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Abstract The market has become very volatile these days 
in the presence of a war-like situation with a lot of politi-
cal turmoil and the rapid occurrence of natural disasters the 
world over. It is difficult to predict the economic condition of 
the country and hence the company’s financial position. This 
paper proposes a novel approach that integrates clustering 
techniques, deep learning, and a metaheuristic algorithm to 
enhance the process of asset selection and allocation. First, 
S&P BSE 500 index companies have been clustered into ten 
groups by using the Expectation Maximization (EM) cluster-
ing technique based on 11 fundamental characteristics of the 
companies. The Prowess financial database has been used to 
collect the required data. For diversification of the portfolio 
across clusters and sectors, the best-performing companies 
are chosen based on Sharpe Ratio. Advanced analytical 
tools like machine learning and deep learning have been 
employed to increase the accuracy and precision of esti-
mating the returns on the stocks of the selected companies. 
The expected return on stocks of these selected companies 
has been estimated with the help of Neural Basis Expan-
sion Analysis for Interpretable Time Series (N-BEATS), a 
deep learning neural network-based forecasting technique. 

A portfolio multi-objective optimization model has been 
formulated by considering entropy and higher moments 
like skewness and kurtosis in the objective function. A 
metaheuristic algorithm named multi-verse is used to solve 
the optimization model, and hence the selection of the assets 
with their proportion of investment in the portfolio has been 
suggested under different scenarios.

Keywords Entropy · Higher-moments · Expectation 
maximization · N-BEATS · Multi-verse · Portfolio 
optimization

1 Introduction

The selection of risky assets for investment to be included in 
a portfolio that can optimize the return and risk of an inves-
tor is a herculean task in the current scenario of political 
instability, economic upheaval, increased terrorism, and sup-
ply chain disruption due to natural calamities and epidemics 
throughout the world. Due to the increasing uncertainty in 
economic conditions, while companies are facing recession 
and laying off staff to stay afloat in the market, the stock 
trading market has also become unpredictable, and hence the 
formation of an optimal portfolio of risky assets has become 
tough. In this context, the Modern Portfolio Theory devel-
oped by Harry Markowitz (1952) remains valuable. The the-
ory provides a solid foundation for investors not only during 
normal times but also during times of uncertainty and crisis.

In the mean–variance portfolio framework of Markow-
itz, diversified portfolio development secures the highest 
possible expected return for a given degree of risk toler-
ance (Cheong et al. 2017). By clustering the assets based 
on certain characteristics and selecting assets from differ-
ent clusters, one can ensure that the portfolio includes a 
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well-diversified mix of assets. Moreover, the experimental 
results have shown that the use of clustering algorithms can 
improve the reliability of the portfolio (Long et al. 2014). 
Chen and Huang (2009) and Nanda et al. (2010) applied 
clustering in their work to mitigate the complexity of diver-
sification. Since then, various authors have employed clus-
tering techniques to address the diversification of stocks in 
portfolio selection problems (Ashfaq et al. 2021; Long et al. 
2014).

Forecasting the returns of individual stocks is a crucial 
step in the portfolio construction process. The theoretical 
studies have shown that mean–variance portfolio selection 
problems are very sensitive to small forecast errors in the 
means and covariances (Du 2022; Chopra et al. 1993; Gold-
farb and Iyengar 2003). In recent times, researchers have 
shown growing interest in extending the mean–variance 
model by improving the accuracy of the expected returns 
using various forecasting methods (Ashrafzadeh et al. 2023; 
Du 2022; Wu et al. 2021; Gu et al. 2020). Conventional fore-
casting techniques are not suitable for time series data with 
non-linearity and non-stationarity. In such situations, deep 
learning machine algorithms outperform the conventional 
methods of forecasting (Du 2022).

Selecting the right forecasting technique is crucial, but 
improving model performance also depends on various 
other aspects such as determining an initial approximate 
solution, optimizing the model’s meta-parameters, the train-
ing approach, etc. To achieve the best results, researchers 
have introduced several metaheuristic methods designed to 
search for the optimal set of hyperparameters. Metaheuris-
tic techniques also enable the researchers to approximate 
optimal solutions to the portfolio optimization problem in 
an efficient manner (Erwin and Engelbrecht 2023). Some of 
these algorithms include the genetic algorithm (Gupta 2022; 
Cheong et al. 2017; Chang et al. 2009), the firefly algorithm 
(Wang and Liu 2019), and the particle swarm optimization 
(Wang and Liu 2019; Song et al. 2023). Unlike exact meth-
ods, which are suitable for solving simpler optimization 
problems under strict assumptions, metaheuristic methods 
are applicable to a broad range of more complex problems.

