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Abstract  A modified chain group sampling inspection 
plan (MChGSIP) is presented in this article where the life-
time of units follows a generalized half-normal distribu-
tion (GHND). In the present study, a brief discussion of the 
GHND is placed and larger the value of mean—better is 
the quality of the lot is considered as quality characteristic 
for the proposed plan. Here, we have used the two point 
approach: average quality level (AQL) and the limiting qual-
ity level (LQL) for the computation of plan parameters pur-
pose. The AQL and the LQL is used to calculate all of the 
plan parameters in the presence of the two-point method. 
Aside from that, MChGSIP calculates operating character-
istic values based on the values of plan parameters that are 
supplied. The tables that have been presented are discussed 
in depth. Three data sets are used to prove the significance 
of proposed plan in real life scenario and the only con-
straint of this study is that it ll helpful to the experimenter 
or researcher if and only if real life situation matched with 
behavior of GHND.

Keywords  Chain sampling inspection plan · Operating 
characteristic value · Generalized half-normal distribution · 
Producer’s risk · Life test

1  Introduction

Quality of product is the key interest of consumers and 
producers. Acceptance sampling inspection plan (ASIP) is 
one tool of statistical quality control (SQC) to control or 
enhance the quality of the product. The quality of product 
plays an important in the decision to acceptance/rejection of 
the lot and various types of ASIPs are presented in literature, 
viz., attribute ASIP and variable ASIP. Single acceptance 
sampling plan (SSIP), double acceptance sampling plan 
(DSIP), multiple acceptance sampling plan (MSIP), sequen-
tial acceptance sampling plan (SeASIP), group acceptance 
sampling plan (GSIP), and skip-lot sampling plans (SkASIP) 
are included in the attribute ASIP. While variables sampling 
plans uses the accurate measurements of the quality char-
acteristics. Moreover this, a modified chain group sampling 
inspection plan (MChGSIP) is also a one kind of ASIP and 
this can be used in several situations in the industry for 
decision making of process regarding the lot quality. The 
parameters of ASIP are known as plan parameters and deter-
mined by using acceptable quality level (AQL) and limiting 
quality level (LQL) and these parameters plays important 
role to judge the quality of manufactured products or lots of 
product. On a whole, the aim of researchers is to determine 
the plan parameters under the scenario of several sampling 
schemes.

The outline of the remainder of the article is as follows: 
Sect. 2 contained the literature review of ASIP. In Sect. 3, we 
have provided a quick overview of the GHND. Section 4 pre-
sented the method of MChGSIP for GHND-based time trun-
cated life tests. Discussion over the presented tables are placed 
with example for better understanding of trend of findings in 
Sect. 5. Also, Sect. 6 included three instances of how MChG-
SIP for GHND can be used in the real world. At last in Sect. 7, 
conclusions and future research orientation are discussed.
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2 � Literature review

The literature of SQC enriched with the ASIPs and research-
ers are continuously working to add more ASIPs in the lit-
erature. Here, we have mentioned the evolution of ASIPs and 
researchers developed time truncated ASIPs for many prob-
ability distributions. SSIP, DSIP, and GSIP are all acronyms 
that are commonly used by the researchers. Many research-
ers have written about the time truncated SSIP, and some of 
them are listed here: Gupta (1962), Gupta and Groll (1961), 
Rosaiah and Kantam (2005), Tsai and Wu (2006), Baklizi et al. 
(2004), Aslam et al. (2010b), Al-Omari (2015), Tripathi et al. 
(2020b, 2023b) and Saha et al. (2021). Also, DSIP developed 
by the several authors, Rao (2011b), Ramaswamy and Anbura-
jan (2012), Gui (2014), Gui and Xu (2015), Al-Omari et al. 
(2016), Al-Omari and Zamanzade (2017), Hu and Gui (2018), 
Tripathi et al. (2020a) and many more. An extensive works 
have been done on GSIP and some of them are mentioned 
here: Aslam et al. (2009, 2010a, 2011, 2013) for gamma, 
Pareto distribution of second kind, Birnbaum–Saunders and 
Burr type X distributions, Rao (2011a) for Marshall–Olkin 
extended exponential distribution, Singh and Tripathi (2017) 
for inverse Weibull distribution, Kanaparthi et al. (2016) for 
Odds exponential log-logistic distribution and many more. 
The ChSIP is introduced by Dodge (1955) and later several 
authors have done work on it and for more details, the reader 
may refer to Govindaraju (2006), Govindaraju and Balamurali 
(1998), Balamurali and Usha (2013), Govindaraju and Sub-
ramani (1993), Govindraju and Lai (1998) and Luca (2018) 
and Tripathi et al. (2021) and many more. Recently, Tripathi 
et al. (2022, 2023a) have developed a new sampling inspection 
plan and known as modified chain group acceptance sampling 
inspection plan (MChGSIP), where they have shown the ben-
efits of MChGSIP and also shown that this plan is a good 
alternative of some popular exiting plans.

