM and Clayton 
copula, bivariate inverse Lindley (IL), bivariate Pareto (BP), 
and bivariate Gumbel (BG) distributions for the Burr data. 
In Fig. 10, Total Time Test (TTT) plots for both Z1 and Z2 
unveil key characteristics of the Burr data set. These TTT 
plots exhibit a consistent concave shape and consistently 
position themselves above the 45◦ line, signifying an increas-
ing hazard rate function over time. This observed behavior 
guides our modeling choice. Considering these characteris-
tics, the Teissier distribution is selected to model the Burr 
data set. It aligns well with the data’s inherent features, espe-
cially its rising hazard rate, rendering it a suitable choice for 
robust statistical modeling and analysis.

9 � Essence and deliberation

This study explored the BT model derived from the FGM 
copula by incorporating its univariate marginals of the 

Table 4   Model selection for the Burr data set

Copula Model MLE −LogL AIC BIC AICc

FGM BTL 5.9549, 6.3414, 0.4950 −114.7026 −223.4052 −217.6691 −222.8835
FGM BGE 3.1475,11.4626,2.7213,11.5058,0.6417 −106.9360 −203.8720 −194.3120 −202.5084
Clayton BGE 0.2518,11.3226,0.2169,11.3485,12.5507 −106.1160 −202.2310 −192.6710 −200.8564
FGM BIL 0.1845,0.1642,0.8091 −87.5650 −169.1300 −163.3939 −168.60833
FGM BP 18.3375,19.6021,123.2371 −84.5240 −163.0480 −157.3120 −162.5263
FGM BG 12.2549,0.7241 −84.4530 −164.9060 −161.0820 −164.6507
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Teissier model. Survival functions and reliability concepts 
linked to the BT model were formulated, alongside derived 
dependence measures indicating NOD for � ∈ (−1, 0) and 
POD for � ∈ (0, 1) . Parameter estimation methodologies 
encompassed MLE and Bayesian inference techniques. The 
results of the investigation showed how important sample 
size is for improving estimation accuracy. With larger sam-
ple sizes, Bayesian estimates with informative priors per-
formed better than other methods. This was especially true 
for the MQSELF loss function. The decrease in the inter-
vals for the HPD that was found as sample sizes increased 
indicated increased accuracy in the estimation of Bayesian 
parameters, which reinforced the confidence in the predicted 
parameter ranges. Parameters estimation techniques, includ-
ing MLE and Bayesian inference, were employed. In the 
Real Data Analysis, MLE played a pivotal role in estimating 
crucial parameters, such as �1 , �2 , and � , from the Burr data-
set. The MLE results provided fundamental insights into the 
distributional characteristics of the data, forming the basis 
for subsequent comparisons with alternative distributions. 
Comparison techniques, including AIC, BIC, and AICc, 
were instrumental in assessing the BT model’s performance 
against other candidate distributions available in the litera-
ture, such as BGE under FGM and Clayton copulas, IL, BP, 
and BG distributions for the Burr dataset. Notably, the BT 
model consistently demonstrated superior performance con-
cerning AIC, BIC, and AICc criteria, indicating its favorable 
fit and better representation of the data compared to these 
alternative models. The selection of the Teissier distribution 
stemmed from its alignment with the inherent characteristics 
of the Burr data, as evidenced by TTT plots indicating an 
increasing hazard rate function over time. In summary, this 
study highlights the adaptability of the BT model in captur-
ing diverse dependence structures and optimizing param-
eter estimation accuracy through empirical and simulation 
studies, showcasing its potential applications across various 
statistical domains.
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