In this paper, we have proposed a novel approach that 
integrates clustering techniques, deep machine learning, and 
a metaheuristic algorithm to enhance the process of asset 
selection and allocation. First, data is extracted from the 
ProwessIQ database for S&P BSE 500 index companies. 
We apply the Expectation–Maximization (EM) clustering 
technique to categorize the S&P 500 companies into groups 
based on similar financial performance indicators. Subse-
quently, we concentrate on predicting the return of assets 
that have been chosen using the clustering technique. To do 
this, a deep neural-network based learning method called 
Neural Basis Expansion Analysis for Interpretable Time 

Series (N-BEATS) is employed. The portfolio optimization 
problem considered in this paper takes numerous objectives 
into account, such as variance, skewness, kurtosis, and 
entropy. Since in real life, any individual investor or any 
corporation is having a limited budget for investment and 
having a goal of getting a minimum return on investment, we 
also incorporate constraints relating to mean return, capital 
allocation, and budget limits to improve the practicality of 
the problem. In the end, the multi-verse optimization (MVO) 
approach is utilized to solve the portfolio problem which can 
help the company/investor to decide about how to distribute 
his wealth optimally among different assets at minimum risk.

The contribution of the present work is significant for 
more than one reason. Firstly, to the best of our knowledge, 
no prior research has utilized an MVO approach for solv-
ing a Multi-objective portfolio optimization problem. Sec-
ondly, although EM clustering and the N-BEATS forecasting 
technique are valuable methods, not many authors have paid 
attention to these approaches. Furthermore, the combination 
of MVO, N-BEATS forecasting, and EM clustering has not 
been explored previously by any researcher. Consequently, 
the present study offers substantial value to researchers, 
practitioners, and investors by addressing these important 
research gaps.

The rest of the paper is organized as follows. Section 2 
presents an in-depth analysis of the literature. Section 3 pro-
vides the theoretical background by explaining all the meth-
ods involved in this paper like the EM, N-BEATS, MVO. 
Section 4 explains the proposed problem formulation, nota-
tion, and assumptions. Section 5 describes the data used 
for the problem, the analysis of the data, and the obtained 
results. Section 6 concludes the paper with a brief discussion 
of the findings. Finally, Sects. 7 and 8 discusses about future 
research opportunities and limitations of the research works.

2  Literature review

Harry Markowitz (1952) introduced the formula for cal-
culating the risk of the portfolio by including the covari-
ation term between the returns of risky assets and empha-
sized diversification of the portfolio to reduce the overall 
risk by including least-correlated, zero-correlated, or even 
negatively correlated assets. Diversification is a portfolio 
allocation technique that seeks to reduce idiosyncratic risk. 
A perfect positive correlation between assets in a portfolio 
raises the portfolio’s standard deviation, or risk. Portfolios 
can be diversified in numerous ways, like across industries, 
asset classes, and markets (i.e., countries).

The unsupervised machine learning technique called 
“clustering” also helps in diversifying the portfolio. 
Cluster analysis is a tool used for grouping objects that 
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have common features and is used by investors to create 
a subsystem trading strategy that assists them in build-
ing a diverse portfolio by picking stocks from different 
clusters. If implemented correctly, the individual clusters 
will have little association with one another. Investors 
obtain all the benefits of diversification under this setting: 
decreased downside losses, preservation of capital, and the 
opportunity to make riskier transactions without increas-
ing overall risk. Diversification is a key tenet of invest-
ment, and clustering is simply one method for attaining it. 
In recent times, authors and researchers have shown grow-
ing interest in using clustering in their studies (Long et al. 
2014; Cheong et al. 2017; Rezani et al. 2020; Sehgal and 
Jagadesh 2023; Sass and Thös, 2021; Wang and Aste 2023; 
Menvouta et al. 2023). K-means is one of the most widely 
used clustering techniques. It is easy to understand, com-
putationally efficient, and works well when clusters are 
spherical and have similar sizes. Few of the recent studies 
on K-means clustering (Aithal et al. 2023; Navarro et al. 
2023; Wu et al. 2022; Cheong et al. 2017; Nanda et al. 
2010). However, it is sensitive to the initial placement of 
centroids, and it might converge to the suboptimal solu-
tions in some cases. EM clustering, which is an extension 
of K-means, is, on the other hand, a more general frame-
work that works well with data distributions that are not 
necessarily spherical or have equal sizes. It is often used 
in cases where the clusters have overlapping or complex 
shapes. EM clustering employs a probabilistic approach to 
clustering and is based on the expectation maximization 
algorithm. EM clustering is more flexible than K-means as 
it allows for more complex cluster shapes and sizes. It is 
also more robust to the choice of initial parameters due to 
its probabilistic nature. However, it can be computation-
ally more intensive and might require careful initialization 
of parameters to converge on a good solution. A compari-
son of both the techniques is given by Jung et al. (2014) 
and Moghadaszadeh and Shokrzadeh (2018). Ng and Chin 
Khor (2014) built a plantation stock portfolio for Bursa 
Malaysia index using EM clustering technique.