3 � GHND

Cooray and Ananda (2008) introduced the GHND as a spe-
cial case of the three-parameter generalized gamma distribu-
tion (see, Stacy 1962). The GHN distribution’s cumulative 
distribution function (CDF) and the probability density func-
tion (PDF) are, respectively, given as:

and
(3.1)
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where Φ(⋅) is the standard normal distribution’s CDF. � and 
� are shape and scale parameters of the GHND, respectively. 
Since the CDF of the half-normal distribution and the CDF 
of the GHND are very close in terms of their CDFs, this 
density is called the GHN (see Cooray and Ananda 2008) 
and the kth moment of origin of GHND is

Now, in particular for k = 1, the mean of GHND is given as

The hazard rate function and the survival function of GHND, 
denoted by H(x) and S(x), respectively, for specified values 
of x are given as:

and

The hazard rate function of GHND can be monotonically 
increasing, monotonically decreasing, and bathtub forms, 
i.e., it can be described in any pattern or shape and the range 
of the parameter alpha influences the hazard rate’s shape. 
The hazard rate function is monotonically decreases for 
0 < 𝛼 ≤ .5 , monotonically increases for 𝛼 > 1 and it posses 
bathtub shape curve for 0.5 < 𝛼 < 1 , respectively.

4 � Method of MChGSIP

In this section, we have designed the time truncated MChG-
SIP plan for a pre-specified truncation time t0 and step by 
step procedure in the form of block diagram of the proposed 
plan is given in Fig. 1. The values of group size (r), trunca-
tion time ( t0 ), producer’s risk ( �p ) and consumer’s risk ( � ) 
are assumed to be pre-fixed. Also, the procedure of the pro-
posed time truncated MChGSIP is as follows: 

1.	 Select n items from a particular lot and allocate r items 
to g groups, i.e, n = r × g . Start with normal inspection 
for a pre-fixed experiment time t0.

2.	 Inspect all the groups simultaneously and record the 
number of non-conforming units ( Δ ) upto pre-fixed 
experiment time t0.
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3.	 If Δ ≤ c the lot is accepted provided that there is at 
most 1 lot of the preceding i lots in which the number 
of defective units Δ exceeds the criterion c, otherwise 
reject the lot.

The probability of acceptance of GSIP, denoted by Pa , is given 
by:

where p = F(t0).

We used two-point approach (at AQL and LQL) to deter-
mine the plan parameters of the proposed plan by using the 
following non-linear optimization problem:

(4.1)

Pa =

c∑
i=0

(
rg

i

)
pi(1 − p)(rg−i)

=

c∑
i=0

f (rg, p, i)

p = 2Φ

[(
t∕𝜃0

𝜃∕𝜃0

)𝛼]
− 1; x ≤ 0, 𝛼 > 0, 𝜃 > 0

(4.2)

Minimize, average sample number (ASN): n = g × r subject to

Pacg(p0) ≥ (1 − �p)

(4.3)Pacg(p1) ≤ �

where

Based on the multiple values of both producer’s and con-
sumer’s risks, a non-linear optimization problem is used to 
estimate the parameters of the plan. Tables 1, 2 and 3 pro-
vide the values of all plan parameters.