To address the univariate time series forecasting prob-
lem using deep learning, Oreshkin et  al. (2019) intro-
duced a deep neural architecture, N-BEATS, which 
incorporates backward and forward residual connections 
as well as a very deep stack of completely linked layers. 
The M3, M4, and TOURISM competition datasets have 
shown cutting-edge performance for two N-BEATS con-
figurations. A few of the studies available on N-BEATS 
are as follows: (Oreshkin et al. 2021; Sbrana and Lima 
De Castro 2023; Ma et al. 2023; Kaja et al. 2021). The 
only research available where N-BEATS forecasting is 
used in the field of finance is by Singhal et al. (2022), in 
which they describe a technique for improving stock mar-
ket  index  forecasting  that  blends  wavelet processing 

with the deep learning architecture, N-BEATS. This leaves 
a research gap in the field.

Mirjalili et al. (2016) offered a nature-inspired algorithm 
called multi-verse optimizer (MVO). The main inspirations 
for this algorithm come from three cosmological concepts: 
white holes, black holes, and wormholes. These three con-
cepts are designed mathematically to be executed: explo-
ration, exploitation, and local search, respectively. The 
multi-objective multi-verse optimizer (MOMVO) is a multi-
objective variation of the MVO suggested by Mirjalili et al. 
(2017). The competitive multiverse optimizer (CMVO), a 
unique population-based optimization approach, is intro-
duced by Benmessahel et al. (2020). Although it uses a dif-
ferent framework, this unique approach is fundamentally 
based on MVO. Abualigah (2020) reviewed existing litera-
ture on MVO and presented a comprehensive survey of the 
work. None of the studies employed MVO to solve the port-
folio optimization problem.

The mean–variance portfolio optimization model of 
Markowitz assumes that the return of assets follows a nor-
mal distribution, which might not be true, as proved by many 
researchers (Malek et al. 2009; Z. Zhu et al. 2020; Saranya 
and Prasanna 2014). In cases of violation of the normal dis-
tribution of return, only two moments, mean and variance, 
are inadequate to consider while finding an optimal portfolio. 
Higher-order moments like skewness and kurtosis also need 
proper attention in selecting an optimal portfolio of assets, as 
has been proven in many studies (Nguyen 2016; Abdelaziz 
and Chibane 2023; Sihem and Slaheddine 2014; Mirlohi 
et al. 2021). The introduction of higher-order moments can 
help in identifying assets with low correlation to the tradi-
tional risk factors, thus enhancing the diversification ben-
efits of the portfolio (Barkhagen et al. 2023; Naqvi et al. 
2017; Khan et al. 2020). To ensure portfolio diversification, 
entropy is another measure. It helps in diversifying the port-
folio and hence in increasing its performance, and it has been 
used in many studies along with higher moments (Gupta 
et al. 2019; Gonçalves et al. 2022; Nabizadeh and Behzad 
2018; Batra and Taneja 2022; Pourrafiee et al. 2020; Ji et al. 
2017). Zhou et al. (2013) examined the concepts and prin-
ciples of entropy as well as their applications in finance, 
particularly portfolio selection and asset pricing.

By taking moments of return like variance, skewness, 
kurtosis, and entropy into our objective function, the port-
folio optimization model becomes a multi-objective port-
folio selection model with conflicting objectives of maxi-
mizing skewness and entropy while minimizing variance 
and kurtosis. Many authors have used goal programming to 
solve related problems (Ashfaq et al. 2021; Siew et al. 2021; 
Aksaraylı and Pala 2018). Many have used metaheuristics 
like (Li et al. 2023; Chen and Zhou 2018). Milhomem and 
Dantas (2020) conducted a thorough examination of the 
exact and heuristic approaches, software and programming 
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languages, restrictions, and forms of analysis (technical and 
fundamental) employed in the solution of the portfolio opti-
mization problem.

2.1  Motivation and contribution

An in-depth exploration of the literature review helped us 
identify the research gaps. Motivated by the research gap, 
the present study was undertaken. The main contribution 
of the present work lies in employing the MVO for the first 
time in the present context. Furthermore, the integration of 
the EM clustering technique and the N-BEATS forecasting 
method with the multi-verse portfolio optimization problem 
presents a novel approach. Elements such as variance, skew-
ness, kurtosis, and Gini Simpson entropy are incorporated in 
the objective function for the analysis. The multi-objective 
problem encompasses a combination of objectives and con-
straints that have not been previously addressed, making 
it useful for complex portfolio allocation situations. Addi-
tionally, the utilization of the clustering method and fore-
casting techniques remains relatively unexplored by most 
researchers in this field. Our findings provide researchers 
and practitioners with valuable insights into how different 
combinations of objectives can impact portfolio perfor-
mance (Table 1).

3  Methods description

3.1  Expectation maximization (EM) clustering method

EM is a general iterative optimization algorithm used to 
estimate the parameters of statistical models, particularly 
in situations involving missing or hidden data, as explained 
by Do and Batzoglou (2008). EM is a specific type of proba-
bilistic clustering which uses the concept of Gaussian Mix-
ture Models (GMMs).

The EM algorithm is often associated with Sir Ronald 
A. Fisher and developed further by other statisticians and 
researchers. However, its application to clustering and 
Gaussian mixture models can be attributed to many con-
tributors, including Dempster et al. (1977). They introduced 
the algorithm and its application to statistical modelling in 
their paper titled "Maximum Likelihood from Incomplete 
Data via the EM Algorithm."

In the context of clustering, the EM algorithm for Gauss-
ian mixture models iteratively updates the estimates of the 
mixture model’s parameters by alternating between two 
steps:

1. Expectation Step (E‑step) In this step, for each data 
point, the algorithm calculates the probabilities of 
belonging to each cluster based on the current estimates 

of cluster parameters. These probabilities represent the 
"expectation" of the hidden or missing cluster assign-
ments.

2. Maximization Step (M‑step) In this step, the algorithm 
updates the parameters (means, variances, and mixing 
proportions) of the Gaussian distributions in a way that 
maximizes the likelihood of the observed data given the 
current cluster assignments.

By iteratively repeating these steps, the algorithm aims to 
find a set of parameters that maximize the likelihood of the 
observed data. This process helps in estimating the underly-
ing cluster structure of the data.

In summary, while the EM algorithm itself is not attrib-
uted to a single individual, its application to clustering, par-
ticularly Gaussian mixture models, has been developed by 
a combination of researchers in the fields of statistics and 
machine learning.

3.2  N‑BEATS (neural basis expansion analysis 
for interpretable time series)

Oreshkin et  al. (2019) proposed N-BEATS, which is a 
deep neural network based on backward and forward resid-
ual links as well as a very deep stack of fully connected lay-
ers. It is a univariate model. The architecture (shown in 
Fig. 1) of the model is founded on a few fundamental ideas.

• The foundation framework should be simple, general, and 
descriptive (deep).

• The design should not rely on feature engineering or 
input scaling that is time series-specific (like trend and 
seasonality).

• For investigating interpretability, the architecture should 
be expandable so that its outputs can be easily interpreted 
by a human.

The data is fed into the model as a lookback period. The 
lookback period is the back horizon, which is used to make 
predictions on the forecast horizon. If the length of the fore-
cast horizon is H, then the length of the backcast horizon 
should be 2H–7H.

The model is divided into a collection of blocks and 
stacks.

Block A block is simply four fully connected (FC) layers 
that give rise to two forks. The first one attempts to recre-
ate the back horizon input, whereas the second attempts to 
forecast the horizon. FC layers give rise to the �b and �f  
coefficients. They are expansion coefficients. gb and gf  are 
the basis vectors. Then a linear combination of coefficients 
and basis vectors suffices to generate a prediction.

Stack A stack is made up of multiple basic blocks that 
are organized following the double residual stacking 
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concept. The output of the Basic Block undergoes two 
arithmetic operations (backcast and forecast), hence the 
phrase double residual stacking.

Multiple linked blocks yield better results; the subse-
quent blocks attempt to forecast the missing part of their 
predecessors, and the outputs are finally summed. These 
blocks form a stack, and the sum of numerous stacks yields 
the final output.

At this point, the model is in its generic form. The base 
expansion function, represented as g in the illustration, is 
trainable. To achieve the best outcomes, the neural net-
work constructs a problem-specific function.

But to make the model interpretable, the author has 
incorporated trend and seasonality in the model in the 
form of polynomial and Fourier basis, respectively. As 
a result, in the interpretable version of the architecture, 
the model contains only two stacks: one for predicting a 
trend component and the other for forecasting a seasonal 
component. The predictions are then pooled to generate a 
final output.

The first block receives the actual input, n ∗ H . The sub-
sequent blocks receive the backcast of the prior block as 
their input.

For brevity, the mathematical aspect of the model has 
been explained for kth block.

Suppose kth block receives its input as xk and then it 
gives out two outputs. One is x̂k and the other is ŷk , which 
are the backcast and forecast of the, kth block. In the subse-
quent block, k + 1th block receives the backcast from prior 
block k as its input, i.e., xk+1 = xk − x̂k.

The size of the input matrix is determined by batch size 
and back horizon. The input in each block passes through 
a pack of four fully connected layers and the ReLU (recti-
fied linear unit) activation function, which produces the 
backward and forward expansion coefficients, �b

k
and�

f

k
, 

respectively. Then these coefficients form a linear com-
bination with vector basis, gb

k
andg

f

k
, respectively and make 

a prediction (forecast and backcast). Only one block is 
enough for making a prediction, but subsequent blocks are 
added to improve the result.

The operation of first part of kth block is described 
below:

hk,1 = FCk,1(xk  ), hk,2 = FCk,2(hk,1 ), hk,3 = FCk,3(hk,2 ), 
hk,4 = FCk,4(hk,3)

�b
k
= LINEARb

k
(hk,4 ), �

f

k
= LINEAR

f

k
(hk,4)

Fig.1  N-BEATS architecture (Adapted from: (Oreshkin et al. 2019))
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The second part of the kth block projects expansion coef-
ficients �b

k
and�

f

k
 to vector basis and gives x̂k = gb

k
(�b

k
)and 

ŷk = g
f

k
(�

f

k
) . This operation can generally be described as 

follows:

where vb
i
andv

f

i
arebackcastandforecastvectorbasis.