5 � Discussion and results of tables

The plan parameters of proposed plan are placed in the 
Tables 1, 2 and 3 under the assumption that lifetime of items 
follows the GHND for � = 2, 3, 4 , respectively. Now, the pre-
sented tables are obtained for prefixed group size r = (5, 10) 
and producer’s risk �p = 0.05 . Along with the group size 
and producer’s risk, where we assumed that the consumer’s 
risk � = (0.25, 0.10, 0.05, 0.01) and the termination ratio 
t0∕�0 = (0.5, 0.75) for the computation of plan parameters 
of suggested plan, respectively. The acceptance probabili-
ties of the lot Pacg(p) have been shown in Tables 1, 2 and 3 
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Fig. 1   Block diagram of the 
proposed MChGSIP
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for the considered quality level (�∕�0) = (2, 3, 4, 5, 6, 7, 8) , 
respectively. It is to be noted that, important trend have been 
noticed from Tables 1 and 3 regarding the minimum number 
of groups. and the minimum number of groups increases as 
� decreases for given values of r, a = t0∕�0 and �∕�0 . In case 
of fixed � , the minimum number of groups decreases when 
quality level increases. However, this decreasing behavior 
of groups are not true for all quality levels. For example, 
from Table 1, we got minimum number of group g = 11 for 
r = 5, (t0∕�0) = 0.5, � = 0.05, (�∕�0) = 3, c = 7, i = 2 , but for 
set up r = 5, (t0∕�0) = 0.5, � = 0.05, (�∕�0) = 4, c = 6, i = 1 , 
we got g = 12 . In some cases, as we increase the quality 
level for this set up, the minimum number of groups are 
remain same. One more important result we have observed 
from the Tables  1, 2 and 3 that the number of groups 
decreases when termination ratio (t0∕�0) increases in both 
cases of group sizes r = 5, 10 , respectively.

6 � Real life examples

For the purpose of illustrating the proposed strategy, we 
looked at three real-world applications. As a first step, we 
must verified whether or not the data set we are examin-
ing is from the GHND or not by applying the goodness of 
fit test. Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) are two of the discrimination 
criteria that we utilized. All the values of model fitting sum-
mary like, log-likelihood at maximum likelihood estimates 
(MLEs) of the parameters l(Θ̂) , AIC, BIC and K-S Statis-
tic with corresponding p values are obtained and given in 
Table 4. We observed that the considered data sets fit our 
GHND very well, according to Table 4. Figures 2, 3 and 
4 represent histogram-density, empirical and theoretical 
CDFs, and P–P plot for the model under consideration for 
data set I, II and III respectively. Histogram density of each 
chosen data sets showed that maximum area of histogram 

Table 1   Plan parameters of 
MChGSIP for GHND when 
� = 2

� �∕�
0

r = 5 r = 10

a = t
0
∕�

0
= 0.5 a = t

0
∕�

0
= 0.75 a = t

0
∕�

0
= 0.5 a = t

0
∕�

0
= 0.75

g c i Pacg(p) g c i Pacg(p) g c i Pacg(p) g c i Pacg(p)

0.25 2 9 8 2 0.9996729 5 8 2 0.998958 5 8 2 0.999261 3 8 2 0.9956358
3 9 7 2 0.999994 4 7 2 0.9999972 5 7 2 0.9999864 2 7 2 0.9999972
4 8 6 1 0.9999994 4 6 1 0.9999992 5 6 1 0.9999971 2 7 1 0.9999992
5 7 5 1 0.9999997 4 5 1 0.9999990 4 5 1 0.9999992 2 5 1 0.999999
6 7 4 1 0.9999985 3 4 1 0.9999992 4 4 1 0.9999971 2 4 1 0.999996
7 5 3 1 0.9999968 3 3 1 0.9999911 3 3 1 0.9999931 2 3 1 0.9999697
8 4 2 1 0.9999668 1 2 1 0.9999966 2 2 1 0.9999668 1 2 1 0.9999601

0.10 2 11 8 2 0.9984996 5 8 2 0.998958 6 8 2 0.9972057 3 8 2 0.9956358
3 10 7 2 0.9999864 5 7 2 0.9999809 5 7 2 0.9999893 3 7 2 0.9999173
4 11 6 1 0.9999944 4 6 1 0.9999958 6 6 1 0.9999899 3 6 1 0.9999843
5 9 5 1 0.9999984 4 5 1 0.999999 5 5 1 0.999997 2 5 1 0.999999
6 8 4 1 0.9999971 4 4 1 0.999996 4 4 1 0.9999971 2 4 1 0.999996
7 7 3 1 0.9999870 3 3 1 0.9999911 4 3 1 0.9999777 2 3 1 0.9999697
8 6 2 1 0.9998846 3 2 1 0.9998527 3 2 1 0.9998846 2 2 1 0.9996405

0.05 2 12 8 2 0.9972057 6 8 2 0.9956358 6 8 2 0.9972057 3 8 2 0.9956358
3 11 7 2 0.999972 5 7 2 0.9999809 6 7 2 0.9999467 3 7 2 0.9999173
4 12 6 1 0.9999899 5 6 1 0.9999958 6 6 1 0.9999899 3 6 1 0.9999843
5 11 5 1 0.9999947 5 5 1 0.9999956 6 5 1 0.9999911 3 5 1 0.9999863
6 9 4 1 0.9999947 4 4 1 0.999996 5 4 1 0.999991 2 4 1 0.999996
7 8 3 1 0.9999777 4 3 1 0.9999697 4 3 1 0.9999777 2 3 1 0.9999697
8 6 2 1 0.9998846 3 2 1 0.9998527 3 2 1 0.9998846 2 2 1 0.9996405

0.01 2 14 8 2 0.9920738 6 8 2 0.9956358 7 8 2 0.9920738 3 8 2 0.9956358
3 13 7 2 0.9999047 6 7 2 0.9999173 7 7 2 0.9998384 3 7 2 0.9999173
4 14 6 1 0.9999718 6 6 1 0.9999843 7 6 1 0.9999718 3 6 1 0.9999843
5 13 5 1 0.9999858 6 5 1 0.9999863 7 5 1 0.9999782 3 5 1 0.9999863
6 11 4 1 0.9999856 5 4 1 0.999987 6 4 1 0.9999779 3 4 1 0.9999669
7 10 3 1 0.9999455 4 3 1 0.9999697 5 3 1 0.9999455 2 3 1 0.9999697
8 8 2 1 0.9997256 4 2 1 0.9996405 4 2 1 0.9997256 2 2 1 0.9996405
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is covered by density of GHND and on other hand points of 
empirical-theoretical density are very near to each other with 
minimum K-S value, these both plots indicated that data 
suited well to GHND, and same conclusions can be drawn 
by using P–P plot. Table 5 provides a descriptive summary 
of all the three sets of considered data.

Data I Data I represents the Number of millions revo-
lutions to failure for 23 ball bearings in millions and first 
considered by Lawless (2003).

The  MLEs  of  da t a - I  a re  � = 1.576165 and 
� = 90.630906 . The experimenter set the mean lifetime for 
ball bearing is 50 min with specific consumer’s risk 0.10 
and with shape parameter � = 1.576165 . Life test would be 
terminated at 31.05 min by experimenter with consumer’s 
risk 0.10 and termination ratio is (t0∕�0) = 0.5 . Hence, the 
optimal plan parameters for the considered specifications 
are g = 4 , c = 3 and i = 2 when group size r = 5 . Now, if 
the experimenter desires to set up the MChGSIP plan for 

the above mentioned specifications, then procedure is as 
follows:

•	 Choose a sample of size 20 from a submitted lot. Allocate 
5 items to 4 groups, i.e, n = r × g and start with normal 
inspection and test the units up to truncation time 31.05 
min.

•	 Inspect all the groups simultaneously and record the 
number of non-conforming units ( Δ).

•	 If Δ ≤ 3 the lot is accepted provided that there is at 
most 1 lot of the preceding 2 lots in which the number 
of defective units Δ exceeds the criterion 3, otherwise 
reject the lot.

If true mean lifetime of the ball bearings is 150 min s, i.e., 
quality ratio is (�∕�0) = 3 then probability of acceptance 
of lot for the considered specifications of experimenter is 
0.9866054.