As mentioned above, the N-BEATS model has two con-
figurations: one is generic and the other is interpretable. 
Generic architecture does not depict time series-specific 
information. In it, gb

k
andg

f

k
 are linear projections of the out-

put of the preceding layer. To make the model more inter-
pretable, trend and seasonality components are introduced.

Stack-level indexing, which was excluded in the generic 
model, is considered an interpretable one. Like, ŷs,k 
denotes the partial forecast of kth block in stack s.

Trend model: A common feature of a trend is that 
it is almost always a monotonic function,  or at least 
a slowly changing one. To replicate this behavior, con-
strain gb

s,k
andg

f

s,k
 are polynomials of small degree p, a func-

tion that slowly varies over the prediction window:

Here, t = [0, 1, 2,… ,H − 2,H − 1]T∕H is time vector.

3.3  Multi‑verse optimizer

MVO is a population-based, nature inspired metaheuristic 
algorithm. It is inspired by the multiverse theory. Mirjalili 
et al. (2016) proposed this method for solving numerical 
optimization problems. The MVO algorithm is based on 
principles of physics. In the multiverse theory, multiple 
worlds interact and may even collide. Each universe, accord-
ing to MVO, would have its own set of physical principles. 
The three fundamental constituents of multiverse theory are 
white holes, black holes, and wormholes. The big bang could 
be regarded as a white hole and possibly the key component 
in the development of the universe. Black holes attract eve-
rything, including light beams, due to their immense gravi-
tational attraction. Wormholes are holes in the cosmos that 
connect different portions of it. They serve as time and space 
travel tubes in the multiverse approach. These tunnels allow 
objects to travel between any two corners of a universe or 
even from one universe to another in a moment.

x̂k =

dim(�b
k
)∑

i=1

�b
k,i
vb
i
, ŷk =

dim(�
f

k
)∑

i=1

�
f

k,i
v
f

i

ŷs,k =

p∑
i=1

�
f

s,k,i
ti

Key principles of the MVO optimization process:

• As the inflation rate (fitness value) rises, so does the 
likelihood of having a white hole, whereas the likeli-
hood of having a black hole decrease.

• Objects are more likely to pass through white holes 
in universes with a higher inflation rate than through 
black holes with a lower inflation rate.

• Regardless of the inflation rate, objects in all universes may 
transfer at random to the best universe via wormholes.

Each solution is a universe, and each variable in that uni-
verse is an object. Furthermore, an inflation rate is applied to 
each solution that is proportional to the fitness function value 
associated with the solution.

To describe the mathematical model of the white and black 
hole tunnels as well as the transportation of items across uni-
verses, a roulette wheel mechanism is used. The roulette pro-
cess is used to select one universe from among all possible 
universes for the white holes. At each iteration, we will rank 
the universe by fitness value and choose one using roulette.

According to multiverse theory, there are several universes:

U =

⎡⎢⎢⎢⎣

y1
1
y2
1
⋯ ym

1

y1
2
y2
2
⋯ ym

2

⋮ ⋮ ⋱ ⋮

y1
n
y2
n
⋯ ym

n

⎤⎥⎥⎥⎦
 where m = number ofobjects, n = num-

ber of universes.
Mathematical model for the selection of universe using rou-

lette wheel selection process:

where y
j

k
= jthparameterofkthuniverse, selectedbyroulette

selectionprocess

Assume that each universe has wormholes to ensure the 
random interchange of objects via space. They shift objects 
at random without regard for their inflation rates. Assume 
that wormhole tunnels are always formed between a universe 
and the optimal universe (to provide local changes to each 
universe). Below is the mathematical formulation of this 
mechanism:

y
j

i
=

{
y
j

k
,R1 < NI(Ui)

y
j

i
,R1 ≥ NI(Ui)

y
j

i
= jthparameterofithuniverse

R1 ∈ [0, 1], arandomvalue

Ui = ithuniverse

NI = normalizedrateofinflation
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where Yj = jthparameterofthefitteduniverse

UB (Upper bound) = Maximum limit.
LB (Lower bound) = Minimum limit

yji =

⎧

⎪

⎨

⎪

⎩

{

Yj + TDR ×
((

UBj − LBj
)

× R4 + LBj
)

,R3 < 0.5
Yj + TDR ×

((

UBj − LBj
)

× R4 + LBj
)

,R3 < 0.5
yji,R2 ≥ WEP

,R2 < WEP

y
j

i
= jthparameterofithuniverse

{R2,R3,R4} ∈ [0, 1]andarerandomvalues

WEP (wormhole existence probability) and TDR 
(travelling distance rate) are coefficients. WEP is used 
to define the likelihood of the existence of wormholes in 
other universes. TDR helps in determining the distance 
rate (variation) at which an object can be transferred by 
a wormhole around the best universe obtained thus far. 
Unlike WEP, TDR is enhanced over iterations to allow 
for more precise exploitation and local search around 
the best-obtained universe (Fig. 2). They are formulated 
below:

PSEUDOCODE:MULTIVERSEOPTIMIZER 

, ,

 ;

0,1  ;

 ;

, ,  ;

0,1 ;

0,1 ;

0,1 ;

 0.5 

,

 –   ;

,

 –   ;

Fig.2  Pseudo Code for multi-verse optimizer (Adapted from: (Mirjalili et al. 2016))
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3.4  Higher moments

Portfolio optimization using higher moments refers to the 
process of constructing a portfolio by considering not just 
the expected return and risk (the first and second moments 
of the return distribution), but also higher-order moments 
such as skewness and kurtosis.