Table 2   Plan parameters of 
MChGSIP for GHND when 
� = 3

� �∕�
0

r = 5 r = 10

a = t
0
∕�

0
= 0.5 a = t

0
∕�

0
= 0.75 a = t

0
∕�

0
= 0.5 a = t

0
∕�

0
= 0.75

g c i Pacg(p) g c i Pacg(p) g c i Pacg(p) g c i Pacg(p)

0.25 2 19 8 2 0.9999967 6 8 2 0.9999974 10 8 2 0.999995 3 8 2 0.9999974
3 17 7 2 1.000000 6 7 2 1.0000000 9 7 2 1.0000000 3 7 2 1.000000
4 17 6 1 1.000000 5 6 1 1.0000000 9 6 1 1.0000000 3 6 1 1.0000000
5 15 5 1 1.000000 4 5 1 1.0000000 8 5 1 1.0000000 3 5 1 1.000000
6 13 4 1 1.0000000 4 4 1 1.000000 7 4 1 1.0000000 2 4 1 1.000000
7 11 3 1 1.000000 3 3 1 1.0000000 6 3 1 1.0000000 2 3 1 1.0000000
8 8 2 1 0.9999999 3 2 1 0.9999999 4 2 1 0.9999999 2 2 1 0.9999997

0.10 2 22 8 2 0.9999926 7 8 2 0.9999893 11 8 2 0.9999891 4 8 2 0.9999657
3 20 7 2 1.000000 6 7 2 1.0000000 10 7 2 1.000000 3 7 2 1.000000
4 21 6 1 1.000000 6 6 1 1.0000000 11 6 1 1.000000 3 6 1 1.000000
5 19 5 1 1.0000000 6 5 1 1.000000 10 5 1 1.0000000 3 5 1 1.000000
6 16 4 1 1.000000 5 4 1 1.000000 8 4 1 1.000000 3 4 1 1.0000000
7 14 3 1 1.000000 4 3 1 1.0000000 7 3 1 1.000000 2 3 1 1.0000000
8 11 2 1 0.9999998 3 2 1 0.9999999 6 2 1 0.9998846 2 2 1 0.9999997

0.05 2 24 8 2 0.9999781 7 8 2 0.9999893 12 8 2 0.9999781 4 8 2 0.9999657
3 22 7 2 1.0000000 7 7 2 1.0000000 11 7 2 1.0000000 4 7 2 1.000000
4 24 6 1 1.000000 7 6 1 1.0000000 12 6 1 1.000000 4 6 1 1.0000000
5 21 5 1 1.00000000 6 5 1 0.9999956 11 5 1 1.000000 3 5 1 1.000000
6 18 4 1 1.0000000 6 4 1 1.000000 9 4 1 1.0000000 3 4 1 1.0000000
7 16 3 1 1.00000000 5 3 1 1.0000000 8 3 1 1.0000000 3 3 1 1.0000000
8 13 2 1 0.9999997 4 2 1 0.9999997 7 2 1 0.9999996 2 2 1 0.9999989

0.01 2 27 8 2 0.9999445 8 8 2 0.9999657 14 8 2 0.9999265 4 8 2 0.9999657
3 25 7 2 1.0000000 8 7 2 1.0000000 13 7 2 1.000000 4 7 2 1.000000
4 29 6 1 1.0000000 8 6 1 1.000000 15 6 1 1.000000 4 6 1 1.000000
5 28 5 1 1.00000000 8 5 1 1.000000 13 5 1 1.0000000 4 5 1 1.000000
6 23 4 1 1.00000000 7 4 1 1.0000000 12 4 1 1.000000 4 4 1 1.0000000
7 20 3 1 1.0000000 6 3 1 1.0000000 10 3 1 1.000000 3 3 1 1.000000
8 16 2 1 0.9999994 5 2 1 0.9999994 9 2 1 0.9999991 3 2 1 0.9999989
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Data II Data II represents 100 breaking stress of car-
bon fibers (in Gba) and considered by Nichols and Padgett 
(2006).