The inclusion of higher moments in portfolio optimiza-
tion can lead to more diversified portfolios that recognize 
the dangers of asymmetric returns and fat-tail risk.

Let Rp be a random variable representing the portfolio 
return. R =

(
R1,R2,… ,Rn

)
 be the return vector of n assets 

where Ri′s  are rate of return of ith asset.
Further, let X =

(
x1, x2,… , xn

)
 be the weight vector 

where, xi′s represents the proportion of investment in ith 
asset.

Then the first four moments (Kemalbay et al. 2011) 
(Aksaraylı and Pala 2018) of portfolio return, Rp can be 
calculated as follows:

Here, μ = E[R] = (μ1, μ2,⋯ , μn) are the mean return of 
each asset vector,

WEP = min + e ×
(max − min

E

)

,

e = currentiterartion,E = maximumiteration

TDR = 1 −
e

1

p

E
1

P

, p = exploitationaccuracy

Mean = E
(
Rp

)
= E

[
XTR

]
=

n∑
i=1

xi�i = XT� = XTM1

Variance = V
(

Rp
)

= E
[

XTR − E
[

XTR
]]2

=
n
∑

i=1

n
∑

j=1
xixj�ij = XTVX = XTM2X

SkewnessS
(

Rp
)

= E
[

XTR − E
[

XTR
]]3

=
n
∑

i=1

n
∑

j=1

n
∑

k=1
xixjxksijk

= XTS(X ⊗ X) = XTM3

KurtosisK
(

Rp
)

= E
[

XTR − E
[

XTR
]]4

=
n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1
xixjxkxlkijkl

= XTK(X ⊗ X ⊗ X) = XTM4

V = E[R − E[R]]2 is n × n variance–covariance matrix 
consisting of values like �ij�s∀(i, j) ∈ [1,⋯ , n] and 
�ij = E

[(
Ri − E

[
Ri

])(
Rj − E

[
Rj

])]
,

S = E[R − E[R]]3 is n × n2 skewness coskewness matrix 
consisting of values like s�

ijk
s∀(i, j, k) ∈ [1,⋯ , n] and 

sijk = E
[(
Ri − E

[
Ri

])(
Rj − E

[
Rj

])(
Rk − E

[
Rk

])]
,

K = E[R − E[R]]4 is n × n3 kurtosis cokurtosis matrix 
consisting of values like kijkl�s∀(i, j, k, l) ∈ [1,⋯ , n] and 
kijkl= E

[(
Ri−E

[
Ri

])(
Rj−E

[
Rj

])(
Rk−E

[
Rk

])(
Rl − E

[
Rl

])]
 . 

M1,M2,M3andM4denotesthesemoments. ⊗ denotes Kro-
necker product.

3.5  Gini‑Simpson (GS) entropy

The following expression describes GS entropy as pro-
posed by Aksaraylı and Pala (2018):

4  Proposed (Variance–Skewness–Kurtosis–
Entropy) VSKE optimization model

The optimization model utilized to calculate the best per-
centage of investments to be made in all assets in the port-
folio problem, as well as the assumptions and concepts 
employed in the problem, are discussed in this section.

4.1  Assumptions and notations

It is assumed that the investor is risk averse and will be 
interested in investing in the efficient frontier portfolio of 
assets which minimizes his risk at a given level of return. 
Rate of return of asset is following a probability distribution 
and investor is interested in maximizing his utility of wealth. 
Further, no taxes, commission, or transaction fee is involved.

Following notations have been used in the subsequent 
analysis:

wi′s : weights assigned to different goals in the objective 
function,

xi�s ∶ proportion of investment in each asset,
kijklandsijk ∶ cokur tosis and coskewness matr ix 

, i, j, k = 1, 2,… , n. (n is number of assets),
MinRet ∶ minimum value of return aspired by investor,
LB&UB ∶ lower and upper bounds on the investment pro-

portion of assets.
Following assumptions have been made in the proposed 

optimization model:

GSentropy ∶ 1 −

n∑
i=1

x2
i
= 1 − XTX
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 i. An investor allocates his/her wealth among n assets 
offering random rates of return.

 ii. The minimum target return for the investment is set at 
5%.

 iii. Available capital should completely be invested.
 iv. The capital invested in each asset is assumed to be 

bounded between a lower and an upper bound.
 v. Predicted returns are not normally distributed; there-

fore, skewness and kurtosis are utilized in the analysis.

4.2  Constraints of the model

4.2.1  Constraint on return: no less that a certain amount 
of return allowed i.e.

4.2.2  Capital budget constraint: capital should be 
completely invested i.e.

4.2.3  Bound constraint: bound on capital invested in each 
asset, i.e.

where LB is the minimum proportion of investment and UB 
is the maximum value of investment in each asset.

4.3  Problem formulation

The multi-objective nonlinear optimization problem VSKE 
is formulated as follows:

n∑
i=1

xi�i ≥ MinRet

n∑
i=1

xi = 1

LB ≤ xi ≤ UB

Minw1

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1
xixjxkxlkijkl − w2

n
∑

i=1

n
∑

j=1

n
∑

k=1
xixjxksijk

+ w3(1 −
n
∑

i=1
x2i ) + w4

n
∑

i=1

n
∑

j=1
xixj�ij

s.t.

The proposed optimization problem for optimal asset 
allocation is a multiple objective quadratic problem. Obtain-
ing an optimal solution of the considered problem is a diffi-
cult task. A metaheuristic method, MVO, is utilized to solve 
the given problem. The reason for applying MVO is twofold. 
This method has not been applied previously in the present 
context. Furthermore, MVO can cater to a wide range of 
complex situations.

5  Data analysis and results

In this study, firstly, 10 years (January 2011–January 2022) 
of data on fundamental indicators like adjusted opening 
price, adjusted high price, adjusted low price, adjusted clos-
ing price, market capitalization, total returns, earnings per 
share (EPS), price-to-earnings (P/E) ratio, price-to-book 
(P/B), book value per share (BVPS), and turnover of S&P 
BSE 500 index companies have been collected from Prowes-
sIQ’s financial database. These features cover a variety of 
financial indicators, providing a comprehensive understand-
ing of the data’s characteristics. After normalising the data, 
we performed principal component analysis (PCA) to reduce 
the dimensionality of the data, which reduced the dimension 
of the data to 7 components, where the explained variance 
of these 7 components is 0.99678. This step is particularly 
beneficial for mitigating the problem of dimensionality 
and improving the stability of clustering algorithms. Then 
Expectation Maximization Technique, was applied to the 
data to make clusters where 500 companies were grouped 
according to the similarity and dissimilarity of the 7 com-
ponents obtained through PCA. A total of 10 clusters were 
formed, where 70 companies belonged to the first cluster, 32 
to the second, and subsequently 88, 30, 80, 33, 46, 35, 52, 
and 34 to the rest of the clusters. We assessed the quality of 
our clustering solution using the silhouette score. The sil-
houette score measures the separation between clusters and 
their compactness. A score of 0.243 for 10 clusters indicates 
a reasonable level of separation and compactness among 
the clusters. The graph for different values of the silhouette 
score is shown below (Fig. 3).

We have effectively managed the sensitivity to initializa-
tion in EM clustering by implementing controlled initializa-
tion strategies, employing dimensionality reduction through 

n∑
i=1

xi�i ≥ MinRet

n∑
i=1

xi = 1

LB ≤ xi ≤ UB
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PCA and evaluating clustering quality using the silhouette 
score. This comprehensive methodology provides robust-
ness and reliability to our clustering results, enhancing their 
practical applicability and interpretation.

The composite performance measure, the Sharpe Ratio, 
is used to select the best-performing asset from each clus-
ter. To further increase the diversification, companies are 
selected from each cluster in such a way that all selected 
assets belong to different sectors such as consumer dura-
bles, infrastructure, telecom, finance, real estate, health care, 
power, oil and gas, industrial, auto, commodities, consump-
tion, and so on (Table 2).

A portfolio of 10 companies’ risky assets has been 
formed, and their five-year (October 2017—Octo-
ber 2022) daily return data was calculated using 
(NewACP − OldACP)∕OldACP , for which the Adjusted 
Closing Price (ACP) data has been collected from the Yahoo 
Finance database. Now the N-Beats method was applied to 

predict their return for the next 60 periods by using 7*1 as 
the lookback period and 1 as the horizon, whereas the rest 
of the hyperparameters were taken as they are in Oreshkin 
et al. (2019). The mean absolute error and root mean square 
error values after testing the model are calculated as 0.02569 
and 0.03119, respectively, which signifies good performance 
of the model (Fig. 4).

As asset returns do not necessarily follow normal dis-
tribution always, which was assumed in the Markowitz 
Mean–variance optimization model, the normality of pre-
dicted returns is checked by applying the Shapiro–Wilk test. 
The normal distribution assumption was found to be vio-
lated by the estimated return data. Higher order moments 
like skewness & Kurtosis other than mean and variance, 
along with Gini entropy were considered for optimization.

The following table comprises the list of descriptive sta-
tistics for the 10 stocks selected for analysis.