The MLEs of data-II are � = 2.113852 and � = 3.167321 . 
The experimenter set the mean lifetime of breaking stress of 
carbon fibers is 1.5 unit with specific consumer’s risk 0.10 
and with shape parameter � = 2.113852 . Life test would be 

Table 3   Plan parameters of 
MChGSIP for GHND when 
� = 4

� �∕�
0

r = 5 r = 10

a = t
0
∕�

0
= 0.5 a = t

0
∕�

0
= 0.75 a = t

0
∕�

0
= 0.5 a = t

0
∕�

0
= 0.75

g c i Pacg(p) g c i Pacg(p) g c i Pacg(p) g c i Pacg(p)

0.25 2 38 8 2 1.0000000 8 8 2 1.000000 19 8 2 1.0000000 4 8 2 1.00000
3 34 7 2 1.000000 7 7 2 1.0000000 17 7 2 1.0000000 4 7 2 1.000000
4 36 6 1 1.000000 7 6 1 1.0000000 18 6 1 1.0000000 4 6 1 1.0000000
5 30 5 1 1.000000 6 5 1 1.0000000 15 5 1 1.0000000 3 5 1 1.000000
6 25 4 1 1.0000000 5 4 1 1.000000 13 4 1 1.0000000 3 4 1 1.000000
7 21 3 1 1.000000 4 3 1 1.0000000 11 3 1 1.0000000 2 3 1 1.0000000
8 16 2 1 1.0000000 3 2 1 1.000000 8 2 1 1.000000 2 2 1 1.0000000

0.10 2 44 8 2 1.0000000 9 8 2 1.0000000 22 8 2 1.0000000 5 8 2 1.000000
3 40 7 2 1.000000 8 7 2 1.0000000 20 7 2 1.000000 4 7 2 1.000000
4 42 6 1 1.000000 9 6 1 1.0000000 21 6 1 1.000000 5 6 1 1.000000
5 37 5 1 1.0000000 8 5 1 1.000000 19 5 1 1.0000000 4 5 1 1.000000
6 32 4 1 1.000000 7 4 1 1.000000 16 4 1 1.000000 4 4 1 1.0000000
7 27 3 1 1.000000 5 3 1 1.0000000 14 3 1 1.000000 3 3 1 1.0000000
8 22 2 1 1.0000000 4 2 1 1.0000000 11 2 1 1.0000000 2 2 1 1.000000

0.05 2 48 8 2 0.9999999 10 8 2 0.9999999 24 8 2 0.9999999 5 8 2 1.000000
3 43 7 2 1.0000000 9 7 2 1.0000000 22 7 2 1.0000000 5 7 2 1.000000
4 47 6 1 1.000000 9 6 1 1.0000000 24 6 1 1.000000 5 6 1 1.0000000
5 42 5 1 1.00000000 8 5 1 1.0000000 21 5 1 1.000000 4 5 1 1.000000
6 37 4 1 1.0000000 7 4 1 1.000000 19 4 1 1.0000000 4 4 1 1.0000000
7 31 3 1 1.00000000 6 3 1 1.0000000 16 3 1 1.0000000 3 3 1 1.0000000
8 25 2 1 1.0000000 5 2 1 1.000000 13 2 1 1.0000000 3 2 1 1.0000000

0.01 2 55 8 2 0.9999997 11 8 2 0.9999998 28 8 2 0.9999997 6 8 2 1.000000
3 50 7 2 1.0000000 10 7 2 1.0000000 25 7 2 1.000000 5 7 2 1.000000
4 58 6 1 1.0000000 11 6 1 1.000000 29 6 1 1.000000 6 6 1 1.000000
5 52 5 1 1.00000000 10 5 1 1.000000 26 5 1 1.0000000 5 5 1 1.000000
6 46 4 1 1.00000000 9 4 1 1.0000000 23 4 1 1.000000 5 4 1 1.0000000
7 40 3 1 1.0000000 8 3 1 1.0000000 20 3 1 1.000000 4 3 1 1.000000
8 34 2 1 1.00000000 7 2 1 1.000000 17 2 1 1.0000000 4 2 1 1.000000

Table 4   Model fitting summary 
of data sets

Data Estimates L–L AIC BIC KS value p value

I � = 1.576165, � = 90.630906 −114.6035 233.2071 235.478 0.16861 0.5302
II � = 2.113852, � = 3.167321 −143.6846 291.3692 296.5796 0.078316 0.5718
III � = 1.634991, � = 10900.647977 −479.661 963.322 967.1056 0.067561 0.9787