Fig.3  Silhouette Score

Table 2  Sharpe Ratio and 
Sector of selected companies

S.No Company name Sharpe ratio Sector

1 Metro Brands Limited 2.05 Consumer Durables
2 Adani Power Limited 2.55 Power
3 Schaeffler India Limited 2.24 Industrials
4 Asahi India Glass Limited 1.32 Auto
5 DLF Limited 2.55 Real Estate
6 Bajaj Holdings and Investment Limited 1.01 Finance
7 Deepak Fertilizers & Petrochemicals Corpora-

tion Limited
1.77 Commodity

8 Aditya Birla Fashion & Retail Limited 1.18 Consumption
9 Adani Total Gas Limited 2.01 Oil and Gas
10 Hindustan Aeronautics Limited 1.8 Infrastructure
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DLF Limited has the highest mean. Bajaj Holdings and 
Investment Limited has the lowest variance. Asahi India 
Glass Limited has the highest skewness, and Hindustan 
Aeronautics Limited has the lowest kurtosis. The Shap-
iro–Wilk test findings are also supplied in the last column. 
From Table 3, it can be seen that five of the companies’ 
returns are normally distributed and the other five are not 
(bold values of p), which justifies including skewness and 
kurtosis as one of the objectives to get better results.

Now the MVO is applied to solve multi-objective opti-
mization problems by setting a minimum return of 5% and 
varying weights assigned to different objectives. Results 
have been tabulated in Table 4.

Table 4 displays the percentage of investment in ten 
selected stocks along with the risk and return of the portfo-
lio. To begin with, we allocated equal weights to all objec-
tives, yielding a 5.21 percent return with a 47.82 percent 
portfolio risk. Then we only analysed three targets at a 
time by keeping the weight assigned to one at zero, yield-
ing returns of 5.06 percent, 5.14 percent, and 5.04 percent. 
It shows that when all objectives are taken together, the 

portfolio is showing the best performance in terms of risk 
and return.

6  Conclusion

The present work is related to the portfolio allocation 
problem in Indian context. The findings of the study gave 
encouraging results. We applied EM clustering to create a 
well-diversified portfolio and N-BEATS to estimate future 
returns for further investigations. A multi-objective portfolio 
optimization problem involving variance skewness, kurto-
sis, and GS entropy as objectives and mean return with a 
minimum value of 5% as an additional constraint, was con-
sidered. This problem was solved using MVO metaheuris-
tic technique. The maximum return was obtained when all 
objectives—kurtosis, skewness, entropy, and variance were 
considered and given equal weight. By neglecting kurtosis 
as an objective, the worst outcome was attained. The inclu-
sion of higher moments improves the overall quality of the 
result. With the help of the present study, portfolio managers 
can fine tune their analysis for determining where & how 

Fig. 4  Distribution of predicted return values

Table 3  Mean, Variance, 
Skewness, Kurtosis, Shapiro–
Wilk Statistics, and p-value of 
selected companies

S.No Mean Variance Skewness Kurtosis Shapiro–Wilk 
Statistics

p-value

1 − 0.00087 1.95E-06 0.263619 − 0.67314 0.97706 0.31715
2 − 4.8E-05 6.41E-07 − 0.03927 − 0.08722 0.98832 0.83614
3 − 0.00079 2.95E-07 − 2.12669 8.937137 0.84604 0.000002
4 − 0.00105 6.29E-07 1.640721 7.823963 0.88067 0.000028
5 0.003102 9.03E-07 − 0.62282 − 0.06174 0.9516 0.01853
6 − 3E-06 1.46E-07 − 0.70644 1.149003 0.96293 0.06551
7 − 0.00231 7.16E-07 0.353169 − 0.6516 0.97222 0.18717
8 − 0.00216 8.34E-07 0.58337 − 0.41082 0.95273 0.02096
9 0.001033 1.50E-07 − 1.05442 1.250317 0.92052 0.0008
10 − 0.00293 9.44E-07 0.032406 − 0.82199 0.97767 0.33827
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much proportion of their wealth should be invested and they 
can improve their decisions. It provides a perfect quantitative 
approach. A future study might concentrate on incorporating 
more constraints by relaxing some of the assumptions of 
the model into the suggested portfolio optimization model. 
It would also be fascinating to experiment with various 
metaheuristics and variants of MVO. The variability of the 
results of the forecasting technique is a significant limitation 
of the work. The results of the study rely primarily on the 
availability and accuracy of past data as well as parameter 
adjustment of applied techniques.

7  Discussion

The comprehensive study of a ten-year dataset containing 
crucial financial indicators is the basis of our research. PCA 
has been useful in enhancing the stability and interpretabil-
ity of clustering methods by reducing data dimensionality. 
Our use of the EM approach yielded 10 well-defined clus-
ters, laying the groundwork for asset selection and diver-
sification techniques. The Sharpe Ratio is used to find the 
best-performing assets within each cluster, which improves 
the portfolio’s risk-return profile. The N-BEATS approach 
for return prediction, which incorporates deep learning, 
has exhibited solid performance, providing useful insights 
for investment decisions. Furthermore, including higher-
order moments into the multi-objective optimization model 
acknowledges the non-normal distribution of asset returns, 
resulting in a more thorough risk assessment. This study 

provides portfolio managers and investors with a realistic 
and methodical strategy to managing the difficulties of cur-
rent financial markets.
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