Table 5   Descriptive summary 
of data sets

Data Minimum Q
1

Median Mean Q
3

Maximum CS CK

I 17.88 47 67.80 72.22 95.88 173.40 0.9412634 3.486325
II 0.39 1.84 2.7 2.622 3.22 5.56 0.3680898 3.105532
III 1051 5620 8831 8804 11,745 17,568 0.09064136 2.178531
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Fig. 2   Histogram density, empirical and theoretical CDFs and P–P plot of data I

Histogram and theoretical densities

data

D
en

si
ty

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

Em
pi

ric
al

 p
ro

ba
bi

lit
ie

s

Fig. 3   Histogram density, empirical and theoretical CDFs and P–P plot of data II
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terminated at 0.8164692 by experimenter with consumer’s 
risk 0.10 and termination ratio is (t0∕�0) = 0.45 . Optimal 
plan parameters for the considered specifications are g = 9 , 
c = 4 and i = 2 when group size r = 5 . Now, if the experi-
menter desires to set up the MChGSIP plan for the above 
mentioned specifications, then procedure is as follows:

•	 Select a sample of size 45 from a submitted lot. Allocate 
5 items to 9 groups, i.e, n = r × g and start with nor-
mal inspection and test the units up to truncation time 
0.8164692 Gba.

•	 Inspect all the groups simultaneously and record the 
number of non-conforming units ( Δ).

•	 If Δ ≤ 4 the lot is accepted provided that there is at most 
1 lot of the preceding 2 lots in which the number of 
defective units Δ exceeds the criterion 4, otherwise the 
lot is rejected.

If true mean lifetime of breaking stress of carbon fibers is 
3.00 min, i.e., quality ratio is (�∕�0) = 2 then probability of 

acceptance of lot for the considered specifications of experi-
menter is 0.9815832.

Data III This data set represents 49 data points of the 
stress-rupture life of kevlar 49/epoxy strands, subjected 
to the constant sustained pressure at the 70% stress level 
until all had failed, as before we have complete data with 
exact time of failure and considered by Cooray and Ananda 
(2008).

The MLEs of data-III  are � = 1.634991 and 
� = 10900.647977 . The experimenter set the mean lifetime 
of stress-rupture life of kevlar 49/epoxy strands is 2000 unit 
with specific consumer’s risk 0.10 and with shape parameter 
� = 1.634991 . Life test would be terminated at 1238.502 
unit by experimenter with consumer’s risk 0.10 and termina-
tion ratio is (t0∕�0) = 0.5 . Optimal plan parameters for the 
considered specifications are g = 5 , c = 4 and i = 2 when 
group size r = 5 . Now, if the experimenter desires to set up 
the MChGSIP plan for the above mentioned specifications, 
then procedure is as follows:
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Fig. 4   Histogram density, empirical and theoretical CDFs and P–P plot of data III
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•	 Select a sample of size 25 from a submitted lot. Allocate 
5 items to 5 groups, i.e, n = r × g and start with nor-
mal inspection and test the units up to truncation time 
1238.502.

•	 Inspect all the groups simultaneously and record the 
number of non-conforming units ( Δ).

•	 If Δ ≤ 4 the lot is accepted provided that there is at most 
1 lot of the preceding 2 lots in which the number of 
defective units Δ exceeds the criterion 4, otherwise the 
lot is rejected.

If true mean lifetime of stress-rupture life of kevlar 49/epoxy 
strands is 6000, i.e., quality ratio is (�∕�0) = 3 then prob-
ability of acceptance of lot for the considered specifications 
of experimenter is 0.9963392.

7 � Conclusions and future research orientation

The MChGSIP, based on GHND has been developed in this 
article. The proposed plan’s minimum sample size and OC 
values have been calculated. The application of the proposed 
time truncated acceptance sampling plan has been detailed 
and discussed using three real-world examples. Other values 
of the shape parameter can be accommodated by modifying 
this design. The proposed method can be used in the corpo-
rate world to decide whether or not to accept or reject a large 
number of manufactured goods whose lifespans match the 
GHND pattern. Next up, we’ll develop MChGSIP for other 
non-normal probability distributions.
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